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Abstract

In this paper, we evaluate several machine
learning methods for multi-label classification
of text questions. Every nursing student in the
United States must pass the National Coun-
cil Licensure Examination (NCLEX) to be-
gin professional practice. NCLEX defines a
number of competencies on which students
are evaluated. By labeling test questions with
NCLEX competencies, we can score students
according to their performance in each com-
petency. This information helps instructors
measure how prepared students are for the
NCLEX, as well as which competencies they
may need help with. A key challenge is that
questions may be related to more than one
competency. Labeling questions with NCLEX
competencies, therefore, equates to a multi-
label, text classification problem where each
competency is a label. Here we present an eval-
uation of several methods to support this use
case along with a proposed approach. While
our work is grounded in the nursing educa-
tion domain, the methods described here can
be used for any multi-label, text classification
use case.

1 Introduction

All nurses within the United States must pass
the National Council Licensure Examination
(NCLEX®) to begin professional practice. A nurs-
ing curriculum will typically cover a wide range of
topics related to the theory and practice of nursing.
However, the NCLEX measures students against
a specific set of competencies comprising the ac-
tivities that entry-level nurses are most commonly
expected to perform. These activities are identified
by the National Council of State Boards of Nursing
(NCSBN) through analysis of nursing practice.

Figure 1 shows a subset of NCLEX competen-
cies called ”activity statements” with descriptions.
Activity statements are grouped into primary topics

and sub-topics, as shown in the image. Nursing
education content may be related to one or more
competency; they are not mutually exclusive.

Figure 1: Sample of NCLEX competencies or activity
statements.

Passage of the NCLEX has significance not only
for students but also for learning institutions. Nurs-
ing school accreditation is partially based on how
well their student body performs on the NCLEX. If
their performance drops below a certain threshold
for too many consecutive years, the school risks
losing its accreditation. It is, therefore, paramount
for instructors to gauge student preparedness for
the NCLEX and course correct where necessary.
One way to do this is by repeatedly testing students
with simulated exams. This approach may reveal
that gaps exist, however, it does not necessarily
identify what competencies are deficient or what
content may address those deficiencies. By label-
ing both questions and educational content with
the competencies that they relate to, instructors can
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more precisely identify where students are strug-
gling and what content may help with remediation.
This approach enables coursework to be tailored
for individual students based on their performance
in a manner that maximizes likelihood of passing
the NCLEX. For instance, if a student incorrectly
answers questions related to ”Provide pulmonary
hygiene” (activity statement shown in Figure 1),
the instructor may assign the student additional
content (e.g., simulations and practice problems)
related to that competency. This general approach
is called formative testing.

PrepU is a Wolters Kluwer product for nursing
education that features several types of content
including books, simulations, videos, audio, and
quizzes. To support formative testing in PrepU,
quiz questions are tagged with the NCLEX compe-
tency related to them. When students take quizzes,
their scores can be aggregated according to NCLEX
competency. Figure 2 shows an example of the
interface displaying this information. The image
shows the student achieves a score of 66.7% for
the competency ”Prioritize the delivery of client
care”. This is calculated based on the student an-
swering 4 out of 6 questions correctly that were
labeled with that competency. There is also a tab
that shows class performance so that instructors can
see if there is a pattern of multiple students strug-
gling with a particular competency. Instructors can
use this information to make changes to the curricu-
lum to address problem areas. Corrective actions
may include assigning students additional content
or practice materials related to the competencies
they are struggling with.

Figure 2: PrepU screenshot showing quiz results bro-
ken down according to NCLEX competencies.

Figure 3: Editorial platform where editors manually tag
questions with associated NCLEX competencies.

To aggregate scores according to NCLEX com-
petencies as shown in Figure 2, each question needs
to be labeled according to which competencies it re-
lates to. Prior to our work, editors would manually
label questions using the editorial platform shown
in Figure 3. A drop-down menu shows a selection
of NCLEX competencies. The editor must scroll
through this list, identify which are appropriate,
and select them to add them to the question. This
process was costly and time-consuming. One chal-
lenge is that each question can belong to more than
one competency. Further, different editors may
have differing opinions as to which competencies
a question relates to. Reconciling these differences
and maintaining consistency across editors and con-
tent is a huge challenge.

To streamline the labeling of nursing education
questions, we integrated a machine learning model
for automated tagging into the current workflow.
As editors review each question, the model makes
suggestions about which NCLEX competencies
are related to that question. Rather than scrolling
through a long list of options, editors can rapidly
click to accept or reject suggestions (though they
still have the ability to scroll through all possibili-
ties if they believe none of the suggestions are appli-
cable). This approach has greatly streamlined the
process of labeling questions and added additional
consistency in the application of labels. The follow-
ing sections detail the data involved, the modeling
techniques evaluated, and the chosen solution.
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2 The Data

In this paper, we focus on NCLEX competencies
related to what are called ”activity statements”.
Activity statements are presented in a hierarchi-
cal structure with two levels as shown in Figure
1. We consider only leaf nodes to simplify the
problem. Given this consideration, there are 138
activity statements or labels in total.

41125 questions were manually labeled with one
or more of the 138 possible activity statements re-
lated to them. This data was used for both training
and testing of our machine learning models. The
distribution of questions across activity statements
was non-uniform and presented a class imbalance
challenge. The majority of activity statements were
assigned to 5 or fewer questions. However, there
was a small set of activity statements that were
commonly used, and two that were associated with
nearly 3000 questions. The distribution of ques-
tions to activity statements is shown in Figure 4.
Each bar corresponds to one of the 138 activity
statements and its height represents the number of
questions assigned to it.

Less than 100 questions that were assigned more
than one activity statement label. However, there
was a desire to accommodate multiple activity
statements per question for future labeling efforts.
Therefore, we maintained an approach using multi-
label classification techniques.

3 Related Research

The task of tagging questions with relevant activity
statements can be considered a multi-label docu-
ment classification task where each question is a
document. There are several well-known meth-
ods for this type of task. Many of them represent
a document as a vector of numbers. We can use
similarity and/or distance metrics between docu-
ment vectors to perform several operations such
as clustering and classification. A key set of de-
cisions is how to represent documents as vectors,
and what distance metrics to use for comparing
them. The following sections describe a number of
approaches for document vectorization as well as
methods for multi-label classification.

3.1 Text Vectorization and Classification

Bag of words approaches for document vectoriza-
tion are quite common and have been used with
a number of different algorithms (Mccallum and

Nigam, 2001). These approaches use word fre-
quency to determine vector representations for doc-
uments and may employ a number of feature selec-
tion and normalization techniques (Xu et al., 2009).
One dominant technique is called Term Frequency
– Inverse Document Frequency (TF-IDF).

While bag of words methods have proven quite
effective, they suffer a number of weaknesses.
When paired with algorithms such as naı̈ve Bayes
classifiers, there is no consideration of word order,
proximity, or co-occurrence within a document.
This can be somewhat mitigated using n-gram tech-
niques (i.e. considering n consecutive words as
one element in document vectors). Synonyms can
also confound bag of word approaches since two
or more words may appear as unique elements in a
document vector despite being semantically equiv-
alent. For instance, ”water” and ”H2O” may show
up as distinct vocabulary terms in a TF-IDF vec-
tor. When computing the cosine similarity between
the vector for a document that discusses ”water”
and one that discusses ”H2O”, the result would
inaccurately indicate they were dissimilar.

Word embeddings using neural networks are
a more recent and popular method for vectoriz-
ing text (Kim, 2014). Long Short Term Memory
(LSTM) and Gated Recurrent Unit (GRU) are re-
current neural network (RNN) models that lever-
age connections between adjacent nodes in a sin-
gle layer to better address word order and context.
Huang, Xu, and Yu (Huang et al., 2015) compare
several ensembles of bidirectional LSTMs and Con-
ditional Random Fields (CRF) for sentence classi-
fication. Neural network models have specifically
been used for multi-label document classification
(Baumel et al., 2017) (Lenc and Král, 2017).

One of the most recent advances in natural lan-
guage processing with neural networks is the use of
pretrained, deep transformer models such as BERT
(Devlin et al., 2018). BERT has outperformed
many competing methods in standard language un-
derstanding tasks and has been used specifically
for document classification (Adhikari et al., 2019).
There is a great deal of research combining these
different approaches for multiple use cases.

3.2 Multi-label Classification

Multi-label classification refers to a classification
problem where each item being classified can be-
long to more than one class (or label) at the same
time. This contrasts with standard classification
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Figure 4: Sample distributions of number of questions per NCLEX activity statement.

where each item is assigned to only one class. A
trivial example would be classifying geometric
shapes where a square could be both a square and
a rectangle.

There are a few standard techniques for dealing
with multi-label classification. Many transform the
problem into a standard classification task. One
approach is to train a binary classifier for every la-
bel independently. Each classifier is then executed
on the same input to predict whether its associ-
ated label should be applied (Read et al., 2015). In
this scenario, each classifier only has the knowl-
edge of one label and only makes predictions for
membership or non-membership in that label group
or class. This strategy is similar to “one-versus-
rest” approaches, however, it often employs tech-
niques more analogous to one class classification
or anomaly detection. An extension to this method
is to chain multiple binary classifiers together in
a sequence. The predictions from one classifier is
passed as a feature to the next classifier until a final
set of predictions is output. Probabilistic methods
can be used to optimize the order of classifiers.

Another common approach for multi-label clas-
sification is to take the power set of label per-
mutations and treat each as an independent class.
This approach transforms the problem into a
standard multi-class classification task. New-
ton et. al. compare a number of methods for
such problem transformations (SpolaôR et al.,
2013). For instance, we can transform a set of
3 labels, (A,B,C), into a power set of classes:
{(A), (B)(C), (A,B), (A,C), (B,C)}.

4 Evaluating Vectorization Methods and
Similarity Metrics for Clustering and
Classification

We began our analysis by evaluating how differ-
ent vectorization techniques and similarity metrics

perform at differentiating questions related to one
label (i.e., activity statement) from another. The
ability to differentiate questions in this manner di-
rectly affects the performance of classification and
clustering algorithms. The results helped establish
a baseline of how much overlap there was between
questions in different label groups. It also informed
decisions on which vectorization methods and sim-
ilarity metrics to use with what algorithms for eval-
uation.

To perform this analysis, we leveraged tech-
niques often used in clustering. The nursing ed-
ucation questions were grouped into clusters based
on the activity statements they were associated with.
This resulted in 138 clusters, one for each of the ac-
tivity statements. Questions associated with more
than one activity statement were included in the
groups for each. We experimented with several
vectorization methods (techniques for transforming
the questions into numeric vectors) as well as simi-
larity metrics for comparing vectors. We converged
on using cosine similarity to compare vectors be-
cause of its ability to deal with both sparse and
dense vectors when normalized. The vectorizations
evaluated included the following:

• term frequency – inverse document frequency
(TF-IDF)

• word embeddings pretrained on google news
[(Mikolov et al., 2013)]

• word embeddings pretrained on PubMed
[(Pyysalo et al., 2013)]

• word embeddings pretrained on PubMed and
updated on text content from Wolters Kluwer
nursing education

For each vectorization method, we computed the
silhouette score across our manually constructed
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clusters. The silhouette score measures the similar-
ity of questions within a cluster (cohesion) versus
the dissimilarity of questions in one cluster as com-
pared to those in other clusters (separation). Higher
silhouette scores indicate better cohesion within
clusters and separation between clusters. In clus-
tering, this measure can help inform the number
of clusters to use. For our analysis, we were more
interested in what vectorization methods achieved
better separation of questions assigned to differ-
ent NCLEX labels. The vectorizations achieving
the best silhouette scores could be expected to per-
form better in classification tasks. We therefore
controlled the number of clusters to the number of
activity statements, i.e. 138.

Table 1 shows the different vectorization meth-
ods evaluated along with their respective silhouette
scores. We also include metrics based on the co-
hesion component of the silhouette score. Specifi-
cally, the binary relevance scores measure the dis-
tance between question vectors that are all tagged
with the same label. The table reports the mean,
minimum, maximum, and standard deviation of bi-
nary relevance scores across all 138 label clusters.

Figure 5 shows the silhouette scores for every
pair of activity statement clusters using TF-IDF
vectorization of questions. TF-IDF resulted in
the highest silhouette score of -.02. However, the
scores for all vectorization methods were relatively
low. This result indicated two things 1) there is
a great degree of similarity between questions as-
signed to different activity statement labels, and
2) no vectorization method performed much better
than the others. This result indicated that algo-
rithms may need further grouping and sampling of
questions to better differentiate them during classi-
fication.

We hypothesized that ignoring the current labels
and clustering questions may achieve better separa-
tion for classification algorithms. To evaluate this
hypothesis, we performed a standard clustering of
questions using the various vectorization methods.
Normally we would optimize the number of clus-
ters based on the silhouette score or other related
metrics. However, in the interest of time, we used
a fixed number of 512 clusters. This number was
estimated from the number of questions and their
distribution across activity statements. The result-
ing silhouette scores improved by .02 on average
but did not reflect a significant change. On average,
each cluster contained questions from five different

Figure 5: Distribution of pairwise silhouette scores
across activity statements.

activity statement label groups. This result moti-
vated some of the modeling experiments described
in the following section.

5 Modeling

We use micro-averaged area under the receiver op-
erating characteristic (AUC-ROC) to compare mul-
tiple algorithms for the described use case. This
metric is able to address class imbalance and is
used canonically for benchmarking models (Haru-
tyunyan et al., 2019). Note that the metrics reported
here only reference the AUC score of first label pre-
dicted. In production, the top five labels with the
highest confidence values are shown to users and
results in an accuracy of 95% in predicting all rel-
evant labels. This is discussed further in Section
5.6. Nonetheless, the initial AUC score of the first
prediction was a good benchmark for comparing
models. The following sections provide details on
each algorithm evaluated.

5.1 One versus Rest Support Vector
Machines (SVM) with TF-IDF
Vectorization

The first model employed a variant of TF-IDF vec-
torization referred to as Term Frequency – Inverse
Label Frequency (TF-ILF). The primary difference
is in what is regarded as a “document”. Instead
of individual questions being treated as a docu-
ment, questions are grouped according to their la-
bels and then the group is treated as a document.
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Vectorization
Method

Silhouette
Score

Mean
Binary
Relevance

Max Binary
Relevance

Min Binary
Relevance

Std Dev Binary
Relevance

TF-IDF -0.02 0.0 0.01 -0.003 0.0001
Google -0.21 -0.02 0.09 -0.14 0.04
PMC -0.22 -0.02 0.17 -0,13 0.05
PrepU -0.91 -0.07 0.3 -0.27 0.08

Table 1: Silhouette scores for different vectorization Methods

This document specification results in a slight dif-
ference in how document vectors are normalized.
The vocabulary for the vectorization included the
use of bi-grams and tri-grams (i.e., 2 and 3 word
sequences). After eliminating stop words (e.g., “a”,
“and”, “the”), stemming, and performing synonym
replacement, the total vocabulary was constrained
to 30,000 features. Specifically, we kept only the
30,000 features with the highest TF-ILF values.

All questions were first vectorized. Each vec-
tor was then labeled according to the manually as-
signed labels using the LabelEncoder python class
from the SciKit Learn package (Pedregosa et al.,
2011). To address the multi-label issue (each ques-
tion could have more than one activity statement
label), we employed a one-versus-rest approach
using support vector machines. A binary classi-
fier was trained for each activity statement label
with SciKit Learn’s LinearSVC algorithm. This
approach resulted in 138 models. The hyperpa-
rameters for the algorithm included an L2 penalty
and ran with 1000 maximum iterations. Models
were evaluated using cross-validation with the Cal-
ibratedClassifierCV python class. Cross-validation
provides a more robust evaluation and can reveal
variability between multiple executions of the algo-
rithm.

Given a question as input, each classifier would
predict whether a single activity statement label
should be assigned to the question, without re-
gard to any other labels. We computed confidence
thresholds for each classifier as to whether to ac-
cept its prediction or not. Thresholds were estab-
lished using evaluation metrics such as recall and
precision. Questions were then fed into each classi-
fier and any label predictions that met the required
thresholds were assigned. In this manner, questions
could be assigned more than one label provided
more than one model prediction met the required
threshold.

The micro-averaged AUC-ROC of the SVM

model was .968.

5.2 Convolutional Neural Network
A convolutional neural network (CNN) model
was trained using a Keras tokenizer and word
embeddings pretrained on articles from PubMed
[(Pyysalo et al., 2013)]. LabelEncoder was used
again to encode question labels. The model used a
softmax activation function and categorical cross-
entropy for the loss function. The output of the
model was structured as per-label probabilities be-
tween 0 and 1. The softmax output enabled more
than one label to have a non-zero probability for a
given question input therefore addressed the multi-
label problem. Details of the network architecture
are shown in Figure 6.

The micro-averaged AUC-ROC of the CNN
model was .972.

5.3 Bidirectional LSTM
A bidirectional LSTM was trained using many of
the same parameters as the CNN including a soft-
max activation function, categorical cross-entropy
loss function, and word embeddings pretrained on
PubMed. The important difference in this neural
network is that layer nodes were connected in a
sequential manner, both forward and backwards.
Attention was also used to bias more important
weights in the network architecture. Details of the
network architecture are shown in Figure 7.

The micro-averaged AUC-ROC of the bidi-
rectional LSTM model was .940.

5.4 Random Forrest Ensemble of SVM, CNN,
and LSTM Models

All models had similar AUC metrics. We hypoth-
esized that different models may perform well on
different subsets of labels. If this were true, it
would be possible to combine the models in an
ensemble to increase overall performance across
all labels. We trained an ensemble classifier to
evaluate this hypothesis.
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Figure 6: Architecture of convolutional neural network
for multi-label text classification.

Figure 7: Architecture of LSTM recurrent neural net-
work for multi-label text classification.

A random forest model was trained on the out-
puts of the previously described models to weight
the predictions of each and make a final predic-
tion. Questions were first vectorized and input to
each component model (i.e., the SVMs, CNN, and
LSTM). The output probabilities of each model
was then fed into the random forest. Specifically,
the inputs of the random forest were 414 values
between 0 and 1 consisting of:

• a probability from each of 138 binary SVMs

• a probability for each of 138 output nodes of
the CNN

• a probability for each of 138 output nodes of
the LSTM

The output of the random forest was a binary vec-
tor of 138 elements. Each element corresponded
to an activity statement label. A value of 1 indi-
cated the input question should have that label and
a value of 0 indicated that it should not.

Modeling Method AUC-ROC (micro-avg)
TF-ILF+SVM 0.968
CNN 0.972
LSTM 0.940
Ensemble 0.937

Table 2: AUC of different methods

The micro-averaged AUC-ROC of the ran-
dom forest ensemble combining the output of
the other models was .937.

5.5 Model Comparison and Discussion

Table 2 shows the micro-averaged AUC-ROC of
the models evaluated. The best performing model
was the CNN. However, none of the algorithms
performed dramatically different from one another.
We believe that several confounding factors in the
data were equally challenging for the various meth-
ods.

Class imbalance likely complicated classifica-
tion attempts and may also indicate other issues
with the manual labeling process. Editors, pressed
for time, may choose labels that are higher in the
drop-down list of the editorial platform. They
may also choose labels that are less precise but
more general and, therefore, likely to be accept-
able. These behaviors could explain why a small
set of activity statements labels were associated
with thousands of questions whereas the rest of the
labels were only associated with a few questions
each.

We also found that editors sometimes disagree
about question labels. To address this issue, there
is a manual process for label reconciliation. Senior
editors can be consulted to make final decisions
where necessary. Editors also pointed out that ques-
tions could be assigned far more activity statements
than is currently the case. To optimize the adaptive
quizzing experience for users, editors limit labeling
to one or two labels that best fit the question.

5.6 Final Model Evaluation

The best performing model was the CNN though
there was not a significant difference between the
methods evaluated. While we limited the time
spent on hyper-parameter tuning of the ensemble
approach, it was interesting that it fared the worst
in our evaluation. The AUC-ROC score enabled
us to compare modeling approaches but does not
reflect the performance in production. When de-
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Number of Tags Shown Accuracy
Top 5 labels 0.95
Top 3 labels 0.76
Top 1 labels 0.47

Table 3: TF-ILF+SVM Model Accuracy

ployed, the model shows users the top five label
predictions. Users can pick any subset of those la-
bels to apply them to the question being reviewed.
To get a sense of accuracy in production, we log
how many times we cover all relevant labels in the
top N predictions as shown in Table 3.

6 Impact Analysis

We are currently logging editor activity and calcu-
lating metrics to perform a thorough impact anal-
ysis. Initial estimates show that time spent on la-
beling questions with NCLEX tags went from a
few minutes pre-machine learning to less than one
minute after our solution was deployed. There are
tens of thousands of questions in Wolters Kluwer
products like PrepU and CoursePoint and more
content being generated every year. This impact
is therefore significant, measuring several hours
and potentially up to $100,000 or more savings
annually.

Editors have responded very positively and reg-
ularly use machine learning label suggestions in
their current workflow. That said, it will take some
time for them to accept a completely automated
process. Perhaps more importantly, subject matter
experts have assessed that the consistency and qual-
ity of labels assigned to questions increase with the
model suggestions. Nursing content editors often
apply labels based on their personal understanding
of content, which is sometimes subjective. There
may also be biases in selecting ”convenient” labels
when having to choose from a lengthy list in a com-
plicated workflow. The predictive model provides
consistent label suggestions which in turn results
in more consistent labels being assigned.

7 Future Work

The class imbalance of this task motivates the po-
tential use of active machine learning. Some
labels have only been assigned to a handful of ques-
tions. For these labels, we may work with editors
to find more exemplar questions or create new ones.
These new questions can then be merged with train-
ing data and the model retrained to ameliorate ef-

fects of class imbalance. In active learning, this
process is typically repeated in an iterative process
to target problem areas for a model. By selectively
labeling new questions and down sampling over
represented labels, we can fine tune data for retrain-
ing models to improve overall accuracy. Active
machine learning has specifically been used for
multi-label text classification problems (Yang et al.,
2009).

Another area for further study is the evaluation
of more recent, deep, transformer models. Because
there is a great deal of semantic similarity between
questions, these models may not fare better than
more traditional vectorization and classification
techniques. We intend to evaluate this hypothe-
sis in future work.

There are many different tag sets and taxonomies
that can be used to label nursing education content.
Tagging both content and questions supports more
advanced features such as dynamic remediation
and adaptive learning. For instance, when a student
answers a question incorrectly, learning software
can automatically provide links to learning materi-
als that are related to that topics addressed in that
question. We are actively investigating how tag-
ging and organizing content can support various
use cases for adaptive learning.
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