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Abstract

We study the behavior of several black-box
search algorithms used for generating adver-
sarial examples for natural language process-
ing (NLP) tasks. We perform a fine-grained
analysis of three elements relevant to search:
search algorithm, search space, and search
budget. When new search algorithms are pro-
posed in past work, the attack search space
is often modified alongside the search algo-
rithm. Without ablation studies benchmarking
the search algorithm change with the search
space held constant, one cannot tell if an in-
crease in attack success rate is a result of an
improved search algorithm or a less restric-
tive search space. Additionally, many previ-
ous studies fail to properly consider the search
algorithms’ run-time cost, which is essential
for downstream tasks like adversarial training.
Our experiments provide a reproducible bench-
mark of search algorithms across a variety of
search spaces and query budgets to guide fu-
ture research in adversarial NLP. Based on our
experiments, we recommend greedy attacks
with word importance ranking when under a
time constraint or attacking long inputs, and
either beam search or particle swarm optimiza-
tion otherwise.

1 Introduction
Research has shown that current deep neural net-

work models lack the ability to make correct pre-
dictions on adversarial examples (Szegedy et al.,
2013). The field of investigating the adversarial
robustness of NLP models has seen growing inter-
est, both in contributing new attack methods 1 for
generating adversarial examples (Ebrahimi et al.,
2017; Gao et al., 2018; Alzantot et al., 2018; Jin

⇤* Equal contribution. Code implementation shared via
https://github.com/QData/TextAttack

1In this work, we use “adversarial example generation
methods” and “adversarial attacks” interchangeably.

et al., 2019; Ren et al., 2019; Zang et al., 2020) and
better training strategies to make models resistant
to adversaries (Jia et al., 2019; Goodfellow et al.,
2014).

Recent studies formulate NLP adversarial at-
tacks as a combinatorial search task and feature the
specific search algorithm they use as the key contri-
bution (Zhang et al., 2019b). The search algorithm
aims to perturb a text input with language transfor-
mations such as misspellings or synonym substitu-
tions in order to fool a target NLP model when the
perturbation adheres to some linguistic constraints
(e.g., edit distance, grammar constraint, semantic
similarity constraint) (Morris et al., 2020a). Many
search algorithms have been proposed for this pro-
cess, including varieties of greedy search, beam
search, and population-based search.

The literature includes a mixture of incompa-
rable and unclear results when comparing search
strategies since studies often fail to consider the
other two necessary primitives in the search pro-
cess: the search space (choice of transformation
and constraints) and the search budget (in queries to
the victim model). The lack of a consistent bench-
mark on search algorithms has hindered the use of
adversarial examples to understand and to improve
NLP models. In this work, we attempt to clear the
air by answering the following question: Which
search algorithm should NLP researchers pick for
generating NLP adversarial examples?

We focus on black-box search algorithms due
to their practicality and prevalence in the NLP at-
tack literature. Our goal is to understand to what
extent the choice of search algorithms matter in
generating text adversarial examples and how dif-
ferent search algorithms compare when we hold
the search space constant or when we standardize
the search cost. We select three families of search
algorithms proposed from literature and benchmark

mailto:jy2ma@virginia.edu
mailto:yq2h@virginia.edu
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their performance on generating adversarial exam-
ples for sentiment classification and textual entail-
ment tasks. Our main findings can be summarized
as the following:

• Across three datasets and three search spaces,
we found that beam search and particle swarm
optimization are the best algorithms in terms of
attack success rate.

• When under a time constraint or when the in-
put text is long, greedy with word importance
ranking is preferred and offers sufficient perfor-
mance.

• Complex algorithms such as PWWS (Ren et al.,
2019) and genetic algorithm (Alzantot et al.,
2018) are often less performant than simple
greedy methods both in terms of attack success
rate and speed.

2 Background

2.1 Components of an NLP Attack
Morris et al. (2020b) formulated the process of

generating natural language adversarial examples
as a system of four components: a goal function,
a set of constraints, a transformation, and a search
algorithm.

Such a system searches for a perturbation from
x to x0 that fools a predictive NLP model by both
achieving some goal (like fooling the model into
predicting the wrong classification label) and ful-
filling certain constraints. The search algorithm
attempts to find a sequence of transformations that
results in a successful perturbation.

2.2 Elements of a Search Process
Search Algorithm: Recent methods proposed for
generating adversarial examples in NLP frame their
approach as a combinatorial search problem. This
is necessary because of the exponential nature of
the search space. Consider the search space for
an adversarial attack that replaces words with syn-
onyms: If a given sequence of text consists of W
words, and each word has T potential substitutions,
the total number of perturbed inputs to consider
is (T + 1)W � 1. Thus, the graph of all potential
adversarial examples for a given input is far too
large for an exhaustive search.

While heuristic search algorithms cannot guar-
antee an optimal solution, they can be employed to
efficiently search this space for a valid adversarial
example. Studies on NLP attacks have explored

various heuristic search algorithms, including beam
search (Ebrahimi et al., 2017), genetic algorithm
(Alzantot et al., 2018), and greedy method with
word importance ranking (Gao et al., 2018; Jin
et al., 2019; Ren et al., 2019).

Search Space: In addition to its search method, an
NLP attack is defined by how it chooses its search
space. The search space is mainly determined by
two things: a transformation, which defines how
the original text is perturbed (e.g. word substitution,
word deletion) and the set of linguistic constraints
(e.g minimum semantic similarity, correct gram-
mar) enforced to ensure that the perturbed text is
a valid adversarial example. A larger search space
corresponds to a looser definition of a valid ad-
versarial example. With a looser definition, the
search space includes more candidate adversarial
examples. The more candidates there are, the more
likely the search is to find an example that fools the
victim model – thereby achieving a higher attack
success rate (Morris et al., 2020b).

Search Cost/Budget: Furthermore, most works
do not consider the runtime of the search algo-
rithms. This has created a large, previously un-
spoken disparity in runtimes of proposed works.
Population-based algorithms like Alzantot et al.
(2018) and Zang et al. (2020) are significantly
more expensive than greedy algorithms like Jin
et al. (2019) and Ren et al. (2019). Additionally,
greedy algorithms with word importance ranking
are linear with respect to input length, while beam
search algorithms are quadratic. In tasks such as
adversarial training, adversarial examples must be
generated quickly, and a more efficient algorithm
may preferable– even at the expense of a lower
attack success rate.

2.3 Evaluating Novel Search Algorithms
Past studies on NLP attacks that propose new

search algorithms often also propose a slightly al-
tered search space, by proposing either new trans-
formations or new constraints. When new search
algorithms are benchmarked in a new search space,
they cannot be easily compared with search algo-
rithms from other attacks.

To show improvements over a search method
from previous work, a new search method must
be benchmarked in the search space of the orig-
inal method. However, many works fail to set
the search space to be consistent when compar-
ing their method to baseline methods. For exam-
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ple, Jin et al. (2019) compares its TextFooler
method against Alzantot et al. (2018)’s method
without accounting for the fact that TextFooler
uses the Universal Sentence Encoder (Cer et al.,
2018) to filter perturbed text while Alzantot et al.
(2018) uses Google 1 billion words language model
(Chelba et al., 2013). A more severe case is Zhang
et al. (2019a)2, which claims that its Metropolis-
Hastings sampling method is superior to Alzantot
et al. (2018) without setting any constraints – like
Alzantot et al. (2018) does – that ensure that the
perturbed text preserves the original semantics of
the text.

We do note that Ren et al. (2019) and Zang et al.
(2020) do provide comparisons where the search
spaces are consistent. However, these works con-
sider a small number of search algorithms as base-
line methods, and fail to provide a comprehensive
comparison of methods proposed in the literature.

3 Benchmarking Setup

3.1 Defining Search Spaces
As defined in Section 2.1, each NLP adversarial

attack includes four components: a goal function,
constraints, a transformation, and a search algo-
rithm. We define the attack search space as the set
of perturbed text x0 that are generated for an origi-
nal input x via valid transformations and satisfy a
set of linguistic constraints. The goal of a search
algorithm is to find those x0 that achieves the attack
goal function (i.e. fooling a victim model) as fast
as it can.

Word-swap transformations: Assuming x =
(x1, . . . , xi, . . . , xn), a perturbed text x0 can be
generated by swapping xi with altered x0

i. The
swap can occur at word, character, or sentence
level, depending on the granularity of xi. Most
works in literature choose to swap out words; there-
fore, we choose to focus on word-swap transforma-
tions for our experiments.

Constraints: Morris et al. (2020b) proposed a
set of linguistic constraints to enforce that x and
perturbed x0 should be similar in both meaning
and fluency to make x0 a valid potential adversar-
ial example. This indicates that the search space
should ensure x and x0 are close in semantic embed-
ding space. Multiple automatic constraint ensuring
strategies have been proposed in the literature. For

2Zhang et al. (2019a) is not considered in this paper due to
failure to replicate its results.

example, when swapping word xi with x0
i, we can

require that the cosine similarity between word em-
bedding vectors exi and ex0

i
meet certain minimum

threshold. More details on the specific constraints
we use are in Section A.1.

Now we use notation T (x) = x0 to denote trans-
formations perturbing x to x0, and assume the
j � th constraints as Boolean functions Cj(x,x0)
indicating whether x0 satisfies the constraint Cj .
Then, we can define the search space S mathemati-
cally as:

S(x) = {T (x)|Cj(x, T (x)) 8j 2 [m]} (1)

The goal of a search algorithm is to find x0
2 S(x)

such that x0 succeeds in fooling the victim model.
Table 1 describes three search spaces we use to
benchmark the search algorithms. Details of trans-
formations and constraints used in defining these
search spaces are in Appendix Section A.1.

Transformation Constraints
1 Counter-fitted

GLOVE Word
Embedding

Word embedding similarity,
BERTScore, POS consistency

2 HowNet BERTScore, POS consistency
3 WordNet USE similarity, POS consistency

Table 1: The three search spaces in our benchmarking.

3.2 Heuristic Scoring Function
Search algorithms evaluate potential perturba-

tions before branching out to other solutions. In the
case of an untargeted attack against a classifer, the
adversary aims to find examples that make the clas-
sifier predict the wrong class (label) for x0. Here
the assumption is that the ground truth label of x0

is the same as that of the original x.

Naturally, we use a heuristic scoring function
score defined as:

score(x0) = 1� Fy(x
0) (2)

where Fy(x) is the probability of class y predicted
by the model and y is the ground truth output of
original text x.

3.3 Search Algorithms
We select the following five search algorithms

proposed for generating adversarial examples, sum-
marized in Table 2. All search algorithms are lim-
ited to modifying each word at most once.
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Search Algorithm Deterministic? Hyperparameters Num. Queries
Beam Search (Ebrahimi et al., 2017) 3 b (beam width) O(b ⇤W 2

⇤ T )
Greedy [Beam Search with b=1] 3 – O(W 2

⇤ T )
Greedy w. Word Importance Ranking (Gao
et al., 2018; Jin et al., 2019; Ren et al., 2019)

3 – O(W ⇤ T )

Genetic Algorithm (Alzantot et al., 2018) 7 p (population size), g
(number of iterations)

O(g ⇤ p ⇤ T )

Particle Swarm Optimization (Zang et al., 2020) 7 p (population size), g
(number of iterations)

O(g ⇤ p ⇤W ⇤ T )

Table 2: Different search algorithms proposed for NLP attacks. W indicates the number of words in the input. T
is the maximum number of transformation options for a given input.

Beam Search For given text x, all the possible
perturbed texts x0 generated by substituting each
word xi are scored using the heuristic scoring func-
tion, and the top b texts are kept (b is called the
”beam width”). Then, the process repeats by fur-
ther perturbing each of the top b perturbed texts to
generate the next set of candidates.

Greedy Search Like beam search, each xi are
considered for subsitution. We take the best pertur-
bation across all possible perturbations, and repeat
until we succeed or run out of possible perturba-
tions. It equals to a beam search with b set to 1.

Greedy with Word Importance Ranking (WIR)
Words of the given input x are ranked according
to some importance function. Then, in order of de-
scending importance, word xi is substituted with x0

i
that maximizes the scoring function until the goal
is achieved, or all words have been perturbed. We
experiment with four different ways to determine
word importance:

• UNK: Each word’s importance is determined by
how much the heuristic score changes when the
word is substituted with an UNK token (Gao et al.,
2018).

• DEL: Each word’s importance is determined by
how much the heuristic score changes when the
word is deleted from the original input (Jin et al.,
2019).

• PWWS: Each word’s importance is determined
by multiplying the change in score when the
word is substituted with an UNK token with the
maximum score gained by perturbing the word
(Ren et al., 2019).

• Gradient: Similar to how Wallace et al.
(2019) visualize saliency of words, each word’s
importance is determined by calculating the gra-
dient of the loss with respect to the word3 and
taking its norm.
3For sub-word tokenization scheme, we take average over

all sub-words constituting the word.

We test an additional scheme, which we call RAND,
as an ablation study. Instead of perturbing words
in order of their importance, RAND perturbs words
in a random order.

Genetic Algorithm. We implement the genetic
algorithm of Alzantot et al. (2018). At each itera-
tion, each member of the population is perturbed by
randomly choosing one word and picking the best
x0 gained by perturbing it. Then, crossover occurs
between members of the population, with prefer-
ence given to the more successful members. The
algorithm is run for a fixed number of iterations un-
less it succeeds in the middle. Following Alzantot
et al. (2018), the population size was 60 and the
algorithm was run for at maximum 20 iterations.

Particle Swarm Optimization We implement
the particle swarm optimization (PSO) algorithm of
Zang et al. (2020). At each iteration, each member
of the population is perturbed by first generating
all potential x0 obtained by substituting each xi

and then sampling one x0. Each member is also
crossovered with the best perturb text previously
found for the member (i.e. local optimum) and
the best perturb text found among all members (i.e.
global optimum). Following Zang et al. (2020), the
population size is set to 60 and the algorithm was
run for a maximum of 20 iterations.

Our genetic algorithm and PSO implementations
have one small difference from the original im-
plementations. The original implementations con-
tain crossover operations that further perturb the
text without considering whether the resulting text
meets the defined constraints. In our implementa-
tion, we check if the text produced by these subrou-
tines meets our constraints to ensure a consistent
search space.

3.4 Victim Models
We attack BERT-base (Devlin et al., 2018) and

an LSTM fine-tuned on three different datasets:
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• Yelp polarity reviews (Zhang et al., 2015) (senti-
ment classification)

• Movie Reviews (MR) (Pang and Lee, 2005) (sen-
timent classification)

• Stanford Natural Language Inference (SNLI)
(Bowman et al., 2015) (textual entailment).

For Yelp and SNLI dataset, we attack 1000 sam-
ples from the test set, and for MR dataset, we attack
500 samples. Language of all three datasets is En-
glish.

3.5 Implementation
We implement all of our attacks using the NLP

attack package TextAttack4 (Morris et al., 2020a).
TextAttack provides separate modules for search
algorithms, transformations, and constraints, so
we can easily compare search algorithms without
changing any other part of the attack.

3.6 Evaluation Metrics

We use attack success rate ( # of successful attacks
# of total attacks ) to

measure how successful each search algorithm is
for attacking a victim model.

To measure the runtime of each algorithm, we
use the average number of queries to the victim
model as a proxy.

To measure the quality of adversarial examples
generated by each algorithm, we use three metrics:

1. Average percentage of words perturbed
2. Universal Sentence Encoder (Cer et al., 2018)

similarity between x and x0

3. Percent change in perplexities of x and x0

(using GPT-2 (Radford et al., 2019))

4 Results and Analysis

4.1 Attack Success Rate Comparison
Table 3 shows the results of each attack when

each search algorithm is allowed to query the vic-
tim model an unlimited number of times. Word im-
portance ranking methods makes far fewer queries
than beam or population-based search, while retain-
ing over 60% of their attack success rate in each
case. Beam search (b=8) and PSO are the two
most successful search algorithms in every model-
dataset combination. However, PSO is more query-
intensive. On average, PSO requires 6.3 times6

4TextAttack is available at https://github.com/
QData/TextAttack.

6This is with one outlier (BERT-SNLI with GLOVE word
embedding) ignored. If it is included, the number jumps to
10.8.

more queries than beam search (b=8), but its at-
tack success rate is only on average 1.2% higher
than that of beam search (b=8).

4.2 Runtime Analysis
Using number of queries to the victim model as

proxy for total runtime, Figure 1 illustrates how the
number of words in the input affects runtime for
each algorithm. We can empirically confirm that
beam and greedy search algorithms scale quadrat-
ically with input length, while word importance
ranking scales linearly. For shorter datasets, this
did not make a significant difference. However,
for the longer Yelp dataset, the linear word im-
portance ranking strategies are significantly more
query-efficient. These observations match the ex-
pected runtimes of the algorithms described in Ta-
ble 2.

For shorter datasets, genetic and PSO algorithms
are significantly more expensive than the other al-
gorithms as the size of population and number of
iterations are the dominating factors. Furthermore,
PSO is observed to be more expensive than genetic
algorithm.

4.3 Performance under Query Budget
In a realistic attack scenario, the attacker must

conserve the number of queries made to the model.
To see which search method was most query-
efficient, we calculated the search methods’ attack
success rates under a range of query budgets. Fig-
ure 2 shows the attack success rate of each search
algorithm as the maximum number of queries per-
mitted to perturb a single sample varies from 0 to
20,000 for Yelp dataset and 0 to 3000 for MR and
SNLI.

For both Yelp and MR datasets, the linear (word
importance ranking) methods show relatively high
success rates within just a few queries, but are even-
tually surpassed by the slower, quadratic methods
(greedy and beam search). The genetic algorithm
and PSO lag behind. For SNLI, we see exceptions
as the initial queries that linear methods make to de-
termine word importance ranking does not pay off
as other algorithms appear more efficient with their
queries. This shows that the most effective search
method depends on both on the attacker’s query
budget and the victim model. An attacker with a
small query budget may prefer a linear method, but
an attacker with a larger query budget may aim to
choose a quadratic method to make more queries
in exchange for a higher success rate.

https://github.com/QData/TextAttack
https://github.com/QData/TextAttack
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Model Dataset Search Method GLOVE Word Embedding HowNet WordNet
A.S. % Avg # Queries A.S. % Avg # Queries A.S. % Avg # Queries

BERT

Yelp

Greedy (b=1) 39.5 810 93.2 3668 63.2 1480
Beam Search (b=4) 42.0 2857 95.0 10,766 65.9 5033
Beam Search (b=8) 42.7 5546 95.6 19,810 67.3 9674

WIR (UNK) 33.2 187 92.3 344 55.3 232
WIR (DEL) 33.7 189 91.9 364 54.3 238

WIR (PWWS) 35.3 259 95.1 1300 58.2 395
WIR (Gradient) 33.2 55 77.6 189 53.7 94

WIR (RAND) 29.9 61 72.3 279 53.9 118
Genetic Algorithm 37.6 5098 89.3 11,015 62.1 8257

PSO 47.2 20,279 96.6 62,346 74.9 28,971

MR

Greedy (b=1) 20.6 35 78.6 214 59.4 69
Beam Search (b=4) 21.4 95 80.6 392 64.6 170
Beam Search (b=8) 21.8 175 81.2 632 65.8 303

WIR (UNK) 17.8 28 53.6 58 55.6 40
WIR (DEL) 17.0 29 53.6 59 54.0 40

WIR (PWWS) 21.0 41 73.6 205 58.2 71
WIR (Gradient) 19.8 14 56.6 46 53.4 24

WIR (RAND) 17.6 12 48.8 49 53.4 24
Genetic Algorithm 21.8 516 80.0 1670 65.6 1063

PSO 21.8 2413 82.4 2039 65.4 2078

SNLI

Greedy (b=1) 19.8 7 87.3 77 49.6 19
Beam Search (b=4) 20.1 12 89.2 97 52.0 33
Beam Search (b=8) 20.1 18 89.4 125 52.6 49

WIR (UNK) 19.3 22 85.1 47 47.3 30
WIR (DEL) 18.5 22 84.8 47 46.7 30

WIR (PWWS) 19.8 26 86.9 116 49.1 42
WIR (Gradient) 18.8 5 68.4 25 46.9 10

WIR (RAND) 18.3 5 82.6 30 46.2 11
Genetic Algorithm 20.0 78 89.0 477 52.2 250

PSO 20.1 1248 89.1 398 51.9 975

LSTM

Yelp

Greedy (b=1) 53.0 682 98.2 2611 80.0 982
Beam Search (b=4) 53.2 2313 98.5 7347 81.7 3277
Beam Search (b=8) 53.5 4516 98.6 13,643 82.3 6240

WIR (UNK) 49.3 133 95.2 222 75.8 204
WIR (DEL) 49.1 181 95.2 230 75.3 205

WIR (PWWS) 51.2 247 97.3 1212 77.8 361
WIR (Gradient) 49.3 56 90.0 215 75.3 97

WIR (RAND) 47.4 57 88.3 217 74.6 98
Genetic Algorithm 51.3 5212 98.3 7408 78.5 7245

PSO 54.9 17,647 98.8 34,659 84.4 17,145

MR

Greedy (b=1) 38.4 29 87.6 187 74.2 59
Beam Search (b=4) 38.6 71 88.6 290 75.6 131
Beam Search (b=8) 38.6 127 88.8 427 76.0 222

WIR (UNK) 35.8 27 81.0 51 72.0 36
WIR (DEL) 36.2 27 80.2 50 72.2 35

WIR (PWWS) 37.6 40 86.2 203 73.4 68
WIR (Gradient) 35.4 10 76.6 36 72.8 18

WIR (RAND) 34.4 11 68.0 40 71.8 22
Genetic Algorithm 39.0 375 88.6 949 76.0 730

PSO 39.0 1592 89.0 795 76.6 1179

Table 3: Comparison of search methods across three datasets. Models are BERT-base and LSTM fine-tuned for
the respective task. “A.S.%” represents attack success rate and “Avg # Queries” represents the average number of
queries made to the model per successful attacked sample.5

Lastly, we can see that both Gradient and
RAND ranking methods are initially more success-
ful than UNK and DEL methods, which is due to the
overhead involved in calculating word importance
ranking for UNK and DEL – for both methods, each

attack makes W queries to determine the impor-
tance of each word. Still, UNK and DEL outperform
RAND at all but the smallest query budgets, indicat-
ing that the order in which words are swapped do
matter. Furthermore, in 12 out 15 scenarios, UNK
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Figure 1: Number of queries vs. length of input text. Similar figure for LSTM models are available in the appendix.

and DEL methods perform as well as or even better
than Gradient method, which shows that they
are excellent substitutes to the Gradient method
for black-box attacks.

4.4 Quality of Adversarial Examples
We selected adversarial examples whose origi-

nal text x was successfully attacked by all search
algorithms for quality evaluation. Full results of
quality evaluation are shown in Table 4 in the ap-
pendix. We can see that beam search algorithms
consistently perturb the lowest percentage of words.
Furthermore, we see that a fewer number of words
perturbed generally corresponds with higher av-
erage USE similarity between x and xadv and a
smaller increase in perplexity. This indicates that
the beam search algorithms generate higher-quality
adversarial examples than other search algorithms.

5 Discussion

5.1 How to Choose A Search Algorithm
Across all nine scenarios, we can see that choice

of search algorithm can have a modest impact on

the attack success rate. Query-hungry algorithms
such as beam search, genetic algorithm, and PSO
perform better than fast WIR methods. Out of the
WIR methods, PWWS performs significantly better
than UNK and DEL methods. In every case, we see
a clear trade-off of performance versus speed.

With this in mind, one might wonder about what
the best way is to choose a suitable search algo-
rithm. The main factor to consider is the length
of the input text. If the input texts are short (e.g.
sentence or two), beam search is certainly the ap-
propriate choice: it can achieve a high success
rate without sacrificing too much speed. However,
when the input text is longer than a few sentences,
WIR methods are the most practical choice. If one
wishes for the best performance on longer inputs
regardless of efficiency, beam search and PSO are
the top choices.

5.2 Effectiveness of PWWS Word Importance
Ranking

Across all tasks, the UNK and DEL methods per-
form about equivalently, while PWWS performs sig-
nificantly better than UNK and DEL. In fact, PWWS
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Figure 2: Attack success rate by query budget for each search algorithm and dataset. Similar figure for LSTM
models are available in the appendix.

performs better than greedy search in two cases.
However, this gain in performance does come at a
cost: PWWS makes far larger number of queries to
the victim model to determine the word importance
ranking. Out of the 15 experiments, PWWS makes
more queries than greedy search in 8 of them. Yet,
on average, greedy search outperforms PWWS by
2.5%.

Our results question the utility of the PWWS
search method. PWWS neither offers the perfor-
mance that is competitive when compared to greedy
search nor the query efficiency that is competitive
when compared to UNK or DEL.

5.3 Effectiveness of Genetic Algorithm
The genetic algorithm proposed by Alzantot et al.

(2018) uses more queries than the greedy-based
beam search (b=8) in 11 of the 15 scenarios, but
only achieves a higher attack success rate in 1 sce-
nario. Thus it is generally strictly worse than the
simpler beam search (b=8), achieving a lower suc-
cess rate at a higher cost.

6 Conclusion
The goal of this paper is not to introduce a new

method, but to make empirical analysis towards
understanding how search algorithms from recent
studies contribute in generating natural language
adversarial examples. We evaluated six search al-
gorithms on BERT-base and LSTM models fine-
tuned on three datasets. Our results show that when
runtime is not a concern, the best-performing meth-
ods are beam search and particle swarm optimiza-
tion. If runtime is of concern, greedy with word
importance ranking is the preferable method. We
hope that our findings will set a new standard for
the reproducibility and evaluation of search algo-
rithms for NLP adversarial examples.
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