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Abstract

Recently, neural language models (LMs) have
demonstrated impressive abilities in generat-
ing high-quality discourse. While many recent
papers have analyzed the syntactic aspects en-
coded in LMs, to date, there has been no anal-
ysis of the inter-sentential, rhetorical knowl-
edge. In this paper, we propose a method that
quantitatively evaluates the rhetorical capaci-
ties of neural LMs. We examine the capaci-
ties of neural LMs understanding the rhetoric
of discourse by evaluating their abilities to en-
code a set of linguistic features derived from
Rhetorical Structure Theory (RST). Our ex-
periments show that BERT-based LMs outper-
form other Transformer LMs, revealing the
richer discourse knowledge in their interme-
diate layer representations. In addition, GPT-
2 and XLNet apparently encode less rhetor-
ical knowledge, and we suggest an explana-
tion drawing from linguistic philosophy. Our
method presents an avenue towards quantify-
ing the rhetorical capacities of neural LMs.

1 Introduction

In recent years, neural LMs (especially contex-
tualized LMs) have shown profound abilities to
generate texts that could be almost indistinguish-
able from human writings (Radford et al., 2019).
Neural LMs could be used to generate concise
summaries (Song et al., 2019), coherent stories
(See et al., 2019), and complete documents given
prompts (Keskar et al., 2019). It is natural to ques-
tion their source and extent of rhetorical knowl-
edge: What makes neural LMs articulate, and
how? While some recent works query the linguistic
knowledge (Hewitt and Manning, 2019; Liu et al.,
2019a; Chen et al., 2019; Belinkov et al., 2017),
this open question remain unanswered. We hy-
pothesize that contextualized neural LMs encode
rhetorical knowledge in their intermediate repre-

sentations, and would like to quantify the extent
they encode rhetorical knowledge.

To verify our hypothesis, we hand-craft a set of
24 rhetorical features including those used to exam-
ine rhetorical capacities of students (Mohsen and
Alshahrani, 2019; Liu and Kunnan, 2016; Zhang,
2013; Powers et al., 2001), and evaluate how well
neural LMs encode these rhetorical features in the
representations while encoding texts.

Recent work has started to evaluate encoded fea-
tures from hidden representations. Among them,
probing (Alain and Bengio, 2017; Adi et al., 2017)
has been a popular choice. Previous work probed
morphological (Belinkov et al., 2017; Bisazza and
Tump, 2018), agreement (Giulianelli et al., 2018),
and syntactic features (Hewitt and Manning, 2019;
Hewitt and Liang, 2019). Probing involves optimiz-
ing a simple projection model from representations
to features. The loss of this optimization measures
the difficulty to decode features from the represen-
tations.

In this work, we use a probe containing self at-
tention mechanism. We first project the variable-
length embeddings to a fixed-length latent represen-
tation per document. Then, we apply a simple diag-
nostic classifier to detect rhetorical features from
this latent representation. This design of probe re-
duces the total number of parameters, and enable us
to better understand each model’s ability to encode
rhetorical knowledge. We find that:

• The BERT-based LMs encode more rhetorical
features, and in a more stable manner, than
other models.
• The semantics of non-contextualized embed-

dings also pertain to some rhetorical features,
but less than most layers of contextualized
language models.

These observations allow us to investigate the
mechanisms of neural LMs to better understand the
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degree to which they encode linguistic knowledge.
We demonstrate how discourse-level features can
be queried and analyzed from neural LMs. All of
our code and parsed tree data will be available at
github.

2 Structural analysis of discourse

Various frameworks exist for “good discourse”
(Lawrence and Reed, 2019; Irish and Weiss, 2009;
Toulmin, 1958), but most of them are inaccessi-
ble to quantitative analysis. In this work, we use
Rhetorical Structure Theory (Mann and Thomp-
son, 1988; Mann et al., 1989) since it represents
the structures of discourse using trees, allowing
straightforward quantitative analysis. There are
two components in an RST parse-tree:

• Each leaf node represents an elementary dis-
course unit (EDU). The role of an EDU in an
article is similar to that of a word in a sen-
tence.
• Each non-leaf node denotes a relation involv-

ing its two children. Often, one of the children
is more dependent on the other, and less es-
sential to the writer’s purpose. This child is
referred to as “satellite”, while the more cen-
tral child is the “nucleus”.

NS-Contrast

SN-Attribution

I didn’t
know

this is
from C

but it is
very good!

Figure 1: A portion of an RST tree, selected from
IMDB (Maas et al., 2011) train/pos/1 7.txt,
and parsed with Feng and Hirst (2014). Nodes with
rectangle borders are discourse relations, and those
without borders are individual EDUs. The “N” and “S”
prefix for discourse relations stand for “nucleus” and
“satellite” respectively.

Tree representations are clear, easy to under-
stand, and allow us to compute features to numeri-
cally depict the rhetorical aspects of documents.

2.1 Rhetorical features

Previous work used RST features to analyze the
quality of discourse, to assess writing abilities

(Wang et al., 2019; Zhang, 2013), examine linguis-
tic coherence (Feng et al., 2014; Abdalla et al.,
2017), and to analyze arguments (Chakrabarty
et al., 2019). In this project, we extract similar
RST features in the following three categories:

Discourse relation occurrences (Sig) We in-
clude the number of relations detected in each
document. There are 18 relations in this cate-
gory1. Unfortunately, the relations adopted by
open-source RST parsers are not unified. To
allow for comparison against other parsers, we
do not differentiate subtle differences between
relations, therefore grouping very similar rela-
tions, following the approach in (Feng and Hirst,
2012). (E.g., we consider both Topic-Shift and
Topic-Drift to be a Topic-Change). Specifi-
cally, this approach does not differentiate between
the sequence of nucleus and satellite (e.g., NS-
Evaluation and SN-Evaluation are both considered
as an Evaluation).

Tree property features (Tree) We compute the
depth and the Yngve depth (the number of right-
branching in the tree) (Yngve, 1960) of each tree
node, and include their mean and variance as char-
acteristic features, following previous work extract-
ing tree linguistic features (Li et al., 2019; Zhu
et al., 2019).

EDU related features (EDU) We include the
mean and variance of EDU lengths of each doc-
ument. We hypothesize the longer EDUs indicate
higher levels of redundancy in discourse, hence ex-
tracting rhetorical features require memory across
longer spans.

Overall, there are 24 features from three cate-
gories. We normalize them to zero mean and unit
variance, and take these RST features for prob-
ing. The features are not independent of each other.
Specifically, the features of each group tend to de-
scribe the same property from different aspects.2

1The 18 relations are: Attribution, Background, Cause,
Comparison, Condition, Contrast, Elaboration, Enable-
ment, Evaluation, Explanation, Joint, Manner-Means, Topic-
Comment, Summary, Temporal, Topic-Change, Textual-
organization, and Same-unit.

2For example, Sig features describe the composition of
the document in a histogram. For the same document, if a re-
lation is changed, e.g., from Contrast to Attribution,
then the occurrence of both Contrast and Attribution
are affected.
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Figure 2: RST relation occurrences per document. RST-DT contain longer documents than IMDB on av-
erage. However, the distributions of frequencies between these two datasets are relatively consistent, with
Elaboration, Joint, and Attribution the most frequent signals.

2.2 Probe
Our probing method contains two weight parame-
ters, Wd andWp. First, we embed a document with
L tokens using a neural LM with D dimensions to
get a raw representation matrix X ∈ RL×D. We
use a projection matrix Wd ∈ RD×d to reduce the
embedding dimension from D (e.g., D = 768 for
BERT and 2048 for XLM) to a much smaller one,
d. Then, we use self attention similar to Lin et al.
(2017) to collect the information spread across the
document to a condensed form:

A = (XWd)
T (XWd) ∈ Rd×d

We flatten A into a vector with fixed size: Ã =
(d2, 1). We use a probing matrix Wp ∈ Rd2×m

to extract RST features v ∈ Rm from attention,
normalize them to zero mean and unit variance,
and optimize based on the expected L2 error:

min
Wd,Wp

E||W T
p Ã− v||2

Note that the reduction from D to d using Wp

is necessary, because it significantly lowers the
number of parameters of the probing model. If
there were no Wd (i.e., d = 768), then Wp alone
would require 7682m parameters to probe m fea-
tures. Now, we let d = 10, then Wd and Wp com-
bined have D× d+ d2m ≈ 7680+100m parame-
ters. Considering m ∈ O(101), the total parameter
size is reduced from O(106) to O(103).

There is one more step before we can use this
loss to measure the difficulty of probing rhetorical
features. L2 error scales linearly with the dimen-
sion of features m, so it is necessary to normalize
the L2 error by m, to ensure that the losses can be

compared across linguistic feature sets. The dif-
ficulty of probing a group of m features v ∈ Rm

therefore is:

Difficulty =
1

m
E
∣∣∣∣∣∣W T

p Ã− v
∣∣∣∣∣∣2

3 Experiments

3.1 Data
Most state-of-the-art rhetorical parsers are trained
on either Penn Discourse Treebank (Ji and Eisen-
stein, 2014; Feng and Hirst, 2012) or RST-DT
(Feng and Hirst, 2014; Joty et al., 2015; Surdeanu
et al., 2015; Heilman and Sagae, 2015; Li et al.,
2016; Wang et al., 2017; Yu et al., 2018). Although
the documents contain accurate discourse annota-
tions, RST-DT (Carlson et al., 2001) only has 385
documents. The Penn Discourse Treebank (Prasad
et al., 2008) has 2,159 documents but their anno-
tations do not follow the RST framework. So in
addition to RST-DT, we extend the analysis to a
100 times larger dataset, IMDB (Maas et al., 2011).

IMDB contains 50,000 movie reviews without
discourse annotations. In these reviews, the authors
explain and elaborate upon their opinions towards
certain movies and give ratings. We removed html
tags, and attempt to parse all of them (i.e., both
train and test data) using a two-pass parser from
Feng and Hirst (2014). We discarded 1,977 docu-
ments that the RST parser generate ill-formatted
trees3. Of the remaining documents, we addition-
ally filtered out those with sequence lengths greater
than 512 tokens4, resulting in 40,833 documents.

3As determined by nltk.tree.
4As determined by any one of the tokenizers, since these
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Figure 3: Loss vs layer plot of six neural LMs on four RST feature sets on IMDB. The solid lines represent all
RST features combined, while each dash-dotted line denotes one component (EDU, Sig, or Tree feature group for
red, green, and blue respectively). In general, BERT-based LMs (BERT, BERT-multi, RoBERTa) encode rhetorical
features in a more stable and easy-to-probe manner than the rest.

After parsing each document into an “RST-tree”,
we extracted the features mentioned in Section 2.1
from these parsed trees. Figure 2 shows the occur-
rence of the 18 RST relations per document, and
Table 1 shows the statistics of remaining 6 features.
In addition, we include several examples of parsed
RST trees in Appendix.

Feature name Mean ± stdev
tree depth mean 3.9±1.4
tree depth var 4.6±4.2
tree Yngve mean 9.2±8.8
tree Yngve var 100.6±164.6
edu len mean 8.6±1.4
edu len var 21.8±16.0

Table 1: Statistics of the 6 non-occurrence-based RST
features. The prefix “tree ” here refers to the parsed
“RST-tree”.

language models come with their own tokenizers. Note that
RoBERTa adds two special tokens, so this threshold becomes
510 for RoBERTa.

3.2 Language models
We considered the following popular neural LMs:

• BERTBASE (Devlin et al., 2019) This LM with
110M parameters is built with 12-layer Trans-
former encoder (Vaswani et al., 2017) with
768 hidden dimensions. It is trained with
masked LM (i.e., cloze) and next sentence
prediction objectives using 16GB text.
• BERT-multi (Wolf et al., 2019) Same as

BERT, BERT-multi is also a 12-layer Trans-
former encoder with 768 hidden dimensions
and 110M parameters. Its difference from
BERT is that, BERT-multi is trained on top
104 languages with the largest Wikipedia.
• RoBERTa (Liu et al., 2019b) is an enhanced

version of BERT with the same architecture,
similar masked LM objectives, and 10 times
larger training corpus (over 160GB).
• GPT-2 (Radford et al., 2019) is a 12-layer

Transformer decoder with 768 hidden dimen-
sions. There are 117M parameters in total.
GPT-2 is pretrained on 40GB of text. Unlike
BERT, GPT-2 is a uni-directional LM.
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Figure 4: Probing loss, compared to those from non-contextualized baselines, for four feature groups, on IMDB.
BERT-based neural LMs stably outperform the word embedding baselines in almost all layers.

• XLM (Lample and Conneau, 2019) is 12-layer
Transformer with 2048-hidden dimensions.
We use the English model trained with masked
language model (MLM) objective. Different
from BERT (taking sentence pairs as input),
XLM takes continuous streams of tokens as
input.
• XLNet (Yang et al., 2019) is a 12-layer

Transformer-XL (Dai et al., 2019) with two
streams of self attention and 768 hidden di-
mensions and 110M parameters. The XLNet
we use is trained on 33GB texts using the “per-
mutation language modeling” objective, with
its LM factorization according to shuffled or-
ders, but its positional encoding correspond
to the original sequence order. The permu-
tation LM objective introduces diversity and
randomness to the context.

To make comparisons between models fair, we
limit to 12-layer neural LMs. The models are pre-
trained by Huggingface (Wolf et al., 2019).

3.3 Implementation
We formulated probing as an optimization prob-
lem, and implemented our solution with PyTorch

(Paszke et al., 2019) and the Adam optimizer
(Kingma and Ba, 2014) for 40 epochs. If the train-
ing loss stalls (i.e., does not change by ≥ 10−3),
or if the training loss rises by more than 10% from
the previous epoch, we stop the optimization. All
optimizations follow the same learning rate tuning
schemas.

In our experiments, the representation dimension
d is taken to be 10, while the LM dimensions D is
2048 for XLM and 768 for the rest.

4 Results and Discussion

4.1 Where do LMs encode RST features?
From Figure 3, neural LMs encode RST features
in different manners, depending on their structures.
In general, for BERT-based models, features seem
to distribute evenly across layers. On GPT-2 and
XLNet, lower layers seem to encode slightly more
EDU and Sig features than higher levels, whereas
Tree features seem to be more concentrated in lay-
ers 2-6. The results on XLM are relatively noisy,
possibly because the uni-language version does
not benefit from the performance boost of cross-
language modeling.

Contrasting with previous work that suggested
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Figure 5: Probing performances of averaging 12 layers for 6 neural LMs on 4 tasks in IMDB, compared to the
three non-contextual baselines. All LMs except GPT-2 outperform non-contextual LM baselines. Plots for RST-DT
(Figure 6 in Appendix) reveal similar patterns.

that middle layers most contain syntactic features
(Hewitt and Manning, 2019; Jawahar et al., 2019),
our results indicate a less definitive localization
for discourse features, except for the first and final
layers. We suggest that the reason they encode less
discourse information is that the first layer focuses
on connections between “locations”, while the final
layer focuses on extracting representations most
relevant to the final task.

Are RST features equally hard to probe? Fig-
ure 3 also shows the difficulty in probing features
across feature sets. In BERT-based models, EDU
and Tree features are comparably easier to probe,
whereas the Sig feature groups is more challeng-
ing. However, GPT-2, XLNet, and XLM do not
regard EDU or Tree features easier to probe than
other groups. Nevertheless, the results on all fea-
tures correlate more to the Sig features.

How about averaging layers? For comparison,
we also used the mean of all 12 layers for each
neural LM. Figure 5 shows the probing results. Ex-
cept GPT-2, other LMs show similar performances
when the representations of layers are averaged. In

addition, the performances show that Sig features
are harder to probe than Tree and EDU features,
whereas the aggregation task (using all features)
appears harder than each of its three component
feature groups.

4.2 Deconstructing the probe
We perform ablation studies to illustrate the effec-
tiveness of probing, deconstructing the language
model probe step-by-step. First, we get rid of the
contextualization component in language model-
ing by using non-contextualized word embeddings,
GloVe and FastText. Then, we discard the semantic
component of word embedding by mapping tokens
to randomly generated vectors (RandEmbed). Fi-
nally, we remove all information pertaining to the
text, leading to a random predictor for RST fea-
tures, RandGuess.

Non-contextualized word embeddings We
consider two popular word embeddings here:

• GloVe (Pennington et al., 2014) contains
2.2M vocabulary items and produces 300-
dimensional word vectors. The GloVe embed-
ding we use is pretrained on Common Crawl.
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• FastText (Bojanowski et al., 2017) is trained
on Wikipedia 2017 + UMBC (16B tokens)
including subword information, and produces
300-dimensional word vectors.

Word embeddings map each token into a D-
dimensional semantic space. Therefore, for a doc-
ument of length L, the embedded matrix also has
shape L×D. The difference from the contextual-
ized neural LMs is that, the D-dimensional vectors
of every word do not depend on their contexts.

Random embeddings In this step, we assign a
non-trainable random embedding vector per token
in the vocabulary. This removes the semantic in-
formation encoded by GloVe and FastText word
embeddings.

As shown in Figure 4, 5: RandEmbed is worse
than GloVe and FastText (except for GloVe in Sig
features task). This verifies some semantic infor-
mation is preserved in word embeddings.

Contextualized LMs against baseline First, the
lack of context restrict the probing performance of
non-contextualized baselines. They are worse than
most layers in contextualized LMs (in Figure 4),
and are worse than all except GPT-2 if we average
the layers (in Figure 5).

Second, it is impossible for any LM to have a
“negative” rhetorical capacity. If the probing loss
is worse than RandEmbed baseline, that means the
RST probe can not detect rhetorical features of the
given category encoded in the representations. This
is what happens in some layers of GPT-2, XLM,
and XLNet, and the mean of all layers of GPT-2.

Random guesser To measure the capacity of
baseline embeddings, we set up a random guesser
as a “baseline-of-baseline”. The random guesser
outputs the arithmetic mean of RST features
plus a small Gaussian noise (with s.d. σ ∈
{0, 0.01, 0.1, 1.0}) The output of RandGuess is
completely independent of the discourse. As shown
in Table 2, the best of the four random guessers is
much worse than any of the three word embedding
baselines, which is expected.

4.3 Why are some LMs better?

From probing experiments (Figure 3, 4, and 5) we
can see that BERT-based LMs have slightly better
rhetorical capacities than XLNet, and much better
capacities than GPT-2. We present two hypotheses
as following.

Config
RST Feature Set

All EDU Sig Tree
FastText .6987 .7215 .6911 .6889
GloVe .7204 .7142 .7166 .6942
RandEmbed .7238 .7365 .7077 .7034
RandGuess 1101.5 128.9 3.1 6799.0

Table 2: Comparison between RST probing losses of
non-contextual word embeddings (FastText, GloVe),
random embedding (RandEmbed), and a trivial guessor
(RandGuess).

Rhetorics favor contexts from both directions
BERT-based LMs use Transformer encoders,
whereas GPT-2 use Transformer decoders. Their
main difference is that a Transformer encoder
considers contexts from both “past” and “future”,
while a Transformer decoder only conditions on
the context from the “past” (Vaswani et al., 2017).
GPT-2 attends to uni-directional contexts. Appar-
ently both the “past” and “future” context would
contribute to the rhetorical features of words. With-
out “future” contexts, GPT-2 would encode less
rhetorical information.

Random permutation makes encoded rhetorics
harder to decode The difference between XL-
Net and other LMs is the permutation in context.
While permutation increases the diversity in dis-
course, they could also bring in new meaning to
the texts. For example, the sentence in Figure 1 (“I
didn’t know this is from C, but it is very good!”)
has several syntactically plausable factorization se-
quences:
• I didn’t know C ...
• ... this is C ...
• I know it is very good ...
• I didn’t know this is good ...
• ... didn’t this C good ...

Apparently such diversity in contexts makes the
upper layers of XLNet contain harder-to-decode
rhetorical features. If we average the represen-
tations of all layers, XLNet has larger variance
than BERT-based LMs. We hypothesize that larger
layer-wise difference is a factor of such instability
for averaged representations.

4.4 Limitations

RST probing is not perfect. While we designed our
comparisons to be rigorous, there are still several
limitations to the RST probe, described below.
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• RST signals are noisy. The RST relation
classification task is less defined than estab-
lished tasks like POS tagging. Humans tend
to disagree with the annotators, resulting in
a merely 65.8% accuracy in relation classi-
fication (i.e., the task introduced by Marcu
(2000)). Regardless, state-of-the-art discourse
parsers currently have performances slightly
higher than 60% (Feng and Hirst, 2014; Ji and
Eisenstein, 2014; Wang et al., 2017).
• Train / test corpus discrepancy of RST parsers.

Most available RST parsers are trained on
RST-DT consisting of Wall Street Journal ar-
ticles. The results of parsers are affected by
the corpus. As shown in some examples in
Appendix, the IMDB movie review dataset
contains less formal languages, introducing
noise in segmentations and relation signals.
To counteract noise of this type, we recom-
mend evaluating LMs using a corpus similar
to the scenario of applying the LM.
• Only 12-layer LMs are involved, to compare

across various layers fairly. But our approach
would be applicable to 3-layer ELMo and
deeper LMs as well. Appropriate statistical
controls would naturally need to be applied.
• Not all documents can be analyzed. First, doc-

uments longer than 512 tokens cannot be en-
coded into one vector in our probing model.
Second, while RST provides elegant frame-
works for analyzing rhetorical structures of
discourse, in practice, the RST pipeline does
not guarantee a successful analysis for an ar-
bitrary document scraped online.

5 Related work

Recent work has considered the interpretability of
contextualized representations. For example, Jain
and Wallace (2019) found attention to be uncorre-
lated to gradient-based feature importance, while
Wiegreffe and Pinter (2019) suggested such ap-
proaches allowed too much flexibility to give con-
vincing results. Similarly, Serrano et al. (2019)
considered attention representations to be noisy
indicators of feature importance.

Many tasks in argument mining, similar to our
task of examining neural LMs, require understand-
ing the rhetorical aspects of discourse (Lawrence
and Reed, 2019). This allows RST to be ap-
plied in relevant work. For example, RST en-
ables understanding and analyzing argument struc-

tures of monologues (Peldszus and Stede, 2016)
and, when used with other discourse features, RST
can improve role-labelling in online arguments
(Chakrabarty et al., 2019).

Probing neural LMs is an emergent diagnostic
task on those models. Previous work probed mor-
phological (Bisazza and Tump, 2018), agreement
(Giulianelli et al., 2018), and syntactic features (He-
witt and Manning, 2019). Hewitt and Liang (2019)
compared different probes, and recommended lin-
ear probes with as few parameters as possible, for
the purpose of reducing overfitting. Recently, Pi-
mentel et al. (2020) argued against this choice
from an information-theoretic point of view. Voita
and Titov (2020) presents an optimization goal for
probes based on minimum description length.

Liu et al. (2019a) proposed 16 diverse probing
tasks on top of contextualized LMs including to-
ken labeling (e.g., PoS), segmentation (e.g., NER,
grammatical error detection) and pairwise relations.
While LMs augmented with a probing layer could
reach state-of-the-art performance on many tasks,
they found that LMs still lacked fine-grained lin-
guistic knowledge. DiscoEval (Chen et al., 2019)
showed that BERT outperformed traditional pre-
trained sentence encoders in encoding discourse
coherence features, which our results echo.

6 Conclusion

In this paper, we propose a method to quantitatively
analyze the amount of rhetorical information en-
coded in neural language models. We compute fea-
tures based on Rhetorical Structure Theory (RST)
and probe the RST features from contextualized
representations of neural LMs. Among six popular
neural LMs, we find that contextualization helps
to generally improve the rhetorical capacities of
LMs, while individual models may vary in quality.
In general, LMs attending to contexts from both
directions (BERT-based) encode rhetorical knowl-
edge in a more stable manner than those using uni-
directional contexts (GPT-2) or permuted contexts
(XLNet).

Our method presents an avenue towards quantita-
tively describing rhetorical capacities of neural lan-
guage models based on unlabeled, target-domain
corpus. This method may be used for selecting
suitable LMs in tasks including rhetorical acts clas-
sifications, discourse modeling, and response gen-
eration.
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Yang, Zach DeVito, Martin Raison, Alykhan Tejani,
Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Jun-
jie Bai, and Soumith Chintala. 2019. PyTorch: An
Imperative Style, High-Performance Deep Learning
Library. In NeurIPS.

Andreas Peldszus and Manfred Stede. 2016. Rhetori-
cal structure and argumentation structure in mono-
logue text. In ArgMining Workshop, pages 103–
112, Berlin, Germany. Association for Computa-
tional Linguistics.

Jeffrey Pennington, Richard Socher, and Christopher D
Manning. 2014. GloVe: Global Vectors for Word
Representation. In EMNLP, pages 1532–1543,
Doha, Qatar.

Tiago Pimentel, Josef Valvoda, Rowan Hall Maudslay,
Ran Zmigrod, Adina Williams, and Ryan Cotterell.
2020. Information-Theoretic Probing for Linguis-
tic Structure. Association of Computational Linguis-
tics.

Donald E Powers, Jill C Burstein, Martin Chodorow,
Mary E Fowles, and Karen Kukich. 2001. Stumping
E-Rater: Challenging the Validity of Automated Es-
say Scoring. Technical report, Educational Testing
Service, Princeton, New Jersey.

Rashmi Prasad, Nikhil Dinesh, Alan Lee, Eleni Milt-
sakaki, Livio Robaldo, Aravind Joshi, and Bonnie
Webber. 2008. The Penn Discourse TreeBank 2.0.
In LREC, Marrakech, Morocco. European Language
Resources Association (ELRA).

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners. OpenAI
Blog, 1(8).

Abigail See, Aneesh Pappu, Rohun Saxena, Akhila
Yerukola, and Christopher D Manning. 2019. Do
Massively Pretrained Language Models Make Bet-
ter Storytellers? In CoNLL, pages 843–861, Hong
Kong, China. Association for Computational Lin-
guistics.

https://doi.org/10.1162/COLI_a_00226
https://doi.org/10.1162/COLI_a_00226
https://arxiv.org/abs/1909.05858
https://arxiv.org/abs/1909.05858
https://arxiv.org/pdf/1412.6980.pdf
https://arxiv.org/pdf/1412.6980.pdf
http://arxiv.org/abs/1901.07291
http://arxiv.org/abs/1901.07291
https://doi.org/10.1162/coli_a_00364
https://doi.org/10.1162/coli_a_00364
https://doi.org/10.18653/v1/N19-1199
https://doi.org/10.18653/v1/N19-1199
https://doi.org/10.18653/v1/N19-1199
https://doi.org/10.18653/v1/D16-1035
https://doi.org/10.18653/v1/D16-1035
https://doi.org/10.18653/v1/D16-1035
https://openreview.net/pdf?id=BJC{_}jUqxe
https://openreview.net/pdf?id=BJC{_}jUqxe
https://doi.org/10.18653/v1/n19-1112
https://doi.org/10.18653/v1/n19-1112
https://doi.org/10.18653/v1/n19-1112
https://doi.org/10.1558/cj.v33i1.26380
https://doi.org/10.1558/cj.v33i1.26380
https://doi.org/10.1558/cj.v33i1.26380
https://doi.org/10.1558/cj.v33i1.26380
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
http://www.aclweb.org/anthology/P11-1015
https://www.researchgate.net/publication/235178249_Rhetorical_Structure_Theory_and_Text_Analysis
https://www.researchgate.net/publication/235178249_Rhetorical_Structure_Theory_and_Text_Analysis
https://doi.org/10.1515/text.1.1988.8.3.243
https://doi.org/10.1515/text.1.1988.8.3.243
https://mitpress.mit.edu/books/theory-and-practice-discourse-parsing-and-summarization
https://mitpress.mit.edu/books/theory-and-practice-discourse-parsing-and-summarization
https://eric.ed.gov/?id=EJ1204544
https://eric.ed.gov/?id=EJ1204544
https://eric.ed.gov/?id=EJ1204544
http://arxiv.org/abs/1912.01703
http://arxiv.org/abs/1912.01703
http://arxiv.org/abs/1912.01703
https://doi.org/10.18653/v1/W16-2812
https://doi.org/10.18653/v1/W16-2812
https://doi.org/10.18653/v1/W16-2812
http://www.aclweb.org/anthology/D14-1162
http://www.aclweb.org/anthology/D14-1162
https://arxiv.org/abs/2004.03061
https://arxiv.org/abs/2004.03061
https://www.ets.org/Media/Research/pdf/RR-01-03-Powers.pdf
https://www.ets.org/Media/Research/pdf/RR-01-03-Powers.pdf
https://www.ets.org/Media/Research/pdf/RR-01-03-Powers.pdf
http://www.lrec-conf.org/proceedings/lrec2008/pdf/754{_}paper.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language{_}models{_}are{_}unsupervised{_}multitask{_}learners.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language{_}models{_}are{_}unsupervised{_}multitask{_}learners.pdf
https://doi.org/10.18653/v1/K19-1079
https://doi.org/10.18653/v1/K19-1079
https://doi.org/10.18653/v1/K19-1079


26

Sofia Serrano, Noah A Smith, and Paul G Allen.
2019. Is Attention Interpretable? In ACL, pages
2931–2951, Minneapolis, Minnesota. Association
for Computational Linguistics.

Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, and Tie-
Yan Liu. 2019. MASS: Masked Sequence to Se-
quence Pre-training for Language Generation. In
ICML, Long Beach, California.

Mihai Surdeanu, Thomas Hicks, and Marco A
Valenzuela-Escárcega. 2015. Two Practical Rhetor-
ical Structure Theory Parsers. In NAACL, Denver,
Colorado.

Stephen Toulmin. 1958. The Uses of Argument. Cam-
bridge University Press.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention Is All
You Need. In NeurIPS, Long Beach, California.

Elena Voita and Ivan Titov. 2020. Information-
Theoretic Probing with Minimum Description
Length. arXiv preprint arXiv:2003.12298.

Xinhao Wang, Binod Gyawali, James V Bruno,
Hillary R Molloy, Keelan Evanini, and Klaus Zech-
ner. 2019. Using Rhetorical Structure Theory to
Assess Discourse Coherence for Non-native Spon-
taneous Speech. In DisRPT, pages 153–162, Min-
neapolis, Minnesota. Association for Computational
Linguistics.

Yizhong Wang, Sujian Li, and Houfeng Wang. 2017.
A Two-Stage Parsing Method for Text-Level Dis-
course Analysis. In ACL, pages 184–188, Vancou-
ver, Canada. Association for Computational Linguis-
tics.

Sarah Wiegreffe and Yuval Pinter. 2019. Attention
is not not Explanation. In EMNLP, pages 11–20,
Hong Kong, China. Association for Computational
Linguistics.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, R’emi Louf, Morgan Funtow-
icz, and Jamie Brew. 2019. HuggingFace’s Trans-
formers: State-of-the-art Natural Language Process-
ing. arXiv preprint 1910.03771.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Car-
bonell, Ruslan Salakhutdinov, and Quoc V. Le. 2019.
XLNet: Generalized Autoregressive Pretraining for
Language Understanding.

Victor H Yngve. 1960. A model and an hypothesis
for language structure. Proceedings of the American
philosophical society, 104(5):444–466.

Nan Yu, Meishan Zhang, and Guohong Fu. 2018.
Transition-based neural RST parsing with implicit
syntax features. In COLING, pages 559–570, Santa
Fe, New Mexico, USA. Association for Computa-
tional Linguistics.

Mo Zhang. 2013. Contrasting Automated and Human
Scoring of Essays. Technical report, Educational
Testing Service.

Zining Zhu, Jekaterina Novikova, and Frank Rudzicz.
2019. Detecting cognitive impairments by agreeing
on interpretations on linguistic features. In NAACL,
pages 1431–1441, Minnespolis, Minnesota. Associ-
ation for Computational Linguistics.

https://www.aclweb.org/anthology/P19-1282.pdf
https://arxiv.org/abs/1905.02450
https://arxiv.org/abs/1905.02450
https://doi.org/10.3115/v1/N15-3001
https://doi.org/10.3115/v1/N15-3001
http://johnnywalters.weebly.com/uploads/1/3/3/5/13358288/toulmin-the-uses-of-argument{_}1.pdf
https://doi.org/10.1017/S0140525X16001837
https://doi.org/10.1017/S0140525X16001837
https://arxiv.org/abs/2003.12298
https://arxiv.org/abs/2003.12298
https://arxiv.org/abs/2003.12298
https://doi.org/10.18653/v1/W19-2719
https://doi.org/10.18653/v1/W19-2719
https://doi.org/10.18653/v1/W19-2719
https://doi.org/10.18653/v1/P17-2029
https://doi.org/10.18653/v1/P17-2029
https://doi.org/10.18653/v1/D19-1002
https://doi.org/10.18653/v1/D19-1002
https://arxiv.org/abs/1910.03771
https://arxiv.org/abs/1910.03771
https://arxiv.org/abs/1910.03771
http://arxiv.org/abs/1906.08237
http://arxiv.org/abs/1906.08237
https://www.jstor.org/stable/98523
https://www.jstor.org/stable/98523
https://www.aclweb.org/anthology/C18-1047
https://www.aclweb.org/anthology/C18-1047
https://www.ets.org/Media/Research/pdf/RD{_}Connections{_}21.pdf
https://www.ets.org/Media/Research/pdf/RD{_}Connections{_}21.pdf
https://doi.org/10.18653/v1/N19-1146
https://doi.org/10.18653/v1/N19-1146


27

A Experiments on RST-DT

As a sanity check, we include experiments on RST-
DT (Carlson et al., 2001) corpus with the same pre-
processing and feature extraction procedures (i.e.,
perform feature extraction and embedding on the
article level, and ignoring the overlength articles).
As shown in Figure 6, BERT-family and XLM out-
perform GPT-2 and XLNet. Also, the noncontex-
tualized embedding baselines show worse perfor-
mances than contextualized embeddings in general,
with some exceptions (e.g., GPT-2 on EDU fea-
tures). These are similar to the IMDB results.

What are different is that the probing losses of
RST-DT are lower than the IMDB experiments in
general. We consider two possible explanations.
First, the IMDB signals contain more noise, so that
probing rhetorical features from IMDB would be
naturally more difficult than probing from the RST-
DT dataset. Second, it is possible that the probes
overfit the much smaller RST-DT dataset.

B Examples of parse trees

We include several examples of IMDB parse trees
in Appendix here, including some examples where
the RST parser makes mistakes on a new domain,
movie review. For clarity of illustration, these ex-
amples are among the shorter movie reviews. More
parse trees can be generated by our visualization
code, which is contained in our submitted scripts.
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Figure 6: Probing performances of averaging 12 layers for 6 neural LMs on 4 tasks in RST-DT, compared to the
three non-contextual baselines.

Elaboration[N][S]

This movie is very good
. <s> Contrast[N][N]

The screenplay is enchanting
. <s> Elaboration[N][S]

But Meryl Streep is
most impressive . <s> Joint[N][N]

Her performance is
excellent . <s>

She brings me to go into
the heart of her role

. <P>

Figure 7: IMDB train/pos/10348 8.txt. The <s> and <P> are appended automatically by the parser,
marking the end of sentences and paragraphs respectively.
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Elaboration[N][S]

Attribution[S][N] Elaboration[N][S]

A lot of people are saying Attribution[S][N]

that Al Pacino over
acted Elaboration[N][S]

but I mean common obviously
for a movie role like

this
Attribution[S][N]

-- a cuban drug lord

you need a bit of over
acting in this role

with that cuban accent
. <s>

This movie overall
was a really good movie

I
Attribution[S][N]

myself rated a 10/10
I would highly recommend

people to watch this
movie . <P>

Figure 8: IMDB train/pos/11857 10.txt. There is an EDU segmentation error: the “I” is incorrectly
assigned to the previous sentence “This movie overall was a really good movie”. Apparently some lexical cues the
EDU segmentator relies on (e.g., sentence finishes with a period sign) is not always followed in IMDB.

Explanation[N][S]

I liked the film . <s> Elaboration[N][S]

Elaboration[N][S] Elaboration[N][S]

Elaboration[N][S] Elaboration[N][S]

Some of the action scenes
were very interesting
, tense and well done

. <s>

Elaboration[N][S]

I especially liked
the opening scene

which had a semi truck
in it . <s>

A very tense action
scene

that seemed well done
. <s>

Elaboration[N][S] I 'd give the film an
8 out of 10 . <P>

Elaboration[N][S] Attribution[S][N]

Some of the transitional
scenes were filmed
in interesting ways

such as time lapse photography
, unusual colors , or
interesting angles

. <s>

Also the film is funny
is several parts . <s> I also liked how the evil guy was

portrayed too . <s>

Figure 9: IMDB train/pos/1000 8.txt. The parser captures the key sentence of this review. All sentences
following the first one act as reasons to explain how the reviewer liked the film.
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Elaboration[N][S]

Elaboration[N][S] My rating : 8/10 <P>

Elaboration[N][S] Elaboration[N][S]

Summary[N][S] Elaboration[N][S]

Bruce Almighty , one
of Carrey 's best pictures

since . <s>
. . well . <s> Elaboration[N][S] . . <s>

. . a long time . <s> Elaboration[N][S]

It contains one of the
funniest scenes

I have seen for a long
time too . <s>

Elaboration[N][S] Background[S][N]

Attribution[S][N] Elaboration[N][S]

Morgan Freeman plays Elaboration[N][S]

God well and even chips
in a few jokes

that are surprisingly
funny . <s>

It contains one or two
romantic moments

that are a bit boring
but over all a great

movie with some funny
scenes . <s>

The best scene in , Attribution[S][N]

it is
where Jim is messing
up the anchor man 's

voice . <s>

Figure 10: IMDB train/pos/10301 8.txt. The interjection, “well”, is incorrectly identified as the satellite
of the summary signal. This is likely caused by the discrepancy between the train (RST-DT) and test (IMDB)
corpus discrepancy for the RST parser. The RST-DT dataset contains news articles, which are more formal than
the online review in IMDB. The term “well” is therefore more likely to be identified as other senses.

Elaboration[N][S]

Elaboration[N][S] Elaboration[N][S]

Do n't look for an overdeveloped
plotline here . <s> Joint[N][N]

... just sit back with
some popcorn

and enjoy this one .
<s>

Background[N][S]
Great fun for kids and
adults alike . *** out

of **** <P>

A gallery of stars pop
up same-unit[N][N]

Elaboration[N][S]

not to mention knockout
performances from

Beatty , Madonna , and
Pacino . <s>

as the classic cartoon
character 's villains

in this live action
comedy ,

which features incredible
makeup and set design

,

Figure 11: IMDB train/pos/11825 8.txt. One might suggest that the last EDU could be moved one level
higher (so that it summarizes the whole review), but this parsing is also reasonable, since the mention of kids
elaborates the descriptions of the makeup and the views.
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Evaluation[N][S]

Background[N][S] Condition[N][S]

Big rock candy mountain
is amazing . i watched

it
Joint[N][N]

when i was little , and still do to this
day . <s>

senior  in high school . same-unit[N][N]

Elaboration[N][S] Elaboration[N][S]

if i could imagine heaven
,

that is what it would
look like . i wish i

could live in big rock
candy mountain

where candy grows on
trees . <s>

Figure 12: IMDB train/pos/10788 10.txt. This is an example of the EDU segmentation contains mistake.
The “i wish i” should be merged with the subsequent EDU, “could live in big rock candy mountain”. Note that the
sentence starts with two lowercase “i” (which should be uppercase). The non-standard usages like these are unique
for less formal texts like IMDB.

Elaboration[N][S]

Elaboration[N][S] It is really funnny
<P>

Joint[N][N] Contrast[N][N]

THis was a hilarious
movie

and I would see it again
and again . <s> Elaboration[N][S] Elaboration[N][S]

It is n't a movie for
someone

who does n't have a fun
sense of a humor , but for people

who enoy comedy like
Chris Rock its a perfect

movie in my opinion
. <s>

Figure 13: IMDB train/pos/11686 10.txt.
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Elaboration[N][S]

Elaboration[N][S]

Truly one of the great
ones and definitely

my all-time favourite
!!! <P>

Elaboration[N][S] Elaboration[N][S]

Joint[N][N]
It just keeps getting
better and better .

<s>

Just watched the film
for the 3rd time Elaboration[N][S]

and enjoyed Lindsay
Crouse and the rest

of the cast

just as much as before
. <s>

You simply have to marvel
at the carefully measured
way of speech , the slow

deliberate action
, everything

being exactly in place
. <s>

Figure 14: IMDB train/pos/10264 10.txt


