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BioNLP 2020: Research unscathed by COVID-19
Kevin Bretonnel Cohen, Dina Demner-Fushman, Sophia Ananiadou, Junichi Tsujii

The past year has been more than exciting for natural language processing in general, and for biomedical
natural language processing in particular. A gradual accretion of studies of reproducibility and
replicability in natural language processing, biomedical and otherwise had been making it clear that
the reproducibility crisis that has hit most of the rest of science is not going to spare text mining or its
related fields. Then, in March of 2020, much of the world ground to a sudden halt.

The outbreak of the COVID-19 disease caused by the novel coronavirus SARS-CoV-2 made
computational work more obviously relevant than it had perhaps ever been before. Suddenly, newscasters
were arguing about viral clades, the daily news was full of stories about modelling, and your neighbor
had heard of PCR. But, some of us did not really see a role for natural language processing in the brave
new world of computational instant reactions to an international pandemic.

That was wrong.

In mid-late March of 2020, a joint project between the Allen Artificial Intelligence Institute (Ai2), the
National Library of Medicine (NLM), and the White House Office of Science and Technology Policy
(OSTP) released CORD-19, a corpus of work on the SARS-CoV-2 virus, on COVID-19 disease, and
on related coronavirus research. It was immediately notable for its inclusion of "gray literature" from
preprint servers, which mostly have been neglected in text mining research, as well as for its flexibility
with regards to licensing of content types. Perhaps most importantly, it was released in conjunction
with a number of task types, including one related to ethics–although the value of medical ethics has
been widely obvious since the Nazi "medical" experimentation horrors of the Second World War, the
worldwide pandemic has made the value of medical ethicists more apparent to the general public than at
any time since. Those task type definitions enabled the broader natural language processing community
to jump into the fray quite quickly, and initial results have been quick to arrive.

Meanwhile, the pandemic did nothing to slow research in biomedical natural language processing on
any other topic, either. That can be seen in the fact that this year the Association for Computational
Linguistics SIGBIOMED workshop on biomedical natural language processing received 73 submissions.
The unfortunate effect of the pandemic was the cancellation of the physical workshop, which would
have allowed acceptance of all high-quality submissions as posters, if not for podium presentations.
Indeed, the poster sessions at BioNLP have been continuously growing in size, due to the large number
of high-quality submissions that the workshop receives annually. Unfortunately, because this year the
Association for Computational Linguistics annual meeting will take place online only, there will be no
poster session for the workshop. Consequently, only a handful of submissions could be accepted for
presentation.

Transitioning of the traditional conferences to online presentations at the beginning of the COVID-19
pandemic showed that the traditional presentation formats are not as engaging remotely as they are in
the context of in-person sessions. We are therefore exploring a new form of presentation, hoping it
will be more engaging, interactive, and informative: 22 papers (about 30% of the submissions) will be
presented in panel-like sessions. Papers will be grouped by similarity of topic, meaning that participants
with related interests will be able to interact regarding their papers with a hopefully optimal number of
people on line at the same time. As we write this introduction, the conference plans and platform are still
evolving, as are the daily lives of much of the planet, so we hope that you will join us in planning for the
worst, while hoping for the best.
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Panel Discussions
papers referenced in this section are included in this volume, unless otherwise indicated

Session 1: High accuracy information retrieval, spin and bias
Invited talk and discussion lead: Kirk Roberts

Presentations: The exploration of Information Retrieval approaches enhanced with linguistic knowledge
continues in the work that allows life-science researchers to search PubMed and the CORD-19 collection
using patterns over dependency graphs (Taub-Tabib et al.) Representing biomedical relationships in the
literature by encoding dependency structure with word embeddings promises to improve retrieval of
relationships and literature-based discovery (Paullada et al.) Word embeddings trained on biomedical
research articles and the tests based on their associations and coherence, among others, allow detecting
and quantifying gender bias over time (Rios et al.) A BioBERT model fine-tuned for relation extraction
might assist in detecting spin in reporting the results of randomized clinical trials (Koroleva et al.) Finally,
a novel sequence-to-set approach to generating terms for pseudo-relevance feedback is evaluated (Das et
al.)

Session 2: Clinical Language Processing
Invited talk and discussion lead: Tim Miller

Presentations: Not surprisingly, much of the potentially reproducible work in the clinical domain is
based on the Medical Information Mart for Intensive Care (MIMIC) data (Johnson et al., 2016). Kovaleva
et al. used the MIMIC-CXR data to explore Visual Dialog for radiology and prepare the first publicly
available silver- and gold-standard datasets for this task. Searle et al. present a MIMIC-based silver
standard for automatic clinical coding and warn that frequently assigned codes in MIMIC-III might be
undercoded. Mascio et al. used MIMIC and the Shared Annotated Resources (ShARe)/CLEF dataset in
four classification tasks: disease status, temporality, negation, and uncertainty. Temporality is explored
in-depth by Lin et al., and Wang et al. explore approaches to a clinical Semantic Textual Similarity (STS)
task. Xu et al. apply reinforcement learning to deal with noise in clinical text for readmission prediction
after kidney transplant.

Session 3: Language Understanding
Invited talk and discussion lead: Anna Rumshisky

Presentations: Bringing clinical problems and poetry together, this creative work seeks to better
understand dyslexia through a self-attention transformer and Shakespearean sonnets (Bleiweiss).
Detection of early stages of Alzheimer’s disease using unsupervised clustering is explored with 10 years
of President Ronald Reagan’s speeches (Wang et al.). Stavropoulos et al. introduce BIOMRC, a cloze-
style dataset for biomedical machine reading comprehension, along with new publicly available models,
and provide a leaderboard for the task. Another type of question answering – answering questions that
can be answered by electronic medical records–is explored by Rawat et al. Hur et al. study veterinary
records to identify reasons for administration of antibiotics. DeYoung et al. expand the Evidence
Inference dataset and evaluate BERT-based models for the evidence inference task.

Session 4: Named Entity Recognition and Knowledge Representation
Invited talk and discussion lead: Hoifung Poon

Invited talk: Machine Reading for Precision Medicine
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The advent of big data promises to revolutionize medicine by making it more personalized and effective,
but big data also presents a grand challenge of information overload. For example, tumor sequencing has
become routine in cancer treatment, yet interpreting the genomic data requires painstakingly curating
knowledge from a vast biomedical literature, which grows by thousands of papers every day. Electronic
medical records contain valuable information to speed up clinical trial recruitment and drug development,
but curating such real-world evidence from clinical notes can take hours for a single patient. Natural
language processing (NLP) can play a key role in interpreting big data for precision medicine. In
particular, machine reading can help unlock knowledge from text by substantially improving curation
efficiency. However, standard supervised methods require labeled examples, which are expensive and
time-consuming to produce at scale. In this talk, Dr. Poon presents Project Hanover, where the
team overcomes the annotation bottleneck by combining deep learning with probabilistic logic, and
by exploiting self-supervision from readily available resources such as ontologies and databases. This
enables the researchers to extract knowledge from millions of publications, reason efficiently with the
resulting knowledge graph by learning neural embeddings of biomedical entities and relations, and apply
the extracted knowledge and learned embeddings to supporting precision oncology.

Hoifung Poon is the Senior Director of Precision Health NLP at Microsoft Research and an affiliated
professor at the University of Washington Medical School. He leads Project Hanover, with the
overarching goal of structuring medical data for precision medicine. He has given tutorials on this topic at
top conferences such as the Association for Computational Linguistics (ACL) and the Association for the
Advancement of Artificial Intelligence (AAAI). His research spans a wide range of problems in machine
learning and natural language processing (NLP), and his prior work has been recognized with Best Paper
Awards from premier venues such as the North American Chapter of the Association for Computational
Linguistics (NAACL), Empirical Methods in Natural Language Processing (EMNLP), and Uncertainty
in AI (UAI). He received his PhD in Computer Science and Engineering from University of Washington,
specializing in machine learning and NLP.

Presentations: Nejadgholi et al. analyze errors in NER and introduce an F-score that models a forgiving
user experience. Peng et al. study NER, relation extraction, and other tasks with a multi-tasking learning
approach. Amin et al. explore multi-instance learning for relation extraction. ShafieiBavani et al.
also explore relation and event extraction, but in the context of simultaneously predicting relationships
between all mention pairs in a text. Chang et al. provide a benchmark for knowledge graph embedding
models on the SNOMED-CT knowledge graph and emphasize the importance of knowledge graphs for
learning biomedical knowledge representation.

Acknowledging the community

As always, we are profoundly grateful to the authors who chose BioNLP for presenting their innovative
research. The authors’ willingness to continue sharing their work through BioNLP consistently makes
the workshop noteworthy and stimulating. We are equally indebted to the program committee members
(listed elsewhere in this volume) who produced thorough reviews on a tight review schedule and with an
admirable level of insight, despite the timeline being even shorter than usual and the workload higher,
while at the same time handling the unprecedented changes in their work and life caused by the COVID-
19 pandemic.
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Abstract

Gender bias in biomedical research can have
an adverse impact on the health of real peo-
ple. For example, there is evidence that heart
disease-related funded research generally fo-
cuses on men. Health disparities can form
between men and at-risk groups of women
(i.e., elderly and low-income) if there is not an
equal number of heart disease-related studies
for both genders. In this paper, we study tem-
poral bias in biomedical research articles by
measuring gender differences in word embed-
dings. Specifically, we address multiple ques-
tions, including, How has gender bias changed
over time in biomedical research, and what
health-related concepts are the most biased?
Overall, we find that traditional gender stereo-
types have reduced over time. However, we
also find that the embeddings of many medical
conditions are as biased today as they were 60
years ago (e.g., concepts related to drug addic-
tion and body dysmorphia).

1 Introduction

It is important to develop gender-specific best-
practice guidelines for biomedical research (Hold-
croft, 2007). If research is heavily biased towards
one gender, then the biased guidance may con-
tribute towards health disparities because the evi-
dence drawn-on may be questionable (i.e., not well
studied). For example, there is more research fund-
ing for the study of heart disease in men (Weisz
et al., 2004). Therefore, the at-risk populations
of older women in low economic classes are not
as well-investigated. Therefore, this opens up the
possibility for an increase in the health disparities
between genders.

Among informatics researchers, there has been
increased interest in understanding, measuring, and
overcoming bias associated with machine learning
methods. Researchers have studied many applica-

tion areas to understand the effect of bias. For ex-
ample, Kay et al. (2015) found that the Google im-
age search application is biased (Kay et al., 2015).
Specifically, they found an unequal representation
of gender stereotypes in image search results for
different occupations (e.g., all police images are
of men). Likewise, ad-targeting algorithms may
include characteristics of sexism and racism (Datta
et al., 2015; Sweeney, 2013). Sweeney (2013)
found that the names of black men and women
are likely to generate ads related to arrest records.
In healthcare, much of the prior work has stud-
ied the bias in the diagnosis process made by doc-
tors (Young et al., 1996; Hartung and Widiger,
1998). There have also been studies about ethical
considerations about the use of machine learning
in healthcare (Cohen et al., 2014).

It is possible to analyze and measure the pres-
ence of gender bias in text. Garg et al. (2018) an-
alyzed the presence of well-known gender stereo-
types over the last 100 years. Hamberg (2008)
shown that gender blindness and stereotyped pre-
conceptions are the key cause for gender bias in
medicine. Heath et al. (2019) studied the gender-
based linguistic differences in physician trainee
evaluations of medical faculty. Salles et al. (2019)
measured the implicit and explicit gender bias
among health care professionals and surgeons.
Feldman et al. (2019) quantified the exclusion of
females in clinical studies at scale with automated
data extraction. Recently, researchers have studied
methods to quantify gender bias using word embed-
dings trained on biomedical research articles (Ku-
rita et al., 2019). Kurita et al. (2019) shown that
the resulting embeddings capture some well-known
gender stereotypes. Moreover, the embeddings ex-
hibit the stereotypes at a lower rate than embed-
dings trained on other corpora (e.g., Wikipedia).
However, to the best of our knowledge, there has
not been an automated temporal study in the change
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of gender bias.
In this paper, we look at the temporal change of

gender bias in biomedical research. To study social
biases, we make use of word embeddings trained
on different decades of biomedical research arti-
cles. The two main question driving this work are,
In what ways has bias changed over time, and Are
there certain illnesses associated with a specific
gender? We leverage three computational tech-
niques to answer these questions, the Word Em-
bedding Association Test (WEAT) (Caliskan et al.,
2017), the Embedding Coherence Test (ECT) (Dev
and Phillips, 2019), and Relational Inner Product
Association (RIPA) (Ethayarajh et al., 2019). To
the best of our knowledge, this will be the first tem-
poral analysis of bias of word embeddings trained
on biomedical research articles. Moreover, to the
best of our knowledge, this is the first analysis that
measures the gender bias associated with individual
biomedical words.

Our work is most similar to Garg et al. (2018).
Garg et al. (2018) study the temporal change of
both gender and racial biases using word embed-
dings. Our work substantially differs in three ways.
First, this paper is focused on biomedical litera-
ture, not general text corpora. Second, we analyze
gender stereotypes using three distinct methods to
see if the bias is robust to various measurement
techniques. Third, we extend the study beyond
gender stereotypes. Specifically, we look at bias in
sets of occupation words, as well as bias in men-
tal health-related word sets. Moreover, we quan-
tify the bias of individual occupational and mental
health-related words.

In summary, the paper makes the following con-
tributions:

• We answer the question; How has the usage
of gender stereotypes changed in the last 60
years of biomedical research? Specifically,
we look at the change in well-known gender
stereotypes (e.g., Math vs Arts, Career vs Fam-
ily, Intelligence vs Appearance, and occupa-
tions) in biomedical literature from 1960 to
2020.

• The second contribution answers the question;
What are the most gender-stereotyped words
for each decade during the last 60 years, and
have they changed over time? This contribu-
tion is more focused than simply looking at
traditional gender stereotypes. Specifically,

we analyze two groups of words: occupations
and mental health disorders. For each group,
we measure the overall change in bias over
time. Moreover, we measure the individual
bias associated with each occupation and men-
tal health disorder.

2 Related Work

In this section, we discuss research related to the
three major themes of this paper: gender disparities
in healthcare, biomedical word embeddings, and
bias in natural language processing (NLP).

2.1 Gender Disparities in Healthcare.

There is evidence of gender disparities in the health-
care system, from the diagnosis of mental health
disorders to differences in substance abuse. An
important question is, Do similar biases appear
in biomedical research? In this work, while we
explore traditional gender stereotypes (e.g., Intelli-
gence vs Appearance), we also measure potential
bias in the occupations and mental health-related
disorders associated with each gender.

With regard to mental health, as an example, af-
fecting more than 17 million adults in the United
States (US) alone, major depression is one of the
most common mental health illnesses (Pratt and
Brody, 2014). Depression can cause people to lose
pleasure in daily life, complicate other medical
conditions, and possibly lead to suicide (Pratt and
Brody, 2014). Moreover, depression can occur to
anyone, at any age, and to people of any race or
ethnic group. While treatment can help individuals
suffering from major depression, or mental illness
in general, only about 35% of individuals suffering
from severe depression seek treatment from mental
health professionals. It is common for people to
resist treatment because of the belief that depres-
sion is not serious, that they can treat themselves,
or that it would be seen as a personal weakness
rather than a serious medical illness (Gulliver et al.,
2010). Unfortunately, while depression can affect
anyone, women are almost twice as likely as men
to have had depression (Albert, 2015). Moreover,
depression is generally higher among certain de-
mographic groups, including, but not limited to,
Hispanic, non-Hispanic black, low income, and
low education groups (Bailey et al., 2019). The
focus of this paper is to understand the impact of
these mental health disparities in word embeddings
trained on biomedical corpora.
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2.2 Biomedical Word Embeddings.

Word embeddings capture the distributional nature
between words (i.e., words that appear in similar
contexts will have a similar vector encoding). Over
the years, there have been multiple methods of pro-
ducing word embeddings, including, but not lim-
ited to, latent semantic analysis (Deerwester et al.,
1990), Word2Vec (Mikolov et al., 2013a,b), and
GLOVE (Pennington et al., 2014). Moreover, pre-
trained word embeddings have been shown to be
useful for a wide variety of downstream biomedical
NLP tasks (Wang et al., 2018), such as text classi-
fication (Rios and Kavuluru, 2015), named entity
recognition (Habibi et al., 2017), and relation ex-
traction (He et al., 2019). In Chiu et al. (2016), the
authors study a standard methodology to train good
biomedical word embeddings. Essentially, they
study the impact of the various Word2Vec-specific
hyperparameters. In this paper, we use the strate-
gies proposed in Chiu et al. (2016) to train optimal
decade-specific biomedical word embeddings.

2.3 Bias and Natural Language Processing.

Unfortunately, because word embeddings are
learned using naturally occurring data, implicit bi-
ases expressed in text will be transferred to the
vectors. Bias (and fairness) is an important topic
among natural language processing researchers.
Bias has been found in word embeddings (Boluk-
basi et al., 2016; Zhao et al., 2018, 2019), text clas-
sification models (Dixon et al., 2018; Park et al.,
2018; Badjatiya et al., 2019; Rios, 2020), and in
machine translation systems (Font and Costa-jussà,
2019; Escudé Font, 2019). In general, each paper
generally focuses on either testing whether bias
exists in various models, or on removing bias from
classification models for specific applications.

Much of the work on measuring (gender) bias
using word embeddings neither studies the tempo-
ral aspect (i.e., how bias changes over time) nor
focuses on biomedical research (Chaloner and Mal-
donado, 2019). For example, Caliskan et al. (2017)
studied the bias in groups of words—focusing on
traditional gender stereotypes. Kurita et al. (2019)
expanded on Caliskan et al. (2017) to generalize
to contextual word embeddings. Garg et al. (2018)
developed a technique to study 100 years of gen-
der and racial bias using word embeddings. They
evaluated the bias over time using the US Cen-
sus as a baseline to compare embedding bias to
demographic and occupation shifts. There has

Year # Articles

1960-1969 1,479,370
1970-1979 2,305,257
1980-1989 3,322,556
1990-1999 4,109,739
2000-2010 6,134,431
2010-2020 8,686,620

Total 26,037,973

Table 1: The total number of articles in each decade.

also been work on measuring bias in sentence em-
beddings (May et al., 2019). Furthermore, there
has been a significant amount of research that ex-
plores different ways to measure bias in word em-
beddings (Caliskan et al., 2017; Dev and Phillips,
2019; Ethayarajh et al., 2019). In this work, we
make use of many of the bias measurement tech-
niques (Caliskan et al., 2017; Dev and Phillips,
2019; Ethayarajh et al., 2019) to apply them to the
biomedical domain.

3 Dataset

We analyze PubMed-indexed titles and abstracts
published anytime between 1960 and 2020. The
total number of articles per decade are shown in Ta-
ble 1. The text is lower-cased and tokenized using
the SimpleTokenizer available in GenSim (Khos-
rovian et al., 2008). We find that the total number
of papers have grown substantially each decade,
from 1.4 million indexed articles in the 1960s to
8.6 million in the 2010s. Yet, the rate of growth
stayed relatively stable each decade.

4 Method

We train the Skip-Gram model on PubMed-indexed
titles and abstracts from 1960 to 2020. The hyper-
parameters of the Skip-Gram model are optimized
independently for each decade. Next, given the
best set of embeddings for each decade, we ex-
plore three different techniques to measure bias:
the Word Embedding Association Test (WEAT),
the Embedding Coherence Test (ECT), and the Re-
lational Inner Product Association (RIPA). Each
method allows us to quantify bias in different ways,
such as comparing multiple sets of words (e.g.,
comparing the bias with respect to Career vs Fam-
ily), comparing a single set of words (e.g., occupa-
tions), and measuring the bias of individual words
(e.g., nurse). In this section, we briefly discuss the
procedure we used to train the word embeddings,
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Attribute Words Male vs Female
X male, man, boy, brother, he, him, his, son, father, uncle, grandfather

Y female, woman, girl, sister, she, her, hers, daughter, mother, aunt, grandmother

Target Words

Career vs Family
A executive, management, professional, corporation, salary, office, business, career

B home, parents, children, family, cousins, marriage, wedding, relatives

Math vs Art
A math, algebra, geometry, calculus, equations, computation, numbers, addition

B poetry, art, Shakespeare, dance, literature, novel, symphony, drama

Science vs Art
A science, technology, physics, chemistry, Einstein, NASA, experiment, astronomy

B poetry, art, Shakespeare, dance, literature, novel, symphony, drama

Intelligence vs Appearance

A
precocious, resourceful, inquisitive, genius, inventive, astute, adaptable, reflective,
discerning, intuitive, inquiring, judicious, analytical, apt, venerable, imaginative,
shrewd, thoughtful, wise, smart, ingenious, clever, brilliant, logical, intelligent

B
alluring, voluptuous, blushing, homely, plump, sensual, gorgeous, slim, bald, athletic,
fashionable, stout, ugly, muscular, slender, feeble, handsome, healthy, attractive, fat,
weak, thin, pretty, beautiful, strong

Weak vs Strong
A

power, strong, confident, dominant, potent, command, assert, loud, bold, succeed,
triumph, leader, shout, dynamic, winner

B
weak, surrender, timid, vulnerable, weakness, wispy, withdraw, yield, failure, shy,
follow, lose, fragile, afraid, loser

Table 2: Attribute and Target words words used by WEAT to measure the presence of traditional gender stereotypes
in biomedical literature.

as well as provide descriptions of each of the bias
measurement techniques.

4.1 Word2Vec Model Training.
We train a Skip-Gram model using GenSim (Khos-
rovian et al., 2008). Following Chiu et al. (2016),
we search over the following key hyper-parameters:
Negative sample size, sub-sampling, minimum-
count, learning rate, vector dimension, and context
window size. See Chiu et al. (2016, Table 2) for
more details.

To find the best model, as we search over the var-
ious hyper-parameters, we make use of the UMLS-
Sim dataset (McInnes et al., 2009). UMLS-Sim
consists of 566 medical concept pairs for measur-
ing similarity. The degree of association between
terms in UMLS-Sim was rated by four medical res-
idents from the University of Minnesota medical
school. All these clinical terms correspond to Uni-
fied Medical Language System (UMLS) concepts
included in the Metathesaurus (Bodenreider, 2004).
Evaulation is performed using Spearman’s rho rank
correlation between a vector of cosine similarities
between each of the 566 pairs of words and their
respective medical-resident ratings. Intuitively, the
ranking of the pairs using cosine similarity, from
most similar pairs to the least, should be similar to
the human (medical expert) annotations.

4.2 Word Embedding Association Test
The implicit bias test measures unconscious prej-
udice (Greenwald et al., 1998). WEAT is a gener-

alization of the implicit bias test for word embed-
dings, measuring the association between two sets
of target concepts and two sets of attributes. We
use the same target and attribute sets from Kurita
et al. (2019). We list the targets and attributes in
Table 2. The attribute sets of words are related to
the groups in which the embeddings are biases to-
wards or against, e.g., Male vs Female. The words
in the target categories—Career vs Family, Math vs
Arts, Science vs Arts, Intelligence vs Appearance,
and Strength vs Weakness—represent the specific
types of biases. For example, using the attributes
and targets, we want to know whether the learned
embeddings that represent men are more related to
career than the female-related words (i.e., test if
female words are more related to family, than male
words).

Formally, let X and Y be equal-sized sets of tar-
get concept embeddings and let A and B be sets
of attribute embeddings. To measure the bias, we
follow Caliskan et al. (2017), which defines the fol-
lowing test statistic that is the difference between
the sums over the respective target concepts,

s(X,Y,A,B) =

[∑

x∈X
s(x,A,B)

]
−

[∑

y∈Y
s(y,A,B)

]

where s(w,A,B) measures the association be-
tween a single target word w (e.g., career) with
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each of the attribute (gendered) words as

s(w,A,B) =

[∑

a∈A
cos(~w, ~a)

]
−

[∑

b∈B
cos(~w, ~b)

]
,

such that cos() represents the cosine similarity be-
tween two vectors. ~w ∈ Rd, ~a ∈ Rd, and ~b ∈ Rd

represents the word embedding for x, y, and w,
respectively. Similarly, d is the dimension of each
word embedding. Instead of using the test statistic
directly, to measure bias, we use the effect size. Ef-
fect size is a normalized measure of the separation
of the two distributions, defined as

µx∈X
[
s(x,A,B)

]
− µy∈Y

[
s(y,A,B)

]

σw∈X∪Y s(w,A,B)

where µx∈X and µy∈Y represent the mean score
over target words for a specific attribute word. Like-
wise, σw∈X∪Y is the standard deviation of the
scores for the word w in the union of X and Y .
Intuitively, a positive score means that the attribute
words in X (e.g., male, man, boy) are more similar
to the target words A (e.g., strong, power, domi-
nant) than Y (e.g., female, woman, girl). Moreover,
larger effects represent more biased embeddings.

As previously stated, the Attribute and Target
words are from Kurita et al. (2019). It is important
to note that the list is manually curated. Moreover,
the bias measurement can change depending on the
exact list of words. RIPA is more robust to slight
changes to the attribute words than WEAT (Etha-
yarajh et al., 2019).

4.3 Embedding Coherence Test.
We also explore a second method of measuring
bias, the Embedding Coherence Test (ECT) (Dev
and Phillips, 2019). Unlike WEAT, it compares
the attribute Words (e.g., Male vs Female) with a
single target set (e.g., Career). Thus, we do not
need two contrasting target sets (e.g., Career vs
Family) to measure bias. We take advantage of this
to measure bias associated with occupations and
mental health-related disorders. Specifically, we
use a total of 290 occupation words and 222 mental
health-related words. The occupation words come
from prior work measuring per-word bias (Dev and
Phillips, 2019). To form a list of mental health
words, we use the Diagnostic and Statistical Man-
ual of Mental Disorders (DSM-5), a taxonomic and

Year Sim Pair Cnt

1960-1969 .6586 101
1970-1979 .6715 207
1980-1989 .7033 277
1990-1999 .7282 265
2000-2010 .7078 272
2010-2020 .6867 306

Table 3: Quality of the embeddings trained for each
decade, measured using the UMLS-Sim dataset. Sim
represents Spearman’s rho ranking correlation. Pair
count is the number of UMLS-Sim’s word-pairs that
were present in that decades embeddings.

diagnostic tool published by the American Psychi-
atric Association (Association et al., 2013). For
each mental health disorder in DSM-5, which are
generally multi-word expressions, we split it into
individual words. Next, we manually remove unin-
formative adjective and function words. For exam-
ple, the disorder “Specific learning disorder, with
impairment in mathematics” is tokenized into the
following words: “learning”, “disorder”, “impair-
ment”, and “mathematics”. A complete listing of
the occupational and mental health words can be
found in the appendix.

Formally, ECT first computes the mean vectors
for the attribute word sets X and Y, defined as

~vX =
1

|X|
∑

x∈X
~x

where ~vX ∈ Rd and |X| represents the number of
words in category X . ~vY is calculated similarly.

For both ~vX and ~vY , ECT computes the (cosine)
similarities with all vectors a ∈ A, i.e., the cosine
similarity is calculated between each target word a
and ~vX and stored in sX ∈ R|A|. The two resultant
vectors of similarity scores, sX (for X) and sY (for
Y ) are used to obtain the final ECT score. It is
the Spearman’s rank correlation between the rank
orders of sX and sY —the higher the correlation,
the lower the bias. Intuitively, if the correlation
is high, then the rank of target words based on
similarity is correlated when calculated for the both
X and Y (i.e., male and female).

4.4 Relational Inner Product Association.
While ECT only requires a single target set, both
WEAT and ECT 1 calculate the bias between sets

1The cosine similarities from ECT can be used to mea-
sure scores for individual words, but it is not as robust as
RIPA (Ethayarajh et al., 2019).
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Figure 1: Each subfigure plots the bias measures using WEAT for one of five gender stereotypes: (a) Career vs
Family, (b) Math vs Art, (c) Science vs Art, (d) Intelligence vs Appearance, and (e) Strong vs Weak. A bias score
of zero represents no bias, i.e., no measurable difference between the two target categories for each gender. The
shaded area of each subplot represents the bootstrap estimated 95% confidence interval.

of words. However, neither approach calculates a
robust bias score for individual words. To study the
most gender biased words over time, we make use
of RIPA (Ethayarajh et al., 2019). Intuitively, RIPA
uses a single vector to represent gender, then each
word is scored by taking the dot product between
the gender embedding and its respective embed-
ding. The sign of the score will determine whether
the embedding is more male or female-related.

The major aspect of RIPA is creating the gender
embedding. Formally, given S, a non-empty set of
ordered word pairs (x, y) (e.g., (‘man’, ‘woman’),
(‘male’, ‘female’)) that defines the gender associ-
ation, we take the first principal component of all
the difference vectors {~x− ~y|(x, y) ∈ S}, which
we call the relation vector ~g ∈ Rd—that would be
a one-dimensional bias subspace. Then, for some
word vector ~w ∈ Rd the dot product is taken with
~g to measure bias.

5 Results

In this section, we present the results of our study in
four parts. First, we report the embedding quality
using UMLS-sim. Second, we study the tempo-
ral bias of traditional gender stereotypes, such as
Career vs Family and Strong vs Weak. Ideally, we
want to understand how, and which, stereotypes

have changed over time. To understand the biased
stereotypes, we make use of the WEAT method.
Third, we look at whether occupational and mental
health-related words are biased, and how the bias
has changed over time. For this result, we only use
a single set of target words. Thus, we make use of
ECT. Fourth, we use RIPA to find the most biased
words for each gender in each decade.

5.1 Embedding Quality.

In Table 3, we report the quality of each decade’s
embeddings based on the UMLS-sim dataset. Over-
all, we find that the quality consistently improves
until the 1990s, however, we see drops in the 2000s
and 2010s. We hypothesize that the reason for the
decrease in embedding quality is because of the
growth of research articles indexed on PubMed.
Intuitively, word embeddings are only able to cap-
ture a single sense of a word. However, given
the breadth of articles PubMed indexes—from ma-
chine learning (e.g., BioNLP) to biomaterials—
multiple word meanings are being stored in a single
vector. Thus, the overall quality begins to drop.

5.2 Traditional Gender Stereotypes.

In Figure 1, we plot the bias scores reported using
WEAT. Remember, a large positive score means
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Figure 2: ECT bias estimates for both the set of occupation and mental disorder words. The shaded area of each
subplot represents the bootstrap estimated 95% confidence interval.

that the male words are more similar to the targets
A (e.g., career) than the female words. There is
no measurable bias with a value of zero. Overall,
we find that the results from the WEAT test vary
depending on the stereotype. For Career vs Family,
in Figure 1a, we find a steady linear decrease in
bias each decade—with the exception of the 1990s.
We also find similar linear decreases in bias for
both Science vs Art and Strong vs Weak (Figures 1c
and 1e). In Figure 1b, for Math vs Art, however,
the bias stays relatively static, i.e., it does not dra-
matically change over time. Moreover, the WEAT
score for Math vs Art is negative, meaning that the
female words are more similar to math than the
male words. Likewise, for Intelligence vs Appear-
ance (Figure 1d), we see relatively little bias from
1960 to 1989, however, in the 1990s and 2000s, we
had a substantial jump in the bias score.

Our evaluation supports prior work evaluating
bias in biomedical word embeddings (e.g., Strong
vs Weak is the most biased stereotype in biomed-
ical literature) (Chaloner and Maldonado, 2019,
Table 2). However, we also find differences when
measuring bias over time. For example, we find
that from 2010 to 2019 there is not a lot evidence
for the Career vs Family stereotype in biomedical
corpora, matching the results from Chaloner and
Maldonado (2019, Table 2). Yet, this is only a
recent phenomenon. The embeddings trained on ar-
ticles published from 1990 to 1999 exhibit a Career
vs Family bias score greater than 1.5. Overall, com-
paring to Chaloner and Maldonado (2019, Table
2), this means that the bias in recently published
biomedical literature may not be as strong as what
is found in general text corpora. But, if we exclude
the most recent decade’s embeddings, the bias in
biomedical literature becomes much stronger. Fu-
ture work should explore comparing the temporal

bias in general text corpora to what is found in
biomedical literature.

5.3 Occupational and Mental Health Bias.
In Figure 2, we report the gender bias results from
ECT on two categories: occupations (e.g., doc-
tor, nurse, teacher) and mental health disorders
(e.g., depression, alcoholism, PTSD). Again, un-
like WEAT, ECT calculates bias scores on a single
target set of words. Therefore, we do not need two
contrasting target word sets (e.g., Math vs Art), in-
stead we can focus on bias for a single set (e.g.,
Math). Also, the larger the score, the lower the
bias—a score of one would represent no difference
between male and female words for that specific tar-
get set. Interestingly, we find that the ECT scores
follow a similar pattern as found in Table 3, the
better the embedding quality, the lower the bias.

Comparing Figures 2a and 2b, we find that
the word embeddings for both occupations and
mental disorders have relatively little bias in the
1990s. Furthermore, while there was small vari-
ation, mental disorders experienced little change
in bias decade-by-decade. Yet, occupation-related
words had a substantial amount of bias in the 1960s
and 1970s. Moreover, we find that the bias re-
lated to occupations experienced more change, than
mental disorders, starting 0.83 in the 1960s and in-
crease by more than ten points to 0.94 in the 1990s.
Whereas, mental disorder-related bias scores only
ranged from 0.90 to 0.94.

5.4 Biased Words.
In Figure 2, we analyze the bias of individ-
ual occupational and mental health-related words.
We found a substantial change in the bias of
occupational-related words.

We found little change in the bias of mental
health-related words since the 1960s. Yet, while
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Male Female

1970-1979 1980-1989 1990-1999 2000-2010 2010-2020 1970-1979 1980-1989 1990-1999 2000-2010 2010-2020

Occupations

1 promoter conductor chef dentist mediator teacher housewife neurosurgeon swimmer priest
2 collector chef baker counselor promoter professor teenager pediatrician baker fisherman
3 investigator biologist astronaut librarian dentist counselor bishop educator butcher teenager
4 principal collector swimmer pharmacist principal physician lawyer teenager medic chef
5 baker dad prisoner teenager collector pediatrician pediatrician counselor barber writer
6 researcher singer mechanic bishop cop consultant athlete neurologist physicist nanny
7 character chemist character acquaintance conductor doctor physician consultant soldier historian
8 mechanic butler worker cardiologist substitute student pathologist dentist baron president
9 analyst mechanic soldier promoter coach lawyer educator athlete director inventor
10 conductor promoter analyst attorney employee pathologist carpenter doctor singer housewife

Mental Disorders

1 caffeine cannabis separation lacunar lacunar dysmorphic factitious binge dissociative munchausen
2 restrictive hypnotic restrictive bulimia circadian psychogenic dysmorphic nervosa coordination mutism
3 attachment caffeine coordination erectile nicotine anorexia nervosa bulimia separation factitious
4 separation coordination dyskinesia gambling gambling adolescent mutism opioid parasitosis dysmorphic
5 circadian hallucinogen conversion bereavement phencyclidine nervosa bulimia hypersomnia terror hysteria
6 coordination dependence mathematics binge ocpd mutism tourette narcolepsy hysteria cotard
7 benzodiazepine attachment attachment nervosa cocaine infancy infancy anorexia conversion claustrophobia
8 dependence mathematics residual mood insomnia munchausen episode panic malingering ekbom
9 selective restrictive parasitosis depressive sleep factitious anorexia korsakoff tic diogenes
10 conversion pdd developmental polysubstance caffeine disorder munchausen factitious munchausen encopresis

Table 4: The top ten words with the largest RIPA scores (i.e., the most biased) across each decade. The RIPA
scores are reported for both occupations and mental health disorders. While all the listed words are biased, they
are ranked starting with the most biased word to the least.

we found little change in mental health bias over-
all, are there at least a few disorders that changed
over time? Moreover, we found a slight bias in
mental health terms, therefore, What are the biased
terms in each group? We look at the most gen-
der biased occupational and mental health-related
terms for each decade in Table 4. Because of space
limitations, we only display the gendered words
from the 1970s to the 2010s. The words from the
1960s can be found in the appendix. The word-level
scores were generated using RIPA. First, for occu-
pations, the words vary between male and female.
For example, in the 1970s, male-related words in-
clude “mechanic”, “principal”, and “investigator”.
The female-related words include “teacher”, “coun-
selor”, and “pediatrician”. Interestingly, the jobs
associated with men such as “principal” and “re-
searcher” are positions with power over the jobs
associated with woman. For example “principals”
(male) have power over “teachers” (female) and
“researchers” (male) have power over “students”
(female). We also find other well-known occupa-
tions appear to be gender-related. For instance,
“butler” in the 1980s is associated to male while
“nanny” is related to female in the 2010s.

With regard to mental health, we find that dis-
orders associated with well-known gender dispari-
ties appear to be biased using RIPA (Organization,
2013). For example, through the last 60 years,
words associated with addictions are male-related,

e.g., “caffeine”, “cannabis”, “nicotine”, and “gam-
bling”. Similarly, disorders related to appearance
are more female-related, e.g., “dysmorphic” 2 and
“anorexia”. We also find that disorders related to
emotions are more female-related, such as “mun-
chausen” 3, “hysteria” 4, and “terror”. Interest-
ingly, we find that the word “hysteria” is heavily
biased in the 2010s. Even though the diagnosis of
female hysteria substantially fell in the 1900s (Mi-
cale, 1993), it still seems to be a biased term. We
want to note that this could simply be caused by
research studying mental health diagnosis bias in
women, however, the underlying cause of why the
term is biased in the 2010s is left for future work.

6 Discussion

In this section, we discuss the impact of the results
on two stakeholders of this research: BioNLP re-
searchers and general biomedical researchers. Fur-
thermore, we discuss the limitations of focusing on
binary gender (Male vs Female).

2Dysmorphia is a mental health disorder in which you
can’t stop thinking about one or more perceived defects or
flaws

3Munchausen is a mental disorder in which a person re-
peatedly and deliberately acts as if he or she has a physical or
mental illness

4Hysteria is a (biased) catch-all for symptoms including,
but not limited to, nervousness, hallucinations, and emo-
tional outbursts.
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6.1 Impact on BioNLP researchers.

The results in this paper are important for BioNLP
research in two ways. First, we have produced
decade-specific word embeddings. 5 Therefore,
BioNLP research can use the embeddings to study
other historical phenomenon in biomedical re-
search articles. Second, the analysis of historical
bias in biomedical research in this paper can be
applied to other domains, beyond occupations and
mental disorders.

6.2 Impact on Biomedical Researchers.

With regard to general biomedical researchers (e.g.,
medical researchers and biologist), this work can
provide a way to measure which demographics cur-
rent research is leaning towards in an automated
fashion. As discussed in Holdcroft (2007), if re-
search is heavily focused on a single gender, then
health disparities can increase. Treatments should
be explored equally for all at-risk patients. Fur-
thermore,with the use of contextual word embed-
dings (Scheuerman et al., 2019), implicit bias mea-
surement techniques can be used as part of the writ-
ing process to avoid gendered language when it is
not necessary (e.g., using singular they vs he/she).

6.3 A Note About Gender.

Similar to prior work measuring gender
bias (Chaloner and Maldonado, 2019), we
focus on binary gender. However, it is important
to note that the results for binary gender do not
necessarily generalize to other genders, including,
but not limited to, binary trans people, non-binary
people, gender non-conforming people (Scheuer-
man et al., 2019). Therefore, we want to explicitly
note that our research does not necessarily
generalize beyond binary gender. In future
work, we recommend that researcher’s studies
should be performed for other genders, beyond
simply studying Male vs Female.

How can this study be expanded beyond binary
gender? The three bias measurement techniques
studied in this paper (i.e., WEAT, ECT, and RIPA)
require sets of words representing a single gender
(e.g., boy, men, male). Unfortunately, there is not
a large number of words to represent every gender
of interest. A promising area of research is to ex-
plore bias in contextual word embeddings. With the
use of contextual word embeddings (Kurita et al.,

5https://github.com/AnthonyMRios/
Gender-Bias-PubMed

2019), we can measure the bias of individual words
across many contexts. Thus, we can possibly over-
come the problem of a limited number of words
per gender.

7 Conclusion

In this paper, we studied the historical bias present
in word embeddings from 1960 to 2020. In sum-
mary, we found that while some biases have shown
a consistently decrease over time (e.g., Strong vs
Weak), others have stayed relatively static, or worse,
increased (e.g., Intelligence vs Appearance). More-
over, we found that the gender bias towards occupa-
tions has substantially changed over time, showing
that in the past, there was more gender bias associ-
ated with certain jobs.

There are two major avenues for future work.
First, this work quantified various aspects of gen-
der bias over time. However, we do not know why
the bias is present in the word embeddings. For
example, is the word “hysteria” biased in 2010 be-
cause researchers are associating it with women
implicitly, or is it that researchers are studying the
historical usage of the diagnosis to ensure the di-
agnosis is not made because of implicit bias in the
future? Thus, our future work will focus on causal
studies of bias in biomedical literature. Second, we
simply independently trained Skip-Gram word em-
beddings for each decade. However, recent work
has shown that dynamic embeddings, rather than
static (decade-specific), perform better with regard
to analyzing public perception over time (Gillani
and Levy, 2019). Future work will focus on de-
veloping new techniques to study bias temporally.
Moreover, many techniques may depend on the
magnitude of the bias, therefore, we plan to ana-
lyze the circumstances in which one embedding
approach may measure bias (e.g., Skip-Gram) bet-
ter than another (e.g., dynamic embeddings).
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A 1960s Most Biased Words

Male:

• physician

• doctor

• president

• dentist

• psychiatrist

• surgeon

• student

• nurse

• worker

• professor

Female:

• substitute

• principal

• editor

• baker

• character

• author

• pharmacist

• scientist

• therapist

• teacher

B Mental Health-Related Terms

[abuse, acute, adaptation, adjustment, adoles-
cent, adult, affective, agoraphobia, alcohol, alco-
holic, alzheimer, amnesia, amnestic, amphetamine,
anorexia, anosognosia, anterograde, antisocial, anx-
iety, anxiolytic, asperger, atelophobia, attachment,
attention, atypical, autism, autophagia, avoidant,
avoidant, restrictive, barbiturate, behavior, benzodi-
azepine, bereavement, bibliomania, binge, bipolar,
body, borderline, brief, bulimia, caffeine, cannabis,
capgras, catalepsy, catatonia, catatonic, childhood,
circadian, claustrophobia, cocaine, cognitive, com-
munication, compulsive, condition, conduct, con-
version, coordination, cotard, cyclothymia, day-
dreaming, defiant, deficit, delirium, delusion, delu-
sional, delusions, dependence, depersonalization,

depression, depressive, derealization, dermatillo-
mania, desynchronosis, deux, developmental, dio-
genes, disease, disorder, dissociative, dyscalcu-
lia, dyskinesia, dyslexia, dysmorphic, eating, ejac-
ulation, ekbom, encephalitis, encopresis, enure-
sis, epilepsy, episode, erectile, erotomania, exhi-
bitionism, factitious, fantastica, fetishism, fregoli,
fugue, functioning, gambling, ganser, grandiose,
hallucinogen, hallucinosis, histrionic, huntington,
hyperactivity, hypersomnia, hypnotic, hypochon-
driasis, hypomanic, hysteria, ideation, identity,
impostor, induced, infancy, insomnia, intellec-
tual, intermittent, intoxication, kleptomania, ko-
rsakoff, lacunar, lethargica, love, major, maladap-
tive, malingering, mania, mathematics, megalo-
mania, melancholia, misophonia, mood, mun-
chausen, mutism, narcissistic, narcolepsy, nervosa,
neurocysticercosis, neurodevelopmental, nicotine,
nightmare, nos, obsessive, obsessive–compulsive,
ocd, ocpd, oneirophrenia, opioid, oppositional, or-
thorexia, pain, panic, paralysis, paranoid, parasito-
sis, parasomnia, parkinson, partialism, pathologi-
cal, pdd, perception, persecutory, personality, per-
vasive, phencyclidine, phobia, phobic, phonolog-
ical, physical, pica, polysubstance, posttraumatic,
pseudologia, psychogenic, psychosis, psychotic,
ptsd, pyromania, reactive, residual, retrograde, ru-
mination, schizoaffective, schizoid, schizophrenia,
schizophreniform, schizotypal, seasonal, sedative,
selective, separation, sexual, sleep, sleepwalking,
social, sociopath, somatic, somatization, somato-
form, stereotypic, stockholm, stress, stuttering, sub-
stance, suicidal, suicide, tardive, terror, tic, tourette,
transient, transvestic, tremens, trichotillomania, tru-
man, withdrawal, wonderland]

C Occupations

[detective, ambassador, coach, officer, epidemiol-
ogist, rabbi, ballplayer, secretary, actress, man-
ager, scientist, cardiologist, actor, industrial-
ist, welder, biologist, undersecretary, captain,
economist, politician, baron, pollster, environmen-
talist, photographer, mediator, character, housewife,
jeweler, physicist, hitman, geologist, painter, em-
ployee, stockbroker, footballer, tycoon, dad, pa-
trolman, chancellor, advocate, bureaucrat, strate-
gist, pathologist, psychologist, campaigner, magis-
trate, judge, illustrator, surgeon, nurse, mission-
ary, stylist, solicitor, scholar, naturalist, artist,
mathematician, businesswoman, investigator, cura-
tor, soloist, servant, broadcaster, fisherman, land-
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lord, housekeeper, crooner, archaeologist, teenager,
councilman, attorney, choreographer, principal,
parishioner, therapist, administrator, skipper, aide,
chef, gangster, astronomer, educator, lawyer, mid-
fielder, evangelist, novelist, senator, collector, goal-
keeper, singer, acquaintance, preacher, trumpeter,
colonel, trooper, understudy, paralegal, philoso-
pher, councilor, violinist, priest, cellist, hooker,
jurist, commentator, gardener, journalist, warrior,
cameraman, wrestler, hairdresser, lawmaker, psy-
chiatrist, clerk, writer, handyman, broker, boss,
lieutenant, neurosurgeon, protagonist, sculptor,
nanny, teacher, homemaker, cop, planner, la-
borer, programmer, philanthropist, waiter, barrister,
trader, swimmer, adventurer, monk, bookkeeper,
radiologist, columnist, banker, neurologist, bar-
ber, policeman, assassin, marshal, waitress, artiste,
playwright, electrician, student, deputy, researcher,
caretaker, ranger, lyricist, entrepreneur, sailor,
dancer, composer, president, dean, comic, medic,
legislator, salesman, observer, pundit, maid, arch-
bishop, firefighter, vocalist, tutor, proprietor, restau-
rateur, editor, saint, butler, prosecutor, sergeant,
realtor, commissioner, narrator, conductor, histo-

rian, citizen, worker, pastor, serviceman, filmmaker,
sportswriter, poet, dentist, statesman, minister, der-
matologist, technician, nun, instructor, alderman,
analyst, chaplain, inventor, lifeguard, bodyguard,
bartender, surveyor, consultant, athlete, cartoonist,
negotiator, promoter, socialite, architect, mechanic,
entertainer, counselor, janitor, firebrand, sports-
man, anthropologist, performer, crusader, envoy,
trucker, publicist, commander, professor, critic, co-
median, receptionist, financier, valedictorian, in-
spector, steward, confesses, bishop, shopkeeper,
ballerina, diplomat, parliamentarian, author, sociol-
ogist, photojournalist, guitarist, butcher, mobster,
drummer, astronaut, protester, custodian, maestro,
pianist, pharmacist, chemist, pediatrician, lecturer,
foreman, cleric, musician, cabbie, fireman, farmer,
headmaster, soldier, carpenter, substitute, director,
cinematographer, warden, marksman, congress-
man, prisoner, librarian, magician, screenwriter,
provost, saxophonist, plumber, correspondent, or-
ganist, baker, doctor, constable, treasurer, superin-
tendent, boxer, physician, infielder, businessman,
protege]
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Abstract

Novel contexts, comprising a set of terms re-
ferring to one or more concepts, may often
arise in complex querying scenarios such as
in evidence-based medicine (EBM) involving
biomedical literature. These may not explicitly
refer to entities or canonical concept forms oc-
curring in a fact-based knowledge source, e.g.
the UMLS ontology. Moreover, hidden asso-
ciations between related concepts meaningful
in the current context, may not exist within
a single document, but across documents in
the collection. Predicting semantic concept
tags of documents can therefore serve to as-
sociate documents related in unseen contexts,
or categorize them, in information filtering
or retrieval scenarios. Thus, inspired by the
success of sequence-to-sequence neural mod-
els, we develop a novel sequence-to-set frame-
work with attention, for learning document
representations in a unique unsupervised set-
ting, using no human-annotated document la-
bels or external knowledge resources and only
corpus-derived term statistics to drive the train-
ing. This can effect term transfer within a
corpus for semantically tagging a large collec-
tion of documents. Our sequence-to-set mod-
eling approach to predict semantic tags , gives
to the best of our knowledge, the state-of-the-
art for both, an unsupervised query expansion
(QE) task for the TREC CDS 2016 challenge
dataset when evaluated on an Okapi BM25–
based document retrieval system; and also
over the MLTM system baseline (Soleimani
and Miller, 2016), for both supervised and
semi-supervised multi-label prediction tasks
with del.icio.us and Ohsumed datasets. We
make our code and data publicly available 1.

1 Introduction

Recent times have seen an upsurge in efforts to-
wards personalized medicine where clinicians tai-

1https://github.com/mcoqzeug/seq2set-semantic-tagging

lor their medical decisions to the individual patient,
based on the patient’s genetic information, other
molecular analysis, and the patient’s preference.
This often requires them to combine clinical expe-
rience with evidence from scientific research, such
as that available from biomedical literature, in a
process known as evidence-based medicine (EBM).
Finding the most relevant recent research however,
is challenging not only due to the volume and the
pace at which new research is being published, but
also due to the complex nature of the information
need, arising for example, out of a clinical note
which may be used as a query. This calls for bet-
ter automated methods for natural language under-
standing (NLU), e.g. to derive a set of key terms or
related concepts helpful in appropriately transform-
ing a complex query, by reformulation so as to be
able to handle and possibly resolve medical jargon,
lesser-used acronyms, misspelling, multiple sub-
ject areas and often multiple references to the same
entity or concept, and retrieve the most related, yet
most comprehensive set of useful results.

At the same time, tremendous strides have been
made by recent neural machine learning mod-
els in reasoning with texts on a wide variety of
NLP tasks. In particular, sequence-to-sequence
(seq2seq) neural models often employing attention
mechanisms, have been largely successful in deliv-
ering the state-of-the-art for tasks such as machine
translation (Bahdanau et al., 2014), (Vaswani et al.,
2017), handwriting synthesis (Graves, 2013), im-
age captioning (Xu et al., 2015), speech recognition
(Chorowski et al., 2015) and document summariza-
tion (Cheng and Lapata, 2016). Inspired by these
successes, we aimed to harness the power of se-
quential encoder-decoder architectures with atten-
tion, to train end-to-end differentiable models that
are able to learn the best possible representation of
input documents in a collection while being predic-
tive of a set of key terms that best describe the docu-
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ment. These will be later used to transfer a relevant
but diverse set of key terms from the most related
documents, for “semantic tagging” of the original
input documents so as to aid in downstream query
refinement for IR by pseudo-relevance feedback
(Xu and Croft, 2000).

To this end and to the best of our knowledge, we
are the first to employ a novel, completely unsu-
pervised end-to-end neural attention-based docu-
ment representation learning approach, using no
external labels, in order to achieve the most mean-
ingful term transfer between related documents,
i.e. semantic tagging of documents, in a “pseudo-
relevance feedback”–based (Xu and Croft, 2000)
setting for unsupervised query expansion. This may
also be seen as a method of document expansion
as a means for obtaining query refinement terms
for downstream IR. The following sections give an
account of our specific architectural considerations
in achieving an end-to-end neural framework for
semantic tagging of documents using their repre-
sentations, and a discussion of the results obtained
from this approach.

2 Related Work

Pseudo-relevance feedback (PRF), a local context
analysis method for automatic query expansion
(QE), is extensively studied in information retrieval
(IR) research as a means of addressing the word
mismatch between queries and documents. It ad-
justs a query relative to the documents that initially
appear to match it, with the main assumption that
the top-ranked documents in the first retrieval result
contain many useful terms that can help discrimi-
nate relevant documents from irrelevant ones (Xu
and Croft, 2000), (Cao et al., 2008). It is moti-
vated by relevance feedback (RF), a well-known
IR technique that modifies a query based on the
relevance judgments of the retrieved documents
(Salton et al., 1990). It typically adds common
terms from the relevant documents to a query and
re-weights the expanded query based on term fre-
quencies in the relevant documents relative to the
non-relevant ones. Thus in PRF we find an ini-
tial set of most relevant documents, then assuming
that the top k ranked documents are relevant, RF
is done as before, without manual interaction by
the user. The added terms are, therefore, common
terms from the top-ranked documents.

To this end, (Cao et al., 2008) employ term classi-
fication for retrieval effectiveness, in a “supervised”

setting, to select most relevant terms. (Palangi et al.,
2016) employ a deep sentence embedding approach
using LSTMs and show improvement over standard
sentence embedding methods, but as a means for
directly deriving encodings of queries and docu-
ments for use in IR, and not as a method for QE
by PRF. In another approach, (Xu et al., 2017)
train autoencoder representations of queries and
documents to enrich the feature space for learning-
to-rank, and show gains in retrieval performance
over pre-trained rankers. But this is a fully super-
vised setup where the queries are seen at train time.
(Pfeiffer et al., 2018) also use an autoencoder-based
approach for actual query refinement in pharma-
cogenomic document retrieval. However here too,
their document ranking model uses the encoding of
the query and the document for training the ranker,
hence the queries are not unseen with respect to the
document during training. They mention that their
work can be improved upon by the use of seq2seq-
based approaches. In this sense, i.e. with respect
to QE by PRF and learning a sequential document
representation for document ranking, our work is
most similar to (Pfeiffer et al., 2018). However the
queries are completely unseen in our case and we
use only the documents in the corpus, to train our
neural document language models from scratch in
a completely unsupervised way.

Classic sequence-to-sequence models like
(Sutskever et al., 2014) demonstrate the strength
of recurrent models such as the LSTM in captur-
ing short and long range dependencies in learn-
ing effective encodings for the end task. Works
such as (Graves, 2013), (Bahdanau et al., 2014),
(Rocktäschel et al., 2015), further stress the key
role that attention, and multi-headed attention
(Vaswani et al., 2017) can play in solving the end
task. We use these insights in our work.

According to the detailed report provided for this
dataset and task in (Roberts et al., 2016) all of the
systems described perform direct query reweight-
ing aside from supervised term expansion and
are highly tuned to the clinical queris in this dataset.
In a related medical IR challenge (Roberts et al.,
2017) the authors specifically mention that with
only six partially annotated queries for system de-
velopment, it is likely that systems were either
under- or over-tuned on these queries. Since the
setup of the seq2set framework is an attempt to
model the PRF based query expansion method of
its closest related work (Das et al., 2018) where
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the effort is also to train a neural generalized lan-
guage model for unsupervised semantic tagging,
we choose this system as the benchmark to com-
pare against to our end-to-end approach for the
same task.

3 Methodology

Drawing on sequence-to-sequence modeling ap-
proaches for text classification, e.g. textual entail-
ment (Rocktäschel et al., 2015) and machine trans-
lation (Sutskever et al., 2014), (Bahdanau et al.,
2014) we adapt from these settings into a sequence-
to-set framework, for learning representations of
input documents, in order to derive a meaningful
set of terms, or semantic tags drawn from a closely
related set of documents, that expand the origi-
nal documents. These document expansion terms
are then used downstream for query reformulation
via PRF, for unseen queries. We employ an end-
to-end framework for unsupervised representation
learning of documents using TFIDF-based pseudo-
labels (Figure 1(a))and a separate cosine similarity-
based ranking module for semantic tag inference
(Figure 1(b)).

We employ various methods such as doc2vec,
Deep Averaging, sequential models such as LSTM,
GRU, BiGRU, BiLSTM, BiLSTM with Attention
and Self-attention, detailed in Figure 1(c)-(f), see
Appendix A, for learning fixed-length input docu-
ment representations in our framework. We apply
methods like DAN (Iyyer et al., 2015), LSTM, and
BiLSTM as our baselines and formulate attentional
models including a self-attentional Transformer-
based one (Vaswani et al., 2017) as our proposed
augmented document encoders.

Further, we hypothesize that a sequential, bi-
directional or attentional encoder coupled with a
decoder, i.e. a sigmoid or softmax prediction layer,
that conditions on the encoder output v (similar to
an approach by (Kiros et al., 2015) for learning
a neural probabilistic language model), would en-
able learning of the optimal semantic tags in our
unsupervised query expansion setting, while mod-
eling directly for this task in an end-to-end neural
framework. In our setup the decoder predicts a
meaningful set of concept tags that best describe a
document according to the training objective. The
following sections describe our setup.

3.1 The Sequence-to-Set Semantic Tagging
Framework

Task Definition: For each query document dq
in a given a collection of documents D =
{d1, d2, ..., dN}, represented by a set of k key-
words or labels, e.g. k terms in dq derived from
top−|V | TFIDF-scored terms, find an alternate set
of k most relevant terms coming from documents

“most related” to dq from elsewhere in the collec-
tion. These serve as semantic tags for expanding
dq.

In the unsupervised task setting described later,
a document to be tagged is regarded as a query
document dq; its semantic tags are generated via
PRF, and these terms will in turn be used for PRF–
based expansion of unseen queries in downstream
IR. Thus dq could represent an original complex
query text or a document in the collection.

In the following sections we describe the build-
ing blocks used in the setup for the baseline and
proposed models for sequence-to-set semantic tag-
ging as described in the task definition.

3.2 Training and Inference Setup

The overall architecture for sequence-to-set seman-
tic tagging consists of two phases, as depicted in
the block diagrams in Figures 1(a) and 1(b): the
first, for training of input representations of doc-
uments; and the second for inference to achieve
term transfer for semantic tagging. As shown in
Figure 1(a), the proposed model architecture would
first learn the appropriate feature representations
of documents in a first pass of training, by taking
in the tokens of an input document sequentially,
using a document’s pre-determined top−k TFIDF-
scored terms as the pseudo-class labels for an input
instance, i.e. prediction targets for a sigmoid layer
for multi-label classification. The training objec-
tive is to maximize probability for these k terms,
or yp = (t1, t2, ..tk) ∈ V , i.e.

argmax
θ
P (yp = (t1, t2, ..tk) ∈ V |v; θ) (1)

given the document’s encoding v. For computa-
tional efficiency, we take V to be the list of top-
10K TFIDF-scored terms from our corpus, thus
|V | = 10, 000. k is taken as 3, so each document is
initially labeled with 3 terms. The sequential model
is then trained with the k-hot 10K-dimensional la-
bel vector as targets for the sigmoid classification
layer, employing a couple of alternative training
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Figure 1: Overview of Sequence-to-Set Framework. (a) Method for training document or query representations, (b)
Method for Inference via term transfer for semantic tagging; Document Sequence Encoders: (c) Deep Averaging
encoder; (d) LSTM last hidden state, GRU encoders; (e) BiLSTM last hidden state, BiGRU (shown in dotted box),
BiLSTM attended hidden states encoders; and (f) Transformer self-attentional encoder [source: (Alammar, 2018)].

objectives. The first, typical for multi-label classifi-
cation, minimizes a categorical cross-entropy loss,
which for a single training instance with ground-
truth label set, yp, is:

LCE(ŷp) =

|V |∑

i=1

yi log(ŷi) (2)

Since our goal is to obtain the most meaningful
document representations most predictive of their
assigned terms, and that can also be predictive
of semantic tags not present in the document, we
also consider a language model–based loss objec-
tive converting our decoder to a neural language
model. Thus, we employ a training objective that
maximizes the conditional log likelihood of the
label terms Ld of a document dq, given the doc-
ument’s representation v, i.e. P (Ld|dq) (where
yp = Ld ∈ V ). This amounts to minimizing the
negative log likelihood of the label representations

conditioned on the document encoding. Thus,

P (Ld|dq) =
∏

l∈Ld

P (l|dq) = −
∑

l∈Ld

log(P (l|dq))

(3)
Since P (l|dq) ∝ exp(vl · v), where vl and v are
the label and document encodings, it is equivalent
to minimizing:

LLM (ŷp) = −
∑

l∈Ld

log(exp(vl · v)) (4)

Equation (4) represents our language model–
style loss objective. We run experiments training
with both losses (Equations (2) & (4)) as well as a
variant that is a summation of both, with a hyper-
parameter α used to tune the language model com-
ponent of the total loss objective.
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4 Task Settings

4.1 Unsupervised Task – Semantic Tagging
for Query Expansion

We now describe the setup and results for experi-
ments run on our unsupervised task setting of se-
mantic tagging of documents for PRF–based query
expansion.

4.1.1 Dataset – TREC CDS 2016
The 2016 TREC CDS challenge dataset, makes
available actual electronic health records (EHR)
of patients (de-identified), in the form of case re-
ports, typically describing a challenging medical
case. Such a case report represents a query in
our system, having a complex information need.
There are 30 queries in this dataset, corresponding
to such case reports, at 3 levels of granularity Note,
Description and Summary text as described in
(Roberts et al., 2016). The target document collec-
tion is the Open Access Subset of PubMed Central
(PMC), containing 1.25 million articles consisting
of title, keywords, abstract and body sections.
We use a subset of 100K of these articles for which
human relevance judgments are made available by
TREC, for training. Final evaluation however is
done on an ElasticSearch index built on top of the
entire collection of 1.25 million PMC articles.

4.1.2 Unsupervised Task Experiments
We ran several sets of experiments with vari-
ous document encoders, employing pre-trained
and fine-tuned embedding schemes like skip-gram
(Mikolov et al., 2013a) and Probabilistic Fast-
Text (Athiwaratkun et al., 2018), see Appendix
B. The experimental setup used is the same as the
Phrase2VecGLM (Das et al., 2018), the only other
known system for this dataset, that performs “unsu-
pervised semantic tagging of documents by PRF”,
for downstream query expansion. Thus we take
this system as the current state-of-the-art system
baseline, while our non-attention-based document
encoding models constitute our standard baselines.
Our document-TFIDF representations–based query
expansion forms yet another baseline. Summary
text UMLS (Lindberg et al., 1993; Bodenreider,
2004) terms for use in our augmented models is
available to us via the UMLS Java Metamap API
(Demner-Fushman et al., 2017). The first was a
set of experiments with our different models using
the Summary Text as the base query. Follow-
ing this we ran experiments with our models using

the Summary Text + Sum. UMLS terms
as the “augmented” query. We use the Adam op-
timizer (Kingma and Ba, 2014) for training our
models. After several rounds of hyper-paramater
tuning, batch size was set to 128, dropout to 0.3,
the prediction layer was fixed to sigmoid, the loss
function switched between cross-entropy and sum-
mation of cross entropy and LM losses, and models
trained with early stopping.

Results from various Seq2Set encoder models
on base (Summary Text) and augmented
(Summary Text + Summary-based
UMLS terms) query, are outlined in Table 1.
Evaluating on base query, a Seq2Set-Transformer
model beats all other Seq2Set encoders, and
also the TFIDF, MeSH QE terms and Expert
QE terms baselines. On the augmented query,
the Seq2Set-BiGRU and Seq2Set-Transformer
models outperform all other Seq2Set encoders,
and Seq2Set-Transformer outperforms all non-
ensemble baselines and the Phrase2VecGLM
unsupervised QE ensemble system baseline
significantly, with P@10 of 0.4333. Best per-
forming supervised QE systems for this dataset,
tuned on all 30 queries, range between 0.35–
0.4033 P@10 (Roberts et al., 2016), better than
unsupervised QE systems on base query, but
surpassed by the best Seq2Set-based models such
as Seq2Set-Transformer on augmented query,
even without ensemble. Semantic tags from a
best-performing model, do appear to pick terms
relating to certain conditions, e.g.: <query doc
original pseudo-label terms:['obesity', 'diabetes',
'pulmonary-hypertension', 'children'], semantic
tags: ['dyslipidaemia', 'hyperglycemia', 'bmi',
'subjects'] >.

4.2 Supervised Task – Automated Text
Categorization

The Seq2set framework’s unsupervised semantic
tagging setup is primarily applicable in those set-
tings where no pre-existing document labels are
available. In such a scenario, of unsupervised se-
mantic tagging of a large document collection, the
Seq2set framework therefore consists of separate
training and inference steps to infer tags from other
documents after encodings have been learnt. We
therefore conduct a series of extensive evaluations
in the manner described in the previous section,
using a downstream QE task in order to validate
our method. However, when a tagged document
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Unsupervised QE Systems (Base Query) P@10
BM25+Seq2Set-doc2vec (baseline) 0.0794
BM25+Seq2Set-TFIDF Terms (baseline) 0.2000
BM25+MeSH QE Terms (baseline) 0.2294
BM25+Human Expert QE Terms (baseline) 0.2511
BM25+unigramGLM+Phrase2VecGLM
ensemble (system baseline) 0.2756
BM25+Seq2Set-Transformer (LCE) (model) 0.2861*
Supervised QE Systems (Base Query)
BM25+ETH Zurich-ETHSummRR 0.3067
BM25+Fudan Univ.DMIIP-AutoSummary1 0.4033
Unsupervised QE Systems
(Augmented Query)
BM25+Seq2Set-doc2vec (baseline) 0.1345
BM25+Seq2Set-TFIDF Terms (baseline) 0.3000
BM25+unigramGLM+Phrase2VecGLM
ensemble (system baseline) 0.3091
BM25+Seq2Set-BiGRU (LM only loss) (model) 0.3333*
BM25+Seq2Set-Transformer (LCE + LLM )
(model) 0.4333*

Table 1: Results on IR for best Seq2set models, in an
unsupervised PRF–based QE setting. Boldface indi-
cates statistical significance @p<<0.01 over previous.

collection is available where the set of document
labels are already known, we can learn to predict
tags from this set of known labels on a new set of
similar documents. Thus, in order to generalize our
Seq2set approach to such other tasks and setups,
we therefore aim to validate the performance of our
framework on such a labeled dataset of tagged doc-
uments, which is equivalent to adapting the Seq2set
framework for a supervised setup. In this setup we
therefore only need to use the training module of
the Seq2set framework shown in Figure 1(a), and
measure tag prediction performance on a held out
set of documents. For this evaluation, we there-
fore choose to work with the popular Delicious
(del.icio.us) folksonomy dataset, same as that used
by (Soleimani and Miller, 2016) in order to do an
appropriate comparison with their MLTM frame-
work that is also evaluated on a similar document
multi-label prediction task.

4.2.1 Dataset – del.icio.us

The Delicious dataset contains tagged web
pages retrieved from the social bookmark-
ing site, del.icio.us. There are 20 com-
mon tags used as class labels: reference,
design, programming, internet, computer,
web, java, writing, English, grammar,
style, language, books, education, philosophy,
politics, religion, science, history and culture.
The training set consists of 8250 documents and
the test set consists of 4000 documents.

Figure 2: Seq2Set–supervised on del.icio.us, best
Transformer model–based encoder

Figure 3: A comparison of document labeling perfor-
mance of Seq2set versus MLTM

4.2.2 Supervised Task Experiments

We then run Seq2set-based training for our 8 dif-
ferent encoder models on the training set for the
20 labels, and perform evaluation on the test set
measuring sentence-level ROC AUC on the labeled
documents in the test set.

Figure 2 shows the ROC AUC for the best
performing Transformer model from the Seq2set
framework on the del.icio.us dataset, which was
trained with a sigmoid–based prediction layer on
cross entropy loss with a batch size of 64 and
dropout set to 0.3. This best model got an ROC
AUC of 0.85 , statistically significantly surpassing
MLTM (AUC 0.81 @ p << 0.001) for this task
and dataset.

Figure 3 also shows a comparison of the ROC
AUC scores obtained with training Seq2set and
MLTM based models for this task with various
labeled data proportions. Here again we see
that Seq2set has clear advantage over the current
MLTM state-of-the-art, statistically significantly
surpassing it (p << 0.01) when trained with
greater than 25% of the labeled dataset.
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Figure 4: Seq2Set–semi-supervised on Ohsumed,
best Transformer model–based encoder w/ Cross
Entropy–based Softmax prediction; 4 layers, 10 atten-
tion heads, dropout=0

4.3 Semi-Supervised Text Categorization

We then seek to further validate how well the
Seq2set framework can leverage large scale pre-
training on unlabeled data given only a small
amount of labeled data for training, to be able to
improve prediction performance on a held out set
of these known labels. This amounts to a semi-
supervised setup–based evaluation of the Seq2set
framework. In this setup, we perform the training
and evaluation of Seq2set similar to the supervised
setup, except we have an added step of pre-training
the multi-label prediction on large amounts of un-
labeled document data in exactly the same way as
the unsupervised setup.

4.3.1 Dataset – Ohsumed
We employ the Ohsumed dataset available from the
TREC Information Filtering tracks of years 87-91
and the version of the labeled Ohsumed dataset
used by (Soleimani and Miller, 2016) for evalua-
tion, to have an appropriate comparison with their
MLTM system also evaluated for this dataset. The
version of the Ohsumed dataset due to (Soleimani
and Miller, 2016) consists of 11122 training and
5388 test documents, each assigned to one or multi-
ple labels of 23 MeSH diseases categories. Almost
half of the documents have more than one label.

4.3.2 Semi-Supervised Task Experiments
We first train and test our framework on the la-
beled subset of the Ohsumed data from (Soleimani
and Miller, 2016) similar to the supervised setup
described in the previous section. This evalua-
tion gives a statistically significant ROC AUC of
0.93 over the 0.90 AUC for the MLTM system of
(Soleimani and Miller, 2016) for a Transformer–

based Seq2set model performing best. Next we
experiment with the semi-supervised setting where
we first train the Seq2set framework models on a
large number of documents that do not have pre-
existing labels. This pre-training is performed in
exactly a similar fashion as the unsupervised setup.
Thus we first preprocess the Ohsumed data from
years 87-90 to obtain a top-1000 TFIDF score–
based vocabulary of tags, pseudo-labeling all the
documents in the training set with these. Our train-
ing and evaluation for the semi-supervised setup
consists of 3 phases: Phase 1: We employ our
seq2set framework (using each one of our encoder
models) for multi-label prediction on this pseudo-
labeled data, having an output prediction layer of
1000 having a penultimate fully-connected layer
of dimension 23, same as the number of labels in
the Ohsumed dataset; Phase 2: After pre-training
with pseudolabels we discard the final layer and
continue to train labeled Ohsumed dataset from
91 by 5-fold cross-validation with early stopping.
Phase 3: This is the final evaluation step of our
semi-supervised trained Seq2set model on the la-
beled Ohsumed test dataset used by (Soleimani
and Miller, 2016). This constitutes simply infer-
ring predicted tags using the trained model on the
test data. As shown in Figure 4, our evaluation of
the Seq2set framework for the Ohsumed dataset,
comparing supervised and semi-supervised train-
ing setups, yields an ROC AUC of 0.94 for our best
performing semi-supervised–trained model of Fig.
4, compared to the various supervised trained mod-
els for the same dataset that got a best ROC AUC of
0.93. The top performing semi-supervised model
again involves a Transformer–based encoder using
a softmax layer for prediction, with 4 layers, 10
attention heads, and no dropout. Thus, the best re-
sults on the semi-supervised training experiments
(ROC AUC 0.94) statistically significantly out-
performs (p << 0.01) the MLTM system base-
line (ROC AUC 0.90) on the Ohsumed dataset,
while also clearly surpassing the top-performing
supervised Seq2set models on the same dataset.
This demonstrates that our Seq2set framework is
able to leverage the benefits of data augmentation
in the semi-supervised setup by training with large
amounts of unlabeled data on top of limited labeled
data.
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5 Conclusion

We develop a novel sequence-to-set end-to-
end encoder-decoder–based neural framework for
multi-label prediction, by training document repre-
sentations using no external supervision labels, for
pseudo-relevance feedback–based unsupervised se-
mantic tagging of a large collection of documents.
We find that in this unsupervised task setting of
PRF-based semantic tagging for query expansion, a
multi-term prediction training objective that jointly
optimizes both prediction of the TFIDF–based doc-
ument pseudo-labels and the log likelihood of the
labels given the document encoding, surpasses pre-
vious methods such as Phrase2VecGLM (Das et al.,
2018) that used neural generalized language mod-
els for the same. Our initial hypothesis that bi-
directional or self-attentional models could learn
the most efficient semantic representations of doc-
uments when coupled with a loss more effective
than cross-entropy at reducing language model per-
plexity of document encodings, is corroborated in
all experimental setups. We demonstrate the ef-
fectiveness of our novel framework in every task
setting, viz. for unsupervised QE via PRF-based
semantic tagging for a downstream medical IR chal-
lenge task; as well as for both, supervised and
semi-supervised task settings, where Seq2set sta-
tistically significantly outperforms the state-of-art
MLTM baseline (Soleimani and Miller, 2016) on
the same held out set of documents as MLTM, for
multi-label prediction on a set of known labels, for
automated text categorization; achieving to the best
of our knowledge, the current state-of-the-art for
multi-label prediction on documents, with or with-
out known labels. We therefore demonstrate the
effectiveness of our Sequence-to-Set framework
for multi-label prediction, on any set of documents,
applicable especially towards the automated cate-
gorization, filtering and semantic tagging for QE-
based retrieval, of biomedical literature for EBM.
Future directions would involve experiments re-
placing TDIDF labels with more meaningful terms
(using unsupervised term extraction) for query ex-
pansion, initialization with pre-trained embeddings
for the biomedical domain such as BlueBERT
(Peng et al., 2019) and BioBERT (Lee et al., 2020),
and multi-task learning with closely related tasks
such as biomedical Named Entity Recognition and
Relation Extraction to learn better document repre-
sentations and thus more meaningful semantic tags
of documents useful for downstream EBM tasks.
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A Sequence-based Document Encoders

We describe below the different neural models that
we use for the sequence encoder, as part of our
encoder-decoder architecture for deriving semantic
tags for documents.

A.1 doc2vec encoder

doc2vec is the unsupervised algorithm due to (Le
and Mikolov, 2014), that learns fixed-length rep-
resentations of variable length documents, repre-
senting each document by a dense vector trained
to predict surrounding words in contexts sampled
from each document. We derive these doc2vec en-
codings by pre-training on our corpus. We then
use them directly as features for inferring semantic
tags per Figure 1(b) without training them within
our framework against the loss objectives. We ex-
pect this to be a strong document encoding baseline
in capturing the semantics of documents. TFIDF
Terms is our other baseline where we don’t train
within the framework but rather use the top-k neigh-
bor documents’ TFIDF pseudo-labels as the seman-
tic tags for the query document.

A.2 Deep Averaging Network encoder

The Deep Averaging Network (DAN) for text clas-
sification due to (Iyyer et al., 2015) Figure 1 (c),
is formulated as a neural bag of words encoder
model for mapping an input sequence of tokens X
to one of k labels. v is the output of a composition
function g, in this case averaging, applied to the
sequence of word embeddings vw for w ∈ X . For
our multi-label classification problem, v is fed to a
sigmoid layer to obtain scores for each independent
classification. We expect this to be another strong
document encoder given results in the literature
and it proves in practice to be.

A.2.1 LSTM and BiLSTM encoders
LSTMs (Hochreiter and Schmidhuber, 1997), by
design, encompass memory cells that can store
information for a long period of time and are there-
fore capable of learning and remembering over
long and variable sequences of inputs. In addition
to three types of gates, i.e. input, forget, and output
gates, that control the flow of information into and
out of these cells, LSTMs have a hidden state vec-
tor hlt, and a memory vector clt. At each time step,
corresponding to a token of the input document, the
LSTM can choose to read from, write to, or reset
the cell using explicit gating mechanisms. Thus

the LSTM is able to learn a language model for the
entire document, encoded in the hidden state of the
final timestep, which we use as the document en-
coding to give to the prediction layer. By the same
token, owing to the bi-directional processing of its
input, a BiLSTM-based document representation is
expected to be even more robust at capturing docu-
ment semantics than the LSTM, with respect to its
prediction targets. Here, the document representa-
tion used for final classification is the concatenated
hidden state outputs from the final step, [

−→
h lt;
←−
h lt],

depicted by the dotted box in Fig. 1(e).

A.3 BiLSTM with Attention encoder
In addition, we also propose a BiLSTM with
attention-based document encoder, where the out-
put representation is the weighted combination of
the concatenated hidden states at each time step.
Thus we learn an attention-weighted representation
at the final output as follows. Let X ∈(d×L) be
a matrix consisting of output vectors [h1, . . . , hL]
that the Bi-LSTM produces when reading L tokens
of the input document. Each word representation
hi is obtained by concatenating the forward and
backward hidden states, i.e. hi = [

−→
hi ;
←−
hi ]. d is

the size of embeddings and hidden layers. The
attention mechanism produces a vector α of atten-
tion weights and a weighted representation r of the
input, via:

M = tanh(WX), M ∈(d×L) (5)

α = softmax(wTM), α ∈L (6)

r = XαT , r ∈d (7)

Here, the intermediate attention representation
mi (i.e. the ith column vector in M ) of the ith

word in the input document is obtained by apply-
ing a non-linearity on the matrix of output vectors
X , and the attention weight for the ith word in
the input is the result of a weighted combination
(parameterized by w) of values in mi. Thus r ∈d
is the attention−weighted representation of the
word and phrase tokens in an input document used
in optimizing the training objective in downstream
multi-label classification, as shown by the final at-
tended representation r in Figure 1(e).

A.4 GRU and BiGRU encoders
A Gated Recurrent Unit (GRU) is a type of re-
current unit in recurrent neural networks (RNNs)
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that aims at tracking long-term dependencies while
keeping the gradients in a reasonable range. In con-
trast to the LSTM, a GRU has only 2 gates: a reset
gate and an update gate. First proposed by (Chung
et al., 2014), (Chung et al., 2015) to make each re-
current unit to adaptively capture dependencies of
different time scales, the GRU, however, does not
have any mechanism to control the degree to which
its state is exposed, exposing the whole state each
time. In the LSTM unit, the amount of the memory
content that is seen, or used by other units in the
network is controlled by the output gate, while the
GRU exposes its full content without any control.
Since the GRU has simpler structure, models us-
ing GRUs generally converge faster than LSTMs,
hence they are faster to train and may give better
performance in some cases for sequence modeling
tasks. The BiGRU has the same structure as GRU
except constructed for bi-directional processing of
the input, depicted by the dotted box in Fig. 1(e).

A.5 Transformer self-attentional encoder

Recently, the Transformer encoder-decoder archi-
tecture due to (Vaswani et al., 2017), based on a self-
attention mechanism in the encoder and decoder,
has achieved the state-of-the-art in machine trans-
lation tasks at a fraction of the computation cost.
Based entirely on attention, and replacing the re-
current layers commonly used in encoder-decoder
architectures with multi-headed self-attention, it
has outperformed most previously reported ensem-
bles on the task. Thus we hypothesize that this self-
attention-based model could learn the most efficient
semantic representations of documents for our un-
supervised task. Since our models use tensorflow
(Abadi et al., 2016), a natural choice was docu-
ment representation learning using the Transformer
model’s available tensor2tensor API. We hoped
to leverage apart from the computational advan-
tages of this model, the capability of capturing se-
mantics over varying lengths of context in the input
document, afforded by multi-headed self-attention,
Figure 1(f). Self-attention is realized in this archi-
tecture, by training 3 matrices, made up of vectors,
corresponding to a Query vector, a Key Vector and
a Value vector for each token in the input sequence.
The output of each self-attention layer is a sum-
mation of weighted Value vectors that passes on
to a feed-forward neural network. Position-based
encoding to replace recurrences help to lend more
parallelism to computations and make things faster.

Multi-headed self-attention further lends the model
the ability to focus on different positions in the in-
put, with multiple sets of Query/Key/Value weight
matrices, which we hypothesize should result in
the most effective document representation, among
all the models, for our downstream task.

A.6 CNN encoder

Inspired by the success of (Kim, 2014) in employ-
ing CNN architectures successfully for achieving
gains in NLP tasks we also employ a CNN-based
encoder in the seq2set framework. (Kim, 2014)
train a simple CNN with a layer of convolution on
top of pre-trained word vectors, as a sequence of
length n embeddings concatenated to form a ma-
trix input. Filters of different sizes, representing
various context windows over neighboring words,
are then applied to this input, over each possible
window of words in the sequence to obtain feature
maps. This is followed by a max-over-time pooling
operation to take maximum value of the feature
map as the feature corresponding to a particular
filter. The model then combines these features to
form a penultimate layer which is passed to a fully
connected softmax layer whose output is the prob-
ability distribution over labels. In case of seq2set
these features are passed to sigmoid layer for final
multi-label prediction used cross entropy loss or a
combination of cross-entropy and LM losses. We
use filters of sizes 2, 3, 4 and 5. Like our other en-
coders, we fine-tune the document representations
learnt.

B Embedding Algorithms Experimented
with

We describe here the various algorithms used to
train word embeddings for use in our models.

Skip-Gram word2vec: We generate word em-
beddings trained with the skip-gram model with
negative sampling (Mikolov et al., 2013b) with di-
mension settings of 50 with a context window of
4, and also 300, with a context window of 5, using
the gensim package 2 (Řehůřek and Sojka, 2010).

Probabilistic FastText: The Probabilistic Fast-
Text (PFT) word embedding model of (Athi-
waratkun et al., 2018) represents each word with a
Gaussian mixture density, where the mean of a mix-
ture component given by the sum of n-grams, can
capture multiple word senses, sub-word structure,

2https://radimrehurek.com/gensim/
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and uncertainty information. This model outper-
forms the n-gram averaging of FastText getting
state-of-the-art performance on several word simi-
larity and disambiguation benchmarks. The proba-
bilistic word representations with flexible sub-word
structures, can achieve multi-sense representations
that also give rich semantics for rare words. This
makes them very suitable to generalize for rare and
out-of-vocabulary words motivating us to opt for
PFT-based word vector pre-training 3 over regular
FastText.

ELMo: Another consideration was to use em-
beddings that can explicitly capture the language
model underlying sentences within a document.
ELMo (Embeddings from Language Models) word
vectors (Peters et al., 2018) presented such a choice
where the vectors are derived from a bidirectional
LSTM trained with a coupled language model (LM)
objective on a large text corpus. The representa-
tions are a function of all of the internal layers of
the biLM. Using linear combinations of the vec-
tors derived from each internal state has shown
marked improvements over various downstream
NLP tasks, because the higher-level LSTM states
capture context-dependent aspects of word mean-
ing (e.g., they can be used without modification
to perform well on supervised word sense disam-
biguation tasks) while lower- level states model
aspects of syntax. Using the API 4 we generate
ELMo embeddings fine-tuned for our corpus with
dimension settings of 50 and 100 using only the
top layer final representations. A discussion of the
results from each set of experiments is outlined in
the following section and summarized in Table 1.

C Experimental Considerations and
Hyperparameter Settings

Of the metrics available, P@10 gives the number
of relevant items returned in the top-10 results and
NDCG looks at precision of the returned items at
the correct rankings. For our particular dataset
domain, the number of relevant results returned in
the top-10 is more important, hence Table 1 reports
results ranked in ascending order of P@10.

The PRF setting shown in the results table means
that, we take the top 10-15 documents returned by
an ElasticSearch (ES) index for each of the 30 Sum-
mary Text queries in our dataset, and subsequently
use the semantic tags assigned to each of these

3https://github.com/benathi/multisense-prob-fasttext
4https://allennlp.org/elmo

top documents as the terms for query expansion
for the original query. We then re-run these ex-
panded queries through the ES index to record the
retrieval performance. Thus the queries our system
is evaluated on, are not seen at the time of training
our models, but only during evaluation, hence it is
unsupervised QE.

Similar to Das et al. (2018), for the feedback
loop based query expansion method, we had two
separate human judgment–based baselines, one us-
ing the MeSH terms available from PMC for the
top 15 documents returned in a first round of query-
ing with Summary text, and the other based on
human expert annotations of the 30 query topics,
made available by the authors.

Since we had mixed results initially with our
models, we explored various options to increase the
training signal. First was by the use of neighbor-
document’s labels in our label vector for training.
In this scheme, we used the 3-hot TFIDF label
representation for each document to pick a list of n–
nearest neighbors to it. We then included the labels
of those nearest documents into the label vector for
the original document for use during training. We
experimented with choices 3, 5, 10, 15, 20, 25 for
n. We observed improvements with incorporating
neighbor labels.

Next we experimented with incorporating word
neighbors into the input sequence for our models.
We did this in two different ways, the first was to
average all the neighbors and concatenate with the
original token embedding, the other was to average
all of the embeddings together. The word itself was
always weighted more than the neighbors. This
scheme also gave improvement.

Finally we experimented with incorporating em-
beddings pre-trained by latest state-of-the-art meth-
ods (Appendix B) as the input tokens for our
models. After several rounds of hyper-parameter
tuning, batch size was set to 128, and dropout
to 0.3. We also performed a small grid search
into the space of hyperparameters like number
of hidden layers varied as 2, 3, 4, and α varied
as [1.0, 10.0, 100.0, 1000.0, 10000.0], determining
the best settings for each encoder.

A glossary of acronyms and parameters used
in training of our models is as follows: sg=skip-
gram; pft=Probablistic FastText; elmo=ELMo;
d=embedding dimension; kln=number of “neigh-
bor documents’” labels; nl=number of hidden lay-
ers in the model; h= Number of multi-attention
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heads; bs=batch size; dp=dropout; ep=no. of
epochs; α=weight parameter for language model
loss component.

Best-performing model settings: Our best per-
forming models on the base query was a Trans-
former encoder with 10 attention heads: nh = 10,
loss: cross-entropy + LM loss with α = 1000.0,
input embedding: 50-d pft, bs = 64 and dp = 0.3;
and a GRU encoder for the ensemble with param-
eters, loss: LM only loss with α = 1000.0, input
embedding: 50-d pft, nl = 4, kln = 10, bs = 64
and dp = 0.2.

For augmented query, our best performing mod-
els were: (1) a BiGRU trained with parameters,
loss function: LM only loss with α = 1.0, in-
put embedding: 50-d skip − gram, nl = 3,
kln = 5, bs = 128 and dp = 0.3, and (2) a
Transformer trained with parameters, loss function:
cross-entropy + LM loss with α = 1000.0, input
embedding: 50-d skip− gram, nl = 4, kln = 5,
bs = 128 and dp = 0.3.

While we obtain significant improvement over
the compared baselines with our best-performing
models, we believe further gains are possible by a
more targeted search through the parameter space.
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Abstract

We present a system that allows life-science re-
searchers to search a linguistically annotated
corpus of scientific texts using patterns over
dependency graphs, as well as using patterns
over token sequences and a powerful variant
of boolean keyword queries. In contrast to
previous attempts to dependency-based search,
we introduce a light-weight query language
that does not require the user to know the de-
tails of the underlying linguistic representa-
tions, and instead to query the corpus by pro-
viding an example sentence coupled with sim-
ple markup. Search is performed at an inter-
active speed due to efficient linguistic graph-
indexing and retrieval engine. This allows for
rapid exploration, development and refinement
of user queries. We demonstrate the system us-
ing example workflows over two corpora: the
PubMed corpus including 14,446,243 PubMed
abstracts and the CORD-19 dataset1, a col-
lection of over 45,000 research papers fo-
cused on COVID-19 research. The system
is publicly available at https://allenai.

github.io/spike

1 Introduction

Recent years have seen a surge in the amount of
accessible Life Sciences data. Search engines like
Google Scholar, Microsoft Academic Search or
Semantic Scholar allow researchers to search for
published papers based on keywords or concepts,
but search results often include thousands of papers
and extracting the relevant information from the
papers is a problem not addressed by the search
engines. This paradigm works well when the in-
formation need can be answered by reviewing a
number of papers from the top of the search results.
However, when the information need requires ex-
traction of information nuggets from many papers

1https://pages.semanticscholar.org/coronavirus-research

(e.g. all chemical-protein interactions or all risk
factors for a disease) the task becomes challeng-
ing and researchers will typically resort to curated
knowledge bases or designated survey papers in
case ones are available.

We present a search system that works in a
paradigm which we call Extractive Search, and
which allows rapid information seeking queries
that are aimed at extracting facts, rather than doc-
uments. Our system combines three query modes:
boolean, sequential and syntactic, targeting differ-
ent stages of the analysis process, and different ex-
traction scenarios. Boolean queries (§4.1) are the
most standard, and look for the existence of search
terms, or groups of search terms, in a sentence, re-
gardless of their order. These are very powerful for
finding relevant sentences, and for co-occurrence
searches. Sequential queries (§4.2) focus on the
order and distance between terms. They are intu-
itive to specify and are very effective where the
text includes “anchor-words” near the entity of in-
terest. Lastly, syntactic queries (§4.4) focus on
the linguistic constructions that connect the query
words to each other. Syntactic queries are very
powerful, and can work also where the concept
to be extracted does not have clear linear anchors.
However, they are also traditionally hard to spec-
ify and require strong linguistic background to use.
Our systems lowers their barrier of entry with a
specification-by-example interface.

Our proposed system is based on the following
components.
Minimal but powerful query languages. There
is an inherent trade-off between simplicity and con-
trol. On the one extreme, web search engines like
Google Search offer great simplicity, but very lit-
tle control, over the exact information need. On
the other extreme, information extraction pattern-
specification languages like UIMA Ruta offer great
precision and control, but also expose a low-level
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view of the text and come with over hundred-page
manual.2

Our system is designed to offer high degree of
expressivity, while remaining simple to grasp: the
syntax and functionality can be described in a few
paragraphs. The three query languages are de-
signed to share the same syntax to the extent possi-
ble, to facilitate knowledge transfer between them
and to ease the learning curve.
Linguistic Information, Captures, and Expan-
sions. Each of the three query types are linguis-
tically informed, and the user can condition not
only on the word forms, but also on their lemmas,
parts-of-speech tags, and identified entity types.
The user can also request to capture some of the
search terms, and to expand them to a linguistic
context. For example, in a boolean search query
looking for a sentence that contains the lemmas
“treat” and “treatment” (‘lemma=treat|treatment’), a
chemical name (‘entity=SIMPLE CHEMICAL’) and
the word “infection” (‘infection’), a user can mark
the chemical name and the word “infection” as cap-
tures. This will yield a list of chemical/infection
pairs, together with the sentence from which they
originated, all of which contain the words relating
to treatments. Capturing the word “infection” is
not very useful on its own: all matches result in the
exact same word. But, by expanding the captured
word to its surrounding linguistic environment, the
captures list will contain terms such as “PEDV in-
fection”, “acyclovir-resistant HSV infection” and
“secondary bacterial infection”. Running this query
over PubMed allows us to create a large and rela-
tively focused list in just a few seconds. The list
can then be downloaded as a CSV file for further
processing. The search becomes extractive: we are
not only looking for documents, but also, by use of
captures, extract information from them.
Sentence Focus, Contextual Restrictions. As
our system is intended for extraction of informa-
tion, it works at the sentence level. However, each
sentence is situated in a context, and we allow sec-
ondary queries to condition on that context, for
example by looking for sentences that appear in
paragraphs that contain certain words, or which ap-
pear in papers with certain words in their titles, in
papers with specific MeSH terms, in papers whose
abstracts include specific terms, etc. This combines
the focus and information density of a sentence,

2https://uima.apache.org/d/
ruta-current/tools.ruta.book.pdf

which is the main target of the extraction, with the
rich signals available in its surrounding context.
Interactive Speed. Central to the approach is an
indexed solution, based on (Valenzuela-Escárcega
et al., 2020), that allows to perform all types of
queries efficiently over very large corpora, while
getting results almost immediately. This allows
the users to interactively refine their queries and
improve them based on the feedback from the re-
sults. This contrasts with machine learning based
solutions that, even neglecting the development
time, require substantially longer turnaround times
between query and results from a large corpus.

2 Existing Information Discovery
Approaches

The primary paradigm for navigating large scien-
tific collections such as MEDLINE/PubMed3 is
document-level search.

The most immediate document-level searching
technique is boolean search (“keyword search”).
However, these methods suffer from an inability
to capture the concepts aimed for by the user, as
biomedical terms may have different names in dif-
ferent sub-fields and as the user may not always
know exactly what they are looking for. To over-
come this issue several databases offer semantic
searching by exploiting MeSH terms that indicate
related concepts. While in some cases MeSH terms
can be assigned automatically, e.g (Mork et al.,
2013), in others obtaining related concepts require
a manual assignment which is laborious to obtain.

Beyond the methods incorporated in the liter-
ature databases themselves, there are numerous
external tools for biomedical document searching.
Thalia (Soto et al., 2018) is a system for seman-
tic searching over PubMed. It can recognize dif-
ferent types of concepts occurring in Biomedical
abstracts, and additionally enables search based on
abstract metadata; LIVIVO (Müller et al., 2017)
takes the task of vertically integrating information
from divergent research areas in the life sciences;
SWIFT-Review 4 offers iterative screening by re-
ranking the results based on the user’s inputs.

All of these solutions are focused on the docu-
ment level, which can be limiting: they often sur-
face hundreds of papers or more, requiring careful
reading, assessing and filtering by the user, in order
to locate the relevant facts they are looking for.

3https://www.ncbi.nlm.nih.gov/pubmed/
4https://www.sciome.com/swift-review/

29



To complement document searching, some sys-
tems facilitate automatic extraction of biomedical
concepts, or patterns, from documents. Such sys-
tems are often equipped with analysis capabili-
ties of the extracted information. For example,
NaCTem has created systems that extract biomed-
ical entities, relations and events.5; ExaCT and
RobotReviewer (Kiritchenko et al., 2010; Marshall
et al., 2015) take a RCT report and retrieve sen-
tences that match certain study characteristics.

To improve the development of automatic doc-
ument selection and information extraction the
BioNLP community organized a series of shared
tasks (Kim et al., 2009, 2011; Nédellec et al., 2013;
Segura Bedmar et al., 2013; Deléger et al., 2016;
Chaix et al., 2016; Jin-Dong et al., 2019). The tasks
address a diverse set of biomed topics addressed by
a range of NLP-based techniques. While effective,
such systems require annotated training data and
substantial expertise to produce. As such, they are
restricted to several “head” information extraction
needs, those that enjoy a wide community interest
and support. The long tail of information needs of
“casual” researchers remain mostly un-addressed.

3 Interactive IE Approach

Existing approaches to information extraction from
bio-medical data suffer from significant practical
limitations. Techniques based on supervised train-
ing require extensive data collection and annota-
tion (Kim et al., 2009, 2011; Nédellec et al., 2013;
Segura Bedmar et al., 2013; Deléger et al., 2016;
Chaix et al., 2016), or a high degree of technical
savviness in producing high quality data sets from
distant supervision (Peng et al., 2017; Verga et al.,
2017; Wang et al., 2019). On the other hand, rule
based engines are generally too complex to be used
directly by domain experts and require a linguist
or an NLP specialist to operate. Furthermore, both
rule based and supervised systems typically oper-
ate in a pipeline approach where an NER engine
identifies the relevant entities and subsequent ex-
traction models identify the relations between them.
This approach is often problematic in real world
biomedical IE scenarios, where relevant entities
often cannot be extracted by stock NER models.

To address these limitations we present a sys-
tem allowing domain experts to interactively query
linguistically annotated datasets of scientific re-

5http://www.nactem.ac.uk/

search papers, using a novel multifaceted query
language which we designed, and which supports
boolean search, sequential patterns search, and by-
example syntactic search (Shlain et al., 2020), as
well as specification of search terms whose matches
should be captured or expanded. The queries can
be further restricted by contextual information.

We demonstrate the system on two datasets: a
comprehensive dataset of PubMed abstracts and a
dataset of full text papers focused on COVID-19
research.
Comparison to existing systems. In contrast to
document level search solutions, the results re-
turned by our system are sentences which include
highlighted spans that directly answer the user’s
information need. In contrast to supervised IE so-
lutions, our solution does not require a lengthy
process of data collection and labeling or a precise
definition of the problem settings.

Compared to rule based systems our system dif-
ferentiates itself in a number of ways: (i) our query
engine automatically translates lightly tagged natu-
ral language sentences to syntactic queries (query-
by-example) thus allowing domain experts to bene-
fit from the advantages of syntactic patterns without
a deep understanding of syntax; (ii) our queries run
against indexed data, allowing our translated syn-
tactic queries to run at interactive speed; and (iii)
our system does not rely on relation schemas and
does not make assumptions about the number of
arguments involved or their types.

In many respects, our system is similar to the
PropMiner system (Akbik et al., 2013) for ex-
ploratory relation extraction (Akbik et al., 2014).
Both PropMiner and our system support by-
example queries in interactive speed. However, the
query languages we describe in section 4 are signifi-
cantly more expressive than PropMiner’s language,
which supports only binary relations. Furthermore,
compared to PropMiner, our annotation pipeline
was optimized specifically for the biomedical do-
main and our system is freely available online.
Technical details. The datasets were annotated
for biomedical entities and syntax using a custom
SciSpacy pipeline (Neumann et al., 2019)6, and
the syntactic trees were enriched to BART format
using pyBART (Tiktinsky et al., 2020). The an-
notated data is indexed using the Odinson engine
(Valenzuela-Escárcega et al., 2020).

6All abstracts underwent sentence splitting, tokenization,
tagging, parsing and NER using all the 4 NER models avail-
able in SciSpacy
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4 Extractive Query Languages

4.1 Boolean Queries
Boolean queries are the standard in information
retrieval (IR): the user provides a set of terms that
should, and should not, appear in a document, and
the system returns a set of documents that adhere
to these constraints. This is a familiar and intuitive
model, which can be very effective for initial data
exploration as well as for extraction tasks that fo-
cus on co-occurrence. We depart from standard
boolean queries and extend them by (a) allowing
to condition on different linguistic aspects of each
token; (b) allowing capturing of terms into named
variables; and (c) allowing linguistic expansion of
the captured terms.

The simplest boolean query is a list of terms,
where each term is a word, i.e: ‘infection asymp-
tomatic fatal’ The semantics is that all the terms
must appear in the query. A term can be made op-
tional by prefixing it with a ‘?’ symbol (‘infection
asymptomatic ?fatal’ ). Each term can also specify a
list of alternatives: ‘fatal|deadly|lethal’.
Beyond words. In addition to matching
words, terms can also specify linguistic
properties: lemmas, parts-of-speech, and
domain-specific entity-types: ‘lemma=infect
entity=DISEASE’. Conditions can also be combined:
‘lemma=cause|reason&tag=NN’. We find that the
ability to search for domain-specific types is very
effective in boolean queries, as it allows to search
for concepts rather than words. In addition to
exact match, we also support matching on regular
expressions (‘lemma=/caus.*/’). The field names
word, lemma, entity, tag can be shortened to w,l,e,t.
Captures. Central to our extractive approach is
the ability to designate specific search term to be
captured. Capturing is indicated by prefixing the
term with ‘:’ (for an automatically-named capture)
or with ‘name:’ (for a named capture). The query
‘fatal asymptomatic d:e=DISEASE’ will look for sen-
tences that contain the terms ‘fatal‘ and ‘asymp-
tomatic‘ as well as a name of a disease, and will
capture the disease name under a variable “d”.
Each query result will be a sentence with a sin-
gle disease captured. If several diseases appear in
the same sentence, each one will be its own result.
The user can then focus on the captured entities,
and export the entire query result to a CSV file, in
which each row contains the sentence, its source,
and the captured variables. In the current exam-
ples, the result will be a list of disease names that

co-occur with “fatal” and “asymptomatic”. We can
also issue a query such as
‘chem:e=SIMPLE CHEMICAL d:e=DISEASE’

to get a list of chemical-disease co-occurrences.
Using additional terms, we can narrow down to
co-occurrences with specific words, and by using
contextual restrictions (§4.3) we can focus on co-
occurrences in specific papers or domains.
Expansions. Finally, for captured terms we also
support linguistic expansions. After the term is
matched, we can expand it to a larger linguistic
environment based on the underlying syntactic sen-
tence representation. An expansion is expressed by
prefixing a term with angle brackets 〈〉:

‘〈〉inf:infection asymptomatic fatal’ will capture the
word “infection” under the variable “inf” and ex-
pand it to its surrounding noun-phrase, captur-
ing phrases like “malarialike infection”, “asymp-
tomatic infection”, “chronic infection” and “a mild
subclinical infection 9”.

4.2 Sequential (Token) Queries

While boolean queries allow terms to appear in any
order, we sometimes care about the exact linear
placements of words with respect to each other.
The term-specification, capture and expansion syn-
tax is the same as in boolean queries, but here terms
must match as in the query.
‘interspecies transmission’ looks for the exact phrase
“interspecies transmission” and
‘tag=NNS transmission’ looks for the word transmis-
sion immediately preceded by a plural noun. By
capturing the noun (‘which:tag=NNS transmission’)
we obtain a list of terms that includes the words
“bacteria”, “diseases”, “nuclei” and “crossspecies”.
Wildcards. sequential queries can also use wild-
card symbols: * (matching any single word), ‘...’
(0 or more words), ‘...2-5...’ (2-5 words). The query
‘interspecies kind:...1-3... transmission’ looks for the
words “interspecies” and “transmission” with 1 to 3
intervening words, capturing the intervening words
under “kind”. First results include “host-host”,
“zoonotic”, “virus”, “TSE agent”, “and interclass”.
Repetitions. We also allow to specify repetitions
of terms. To do so, the term is enclosed in [ ] and
followed by a quantifier. We support the standard
list of regular expression quantifiers: *, +, ?, {n,m}.
For example, ‘tag=DT [tag=JJ]* [tag=NN]+’.

4.3 Contextual Restrictions

Each query can be associated with contextual re-
strictions, which are secondary queries that oper-
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Figure 1: Query Graph of the syntactic query ‘〈〉p1:[e]BMP-6 $induces the $phosphorylation $of 〈〉p2:Smad1.’

ate on the same data and restrict the set of sen-
tences that are considered for the main queries.
These queries currently have the syntax of the
Lucene query language.7 Our system allows the
secondary queries to condition on the paragraph
the sentence appears in, and on the title, abstract,
authors, publication data, publication venue and
MeSH terms of the paper the sentence appears
in. Additional sources of information are easy to
add. For example, adding the contextual restriction
‘#d +title:cancer +mesh:”Age Distribution”’ restricts a
query results to sentences from papers which have
the word “cancer” in their title and whose MeSH
terms include “Age Distribution”. Similarly ‘#d +ti-
tle:/corona.*/ +year: [2015 TO 2020]’ restricts queries
to include sentences from papers published be-
tween 2015 and 2020 and have a word starting
with corona in their title.

These secondary queries greatly increase the
power of boolean, sequential and syntactic queries:
one could look for interspecies transmissions that
relate to certain diseases, or for sentence-level
disease-chemical co-occurrences in papers that dis-
cuss specific sub-populations.

4.4 Example-based Syntactic Queries
Recent advances in machine learning brought with
them accurate syntactic parsing, but parse-trees
remain hard to use. We remedy this by employing
a novel query language we introduced in (Shlain
et al., 2020) which is based on the principle of
query-by-example.

The query is specified by starting with a simple
natural language sentence that conveys the desired
syntactic structure, for example, ‘BMP-6 induces
the phosphorylation of Smad1’. Then, words can
be marked as anchor words (that need to match ex-
actly) or capture nodes (that are variables). Words
can also be neither anchor or capture, in which case
they only support the scaffolding of the sentence.
The system then translates the sentence with the
captures and anchors syntax into a syntactic query
graph, which is presented to the user. The user can
then restrict capture nodes from “match anything”

7https://lucene.apache.org/core/6_
0_0/queryparser/org/apache/lucene/
queryparser/classic/package-summary.html

to matching specific terms (using the term specifi-
cation syntax as in boolean or token queries) and
can likewise relax the exact-match constraints on
anchor words. Like in other query types, capture
nodes can be marked for expansion. The syntactic
graph is then matched against the pre-parsed and
indexed corpus.

This simple markup provides a rich syntax-based
query system, while alleviating the user from the
need to know linguistic syntax.

For example, consider the query below, the de-
tails of which will be discussed shortly:

‘〈〉p1:[e=GENE OR GENE PRODUCT]BMP-6 $induces
the $phosphorylation $of 〈〉p2:Smad1’

The words ‘induce’, ‘phosphorylation’ and ‘of’
are anchors (designated by ‘$’), while ‘p1’ and ‘p2’
are captures for ‘BMP-6’ and ‘Smad1’. Both cap-
ture nodes are marked for expansion using angle
braces (‘〈〉’). Node p1 is restricted to match tokens
with the same entity type of BMP-6 (indicated by
‘e=GENE OR...’). The query can be shortened by
omitting the entity type and retaining only the en-
tity restriction (‘e’):

‘〈〉p1:[e]BMP-6 $induces the $phosphorylation $of
〈〉p2:Smad1’

Here, the entity type is inferred by the system
from the entity type of BMP-6.8 The graph for
the query is displayed in Figure 1. It has 5 tokens
in a specific syntactic configuration determined
by directed labeled edges. The 1st token must
have the entity tag of ‘GENE OR...’, the 2nd, 3rd,
and 4th tokens must be the exact words “induces
phosphorylation of”, and the 5th is unconstrained.

Sentences whose syntactic graph has a subgraph
that aligns to the query and adheres to the
constraints will match the query. Example of
matching sentences are:
- ERKp1 activation induces phosphorylation of
Elk-1p2 .
- Thrombopoietinp1 activates human platelets
and induces tyrosine phosphorylation of
p80/85 cortactinp2

8Similarly, we could specify ‘$[lemma]induces’, re-
sulting in the restriction ‘lemma=induce’ instead of
‘word=induces’ for the anchor.
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The sentence tokens corresponding to the p1
and p2 graph nodes will be bound to variables
with these names: {p1=ERK, p2=Elk-1} for the
first sentence and {p1=Thrombopoietin, p2=p80/85
cortactin} for the second.

5 Example Workflow: Risk-factors

We describe a workflow which is based on using
our extractive search system over a corpus of all
PubMed abstracts. While the described researcher
is hypothetical, the results we discuss are real.

Consider a medical researcher who is trying to
compile an up to date list of the risk factors for
stroke. A PubMed search for “risk factors for
stroke” yields 3317 results, and reading through
all results is impractical. A Google query for the
same phrase brings out an info box from NHLBI9

listing 16 common risk factors including high blood
pressure, diabetes, heart disease, etc. Having a cu-
rated list which clearly outlines the risk factors is
helpful, but curated lists or survey papers will often
not include rare or recent research findings.

The researcher thus turns to extractive search
and tries an exploratory boolean query:

‘risk factor stroke’

.
The figure shows the top results for the query and

the majority of sentences retrieved indeed specify
specific risk factors for stroke. This is an improve-
ment over the PubMed results as the researcher can
quickly identify the risk factors discussed without
going through the different papers.

Furthermore, the top results contain risk factors
like migrane or C804A polymorphism not listed
in the NHLBI knowledge base. However, the full
result list is lengthy and extracting all the risk fac-
tors from it manually would be tedious. Instead,
the researcher notes that many of the top results
are variations on the “X is a risk factor for stroke”
structure. She thus continues by issuing the follow-
ing syntactic query, where a capture labeled r is
used to directly capture the risk factors:

9https://www.nhlbi.nih.gov/
health-topics/stroke

(a) ranked risk factors for stroke (b) ranked disease risk factors

Figure 2: Grouped and ranked results

‘r:Diabetes is a $risk $factor for $stroke’.

The figure shows the top results for the query
and the risk factors are indeed labeled with r as
expected. Unfortunately, some of the captured risk
factors names are not fully expanded. For exam-
ple, we capture syndrome instead of metabolic syn-
drome and temperature instead of low temperature.
Being interested in capturing the full names, the
researcher adds angle brackets ‘〈〉’ to expand the
captured elements:

‘〈〉r:Diabetes is a $risk $factor for $stroke’.

The full names are now captured as expected.
Now that that researcher has verified that the

query yields relevant results, she clicks the down-
load button to download the full result set.

The resulting tab separated file has 1212 rows.
Each row includes a result sentence, the captured
elements in it (in this case, just the risk factor), and
their offsets. Using a spreadsheet to group the rows
by risk factor and order the results by frequency, the
researcher obtains a list of 640 unique risk factors,
114 of them appearing more than once in the data.
Figure 2a lists the top results.

Reviewing the list, the researcher decides that
she’s not interested in general risk factors, but
rather in diseases only. She modifies the query
by adding an entity restriction to the ‘r’ capture:
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As seen in the query graph, even though the
researcher didn’t specify the exact entity type, the
query parser correctly resolved it to DISEASE. The
results now include diseases like sleep apnoea and
hypertension but do not include smoking, age and
alcohol (see Figure 2b).

Analyzing the results, the researcher now wants
to compare the risk factors in the general popula-
tion to ones listed in research papers dealing with
children and infants. Luckily, such papers are in-
dexed with corresponding MeSH terms and the
researcher can utilize this fact by appending ‘#d
mesh:Child mesh:Infant -mesh:Adult’ to her query. In
cases where a desired MeSH term does not exist,
an alternative approach is filtering the results based
on words in the abstract or title. For example, ap-
pending ‘#d abstract:child abstract:children’ to a query
will ensure that the result sentences come from ab-
stracts which contain the word child or the word
children.

Happy with the results of the initial query, the
researcher can further augment her list by query-
ing for other structures which identify risk factors
(e.g. “‘r:Diabetes $causes $stroke’”, “‘$risk $factors
for $stroke $include r:Diabetes’”, etc.).

Importantly, once the researcher has identified
one or more effective queries to extract the risk fac-
tors for stroke, the queries can easily be modified
in useful ways. For example, with a small modifi-
cation to our original query we can extract:
risk factors for cancer:

‘r:Diabetes is a $risk $factor for $cacner’

diseases which can be caused by smoking:
‘$Smoking is a $risk $factor for d:[e]stroke’.

ad-hoc KB of (risk factor, disease) tuples (for
self use or as an easily queryable public resource):

‘r:Diabetes is a $risk $ factor for d:[e]stroke’.

6 Example Workflow: CORD-19

The COVID-19 Open Research Dataset (Wang
et al., 2020) is a collection of 45,000 research pa-
pers, including over 33,000 with full text, about
COVID-19 and the coronavirus family. The cor-
pus was released by the Allen Institute for AI and
associated partners in an attempt to encourage re-
searchers to apply recent advances in NLP to the
data to generate insights.

Identifying COVID-19 Aliases Since the
CORD-19 corpus includes papers about the entire
Coronavirus family of viruses, it’s useful to
identify papers and sentences dealing specifically
with COVID-19. Before converging on the
acronym COVID-19 researchers have referred to
the virus by many names: nCov-19, SARS-COV-ii,
novel coronavirus, etc. Luckily, it’s fairly easy to
identify many of these aliases using a sequential
pattern:

‘novel coronavirus ( alias:...1-2... )’

The pattern looks for the words “novel coronavirus”
followed by an open parenthesis, one-or-two words
which are to be captured under the ‘alias’ variable,
and a closing parenthesis. The query retrieves 52
unique candidate aliases for COVID-19, though
some of them refer to older coronaviruses such as
“MERS”, or non-relevant terms such as “Fig2”. Af-
ter ranking by frequency and validating the results,
we can reuse the pattern on newly retrieved aliases
to extend the list. Through this iterative process we
quickly compile a list of 47 aliases. We marked all
occurrences of these terms in the underlying corpus
as a new entity type, COVID-19, and re-indexed
the dataset with this entity information.
Exploring Drugs and Treatments. To explore
drugs and treatments for COVID-19 we search
the corpus for chemicals co-occuring with the
COVID-19 entity using a boolean query:
‘chemical:e=SIMPLE CHEMICAL|CHEMICAL
e=COVID-19’

Table 1(a) shows the top matching chemicals by
frequency. While some of the substances listed like
Chloroquine and Remdesivir are drugs being tested
for treating COVID-19, others are only hypothe-
sized as useful or appear in other contexts.

To guide the search toward therapeutic sub-
stances in different stages of maturity we can add
indicative terms to the query. For example, the
following query can be used to detect substances
at the stage of clinical trials:
‘chemical:e=SIMPLE CHEMICAL|CHEMICAL
e=COVID-19 l=trial|experiment’, while adding
‘l=suggest|hypothesize|candidate’ can assist in
detecting substances in ideation stage.

Table 1(b,c) shows the frequency distributions
of the chemicals resulting from the two queries.
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(a) Unrestricted
nucleic acid (171), chloroquine (118), nucleotide (115), NCP

(87), CR3022 (47), Ksiazek (46), IgG (45), lopinavir/ritonavir

(42), ECMO (40), LPV/r (35), corticosteroids (35), oxygen

(32), ribavirin (31), lopinavir (31), Hydroxychloroquine (30),

amino acid (30), ritonavir (27), corticosteroid (24), Sofosbuvir

(22), amino acids (22), HCQ (19), glucocorticoids (19)

(b) Trial
chloroquine (29), Remdesivir (8), LPV/r (7), lopinavir (6),

HCQ (6), ritonavir (4), Arbidol (4), Sofosbuvir (3), nu-

cleotide (3), nucleic acid (3), lopinavir/ritonavir (3), CQ

(3), oseltamivir (2), NCT04257656 (2), NCT04252664 (2),

Meplazumab (2), Hydroxychloroquine (2), glucocorticoids(2),

CEP(2)

(c) Ideation
chloroquine (6), ritonavir (5), S-RBD (4), nucleotide (4),

Lopinavir (4), CR3022 (4), Ribavirin (3), nucleic acid (3),

logP (3), Li (3), ledipasvir (3), IgG (3), HCQ (3), TGEV (2),

teicoplanin (2), nelfinavir (2), NCP (2), HWs (2) glucocorti-

coids (2), ENPEP (2), ECMO (2), darunavir (2), creatinine

(2), creatine (2), CQ (2), corticosteroid (2), CEP (2), ARB (2)

Table 1: Top chemicals co-occuring with the COVID-
19 entity and their counts. (a) Unrestricted. (b) with
Trial related terms. (c) with Ideation related terms.

While the queries are very basic and include only
a few terms for each category, the difference is
clearly noticeable: while the Malaria drug Chloro-
quine tops both lists, the antiviral drug Remdesivir
which is currently tested for COVID-19 is second
on the list of trial related drugs but does not appear
at all as a top result for ideation related drugs.

Importantly, entity co-mention queries like the
ones above rely on the availability and accuracy
of underlying NER models. As we’ve seen in
Section 5, in cases where the relevant types are
not extracted by NER, syntactic queries can be
used instead. For example the following query
captures sentences including chemicals being used
on patients (the abstract or paragraph are required
to include COVID-19 related terms).
‘he was $treated $with a 〈〉chem:treatment
#d paragraph:ncov* paragraph:covid* abstract:ncov*
abstract:covid*’

Treatments (via syntactic query)
ribavirin (11), oseltamivir (9), ECMO (6), convales-

cent plasma (4), TCM (3), LPV/r (3), three fusions of

MSCs (2), supportive care (2), protective conditions (2),

lopinavir/ritonavir (2), intravenous remdesivir (2), hydrox-

ychloroquine (2), HCQ (2), glucocorticoids (2), FPV (2), ef-

fective isolation (2), chloroquine (2), caution (2), bDMARDs

(2), azithromycin (2), ARBs (2), antivirals (2), ACE inhibitors

(2), 500 mg chloroquine (2), masks (1)

Table 2: Top elements occurring in the syntactic
“treated with X” configuration. Note that this query
does not rely on NER information.

The top results by frequency are shown in Table
2. The top ranking results show many of the chem-
icals obtained by equivalent boolean queries10, but
interestingly, they also contain non-chemical treat-
ments like supportive care, isolation and masks.
This demonstrates a benefit of using entity agnos-
tic syntactic patterns even in cases where a strong
NER model exists.

7 More Examples

While the workflows discussed above pertain
mainly to the medical domain, the system is op-
timized for the broader life science domain. Here
are a sample of additional queries, showing differ-
ent potential use-cases.
Which genes regulate a cell process:
‘〈〉p1:[e]CD95 v:[l]regulates 〈〉p:[e]apoptosis’

Which specie is the natural host of a disease:
‘〈〉host:[e]bat is a $natural $host of
〈〉disease:[e]coronavirus’

Documented LOF mutations in genes:
‘$loss $of $function 〈〉m:[w]mutation in 〈〉gene:[e]PAX8’

8 Conclusion

We presented a search system that targets extract-
ing facts from a biomed corpus and demonstrated
its utility in a research and a clinical context over
CORD-19 and PubMed. The system works in an
Extractive Search paradigm which allows rapid in-
formation seeking practices in 3 modes: boolean,
sequential and syntactic. The interactive and flexi-
ble nature of the system makes it suitable for users
in different levels of sophistication.

10to get a more comprehensive coverage we can issue
queries for other syntactic structures like ‘〈〉chem:chemical
was used $in $treatment’ and combine the results of the
different queries.
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Abstract

Inferring the nature of the relationships be-
tween biomedical entities from text is an im-
portant problem due to the difficulty of main-
taining human-curated knowledge bases in
rapidly evolving fields. Neural word embed-
dings have earned attention for an apparent
ability to encode relational information. How-
ever, word embedding models that disregard
syntax during training are limited in their abil-
ity to encode the structural relationships fun-
damental to cognitive theories of analogy. In
this paper, we demonstrate the utility of en-
coding dependency structure in word embed-
dings in a model we call Embedding of Struc-
tural Dependencies (ESD) as a way to repre-
sent biomedical relationships in two analog-
ical retrieval tasks: a relationship retrieval
(RR) task, and a literature-based discovery
(LBD) task meant to hypothesize plausible re-
lationships between pairs of entities unseen
in training. We compare our model to skip-
gram with negative sampling (SGNS), using
19 databases of biomedical relationships as our
evaluation data, with improvements in perfor-
mance on 17 (LBD) and 18 (RR) of these
sets. These results suggest embeddings encod-
ing dependency path information are of value
for biomedical analogy retrieval.

1 Introduction

Distributed vector space models of language have
been shown to be useful as representations of re-
latedness and can be applied to information re-
trieval and knowledge base augmentation, includ-
ing within the biomedical domain (Cohen and Wid-
dows, 2009). A vast amount of knowledge on
biomedical relationships of interest, such as thera-
peutic relationships, drug-drug interactions, and ad-
verse drug events, exists in largely human-curated
knowledge bases (Zhu et al., 2019). However, the
rate at which new papers are published means new

relationships are being discovered faster than hu-
man curators can manually update the knowledge
bases. Furthermore, it is appealing to automati-
cally generate hypotheses about novel relationships
given the information in scientific literature (Swan-
son, 1986), a process also known as ‘literature-
based discovery.’ A trustworthy model should also
be able to reliably represent known relationships
that are validated by existing literature.

Neural word embedding techniques such as
word2vec1 and fastText2 are a widely-used
and effective approach to the generation of vector
representations of words (Mikolov et al., 2013a)
and biomedical concepts (De Vine et al., 2014). An
appealing feature of these models is their capac-
ity to solve proportional analogy problems using
simple geometric operators over vectors (Mikolov
et al., 2013b). In this way, it is possible to find ana-
logical relationships between words and concepts
without the need to specify the relationship type
explicitly, a capacity that has recently been used to
identify therapeutically-important drug/gene rela-
tionships for precision oncology (Fathiamini et al.,
2019). However, neural embeddings are trained
to predict co-occurrence events without consider-
ation of syntax, limiting their ability to encode
information about relational structure, which is an
essential component of cognitive theories of ana-
logical reasoning (Gentner and Markman, 1997).
Additionally, recent work (Peters et al., 2018) has
found that contextualized word embeddings from
language models such as ELMo, when evaluated on
analogy tasks, perform worse on semantic relation
tasks than static embedding models.

The present work explores the utility of encod-
ing syntactic structure in the form of dependency
paths into neural word embeddings for analogical

1https://github.com/tmikolov/word2vec
2https://fasttext.cc/
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Figure 1: Overview of training and evaluation pipeline. Two embedding models, Embedding of Structural Depen-
dencies (ESD) and Skip-gram with Negative Sampling (SGNS), are trained on data from a corpus of ≈70 million
sentences from Medline. The resulting representations are then evaluated on data collected from biomedical knowl-
edge bases.

retrieval of biomedical relations. To this end, we
build and evaluate vector space models for repre-
senting biomedical relationships, using a corpus of
dependency-parsed sentences from biomedical lit-
erature as a source of grammatical representations
of relationships between concepts.

We compare two methods for learning biomedi-
cal concept embeddings, the skip-gram with neg-
ative sampling (SGNS) algorithm (Mikolov et al.,
2013a) and Embedding of Semantic Predications
(ESP) (Cohen and Widdows, 2017), which adapts
SGNS to encode concept-predicate-concept triples.
In the current work, we adapt ESP to encode de-
pendency paths, an approach we call Embedding
of Structural Dependencies (ESD). We train ESD
and SGNS on a corpus of approximately 70 mil-
lion sentences from biomedical research paper ab-
stracts from Medline, and evaluate each model’s
ability to solve analogical retrieval problems de-
rived from various biomedical knowledge bases.
We train ESD on concept-path-concept triples ex-
tracted from these sentences, and SGNS on full
sentences that have been minimally preprocessed
with named entities (see §3). Figure 1 shows the
pipeline from training to evaluation.

From an applications perspective, we aim to eval-
uate the utility of these representations of relation-
ships for two tasks. The first involves correctly
identifying a concept that is related in a particular
way to another concept, when this relationship has
already been described explicitly in the biomedical
literature. This task is related to the NLP task of
relationship extraction, but rather than considering
one sentence at a time, distributional models rep-
resent information from across all of the instances
in which this pair have co-occurred, as well as

information about relationships between similar
concepts. We refer to this task as relationship re-
trieval (RR). The second task involves identifying
concepts that are related in a particular way to one
another, where this relationship has not been de-
scribed in the literature previously. We refer to this
task as literature-based discovery (LBD), as identi-
fying such implicit knowledge is the main goal of
this field (Swanson, 1986).

We evaluate on four kinds of biomedical rela-
tionships, characterized by the semantic types of
the entity pairs involved, namely chemical-gene,
chemical-disease, gene-gene, and gene-disease re-
lationships.

The following paper is structured as follows.
§2 describes vector space models of language as
they are evaluated for their ability to solve pro-
portional analogy problems, as well as prior work
in encoding dependency paths for downstream ap-
plications in relation extraction. §3 presents the
dependency path corpus from Percha and Altman
(2018). §4 summarizes the knowledge bases from
which we develop our evaluation data sets. §5 de-
scribes the training details for each vector space
model. §6 and §7 describe the methods and re-
sults for the RR and LBD evaluation paradigms.
§8 and §9 offer discussion and conclude the paper.
Code and evaluation data will be made available at
https://github.com/amandalynne/ESD.

2 Background

We look to prior work in using proportional analo-
gies as a test of relationship representation in the
general domain with existing studies on vector
space models trained on generic English. While our
biomedical data is largely in English, we constrain
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our evaluation to specific biomedical concepts and
relationships as we apply and extend established
methods.

Vector space models of language and
analogical reasoning
Vector space models of semantics have been ap-
plied in information retrieval, cognitive science
and computational linguistics for decades (Turney
and Pantel, 2010), with a resurgence of interest in
recent years. Mikolov et al. (2013a) and Mikolov
et al. (2013b) introduce the skip-gram architecture.
This work demonstrated the use of a continuous
vector space model of language that could be used
for analogical reasoning when vector offset meth-
ods are applied, providing the following canoni-
cal example: if xi is the vector corresponding to
word i, xking - xman + xwoman yields a vector that is
close in proximity to xqueen. This result suggests
that the model has learned something about seman-
tic gender. They identified some other linguistic
patterns recoverable from the vector space model,
such as pluralization: xapple - xapples ≈ xcar - xcars,
and developed evaluation sets of proportional anal-
ogy problems that have since been widely used
as benchmarks for distributional models (see for
example (Levy et al., 2015)).

However, work soon followed that pointed out
some of the shortcomings of attributing these re-
sults to the models’ analogical reasoning capacity.
For example, Linzen (2016) showed that the vector
for ‘queen’ is itself one of the nearest neighbors to
the vector for ‘woman,’ and so it can be argued that
the model does not actually learn relational infor-
mation that can be applied to analogical reasoning,
but rather, can rely on the direct similarity between
the target terms in the analogy to produce desirable
results.

Furthermore, Gladkova et al. (2016) introduce
the Better Analogy Test Set (BATS) to provide
an evaluation set for analogical reasoning that in-
cludes a broader set of semantic and syntactic re-
lationships between words. This set proved far
more challenging for embedding-based approaches.
Newman-Griffis et al. (2017) provide results of vec-
tor offset methods applied to a dataset of biomedi-
cal analogies derived from UMLS triples, showing
that certain biomedical relationships are more diffi-
cult to learn with analogical reasoning than others.

Because the aim of this project is to robustly
learn a handful of biomedical relationships, we are
less concerned about the linguistic generalizability

of these particular representations, but future work
will examine the application of these vector space
models to analogies in the general domain.

Dependency embeddings

Levy and Goldberg (2014a) adapt the SGNS
model to encode direct dependency relationships,
rather than dependency paths. In this approach,
a dependency-type/relative pair is treated as a tar-
get for prediction when the head of a phrase is
observed (e.g. P (scientist/nsubj|discovers)).
The dependency-based skipgram embeddings were
shown to better reflect the functional roles of words
than those trained on narrative text, which tended
to emphasize topical associations. Recent work
(Zhang et al. (2018), Zhou et al. (2018), Li et al.
(2019)) has also integrated dependency path rep-
resentations in neural architectures for biomedi-
cal relation extraction, framing it as a classifica-
tion task rather than an analogical reasoning task.
The work of Washio and Kato (2018) is perhaps
the most closely related to our approach, in that
neural embeddings are trained on word-path-word
triples. Aside from our application of domain-
specific Named Entity Recognition (NER), a key
methodological difference between this work and
the current work is that their approach represents
word pairs as a linear transformation of the con-
catenation of their embeddings, while we use XOR
as a binding operator (following the approach of
Kanerva (1996)), which was first used to model
biomedical analogical retrieval with semantic pred-
ications extracted from the literature by Cohen et al.
(2011)3. On account of the use of a binding opera-
tor, individual entities, pairs of entities and depen-
dency paths are all represented in a common vector
space.

3 Text Data

We train both the ESD and SGNS models on data
released by Percha and Altman (2018). This cor-
pus4 consists of about 70 million sentences from
a subset of MEDLINE (approximately 16.5 mil-
lion abstracts) which have PubTator (Wei et al.,
2013) annotations applied to identify phrases that
denote names of chemicals (including drugs and
other chemicals of interest), genes (and the proteins
they code for), and diseases (including side effects

3For related work, see Widdows and Cohen (2014)
4Version 7 of the corpus retrieved at https://zenodo.

org/record/3459420
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Figure 2: Example of a path of dependencies between two entities of interest. The full parse is not shown, but
rather, the minimum path of dependency relations between the two entities given the sentence.

and other phenotypes). Throughout this paper, we
use these shorthand names for each of these cate-
gories, following the convention established in Wei
et al. (2013) and followed by Percha and Altman
(2018).

The following example sentence from an article
processed by PubTator shows how multi-word
phrases that denote biomedical entities of interest,
in this case atypical depression and seasonal affec-
tive disorder, are concatenated by underscores to
constitute single tokens:

Chromium has a beneficial effect on eating-related atypical

symptoms of depression, and may be a valuable agent in

treating atypical depression and seasonal affective disorder.

Percha and Altman (2018) also provide pruned
Stanford dependency (De Marneffe and Manning,
2008) parses for the sentences in the corpus, con-
sisting, for each sentence, of the minimal path of de-
pendency relations connecting pairs of biomedical
named entities identified by PubTator. Specifi-
cally, they extract dependency paths that connect
chemicals to genes, chemicals to diseases, genes
to diseases, and genes to genes. Figure 2 shows an
example of a dependency path of relations between
two terms, risperidone and rage. We use these de-
pendency paths as representations for predicates
that denote biomedical relationships of interest by
concatenating the string representations of each
path element, which are shown below the sentence
in Figure 2. Following Percha and Altman (2018),
we exclude paths that denote a coordinating con-
junction between elements and paths that denote an
appositive construction, both of which are highly
common in the set. In this corpus of 70 million
sentences, there are about 44 million unique depen-
dency paths that connect concepts of interest, the
vast majority (around 40 million) of which appear
just once in the corpus. 540,011 of these paths
appear at least 5 times in the corpus.

4 Knowledge Bases

We construct our evaluation data sets with exem-
plars from knowledge bases for four primary kinds
of biomedical relationships, characterized by the
interactions between pairs of entities of the fol-
lowing types: chemical-gene, chemical-disease,
gene-disease, and gene-gene.

We evaluate on pairs of entities from the fol-
lowing knowledge bases: DrugBank (Wishart
et al., 2018), Online Mendelian Inheritance in
Man (OMIM) (Hamosh et al., 2005), PharmGKB
(PGKB) (Whirl-Carrillo et al., 2012), Reactome
(Fabregat et al., 2016), Side Effect Resource
(SIDER) (Kuhn et al., 2016), and Therapeutic Tar-
get Database (TTD) Wang et al. (2020).

Each knowledge base consists of pairs of en-
tities that relate in a specific way. For example,
SIDER Side Effects consists of chemical-disease-
typed pairs such that the chemical is known to have
the disease as a side effect, e.g. (sertraline, in-
somnia). Meanwhile, another chemical-disease
pair from a different database, Therapeutic Target
Database (TTD) indications, is such that the chem-
ical is indicated as a treatment for the disease, e.g.
(carphenazine, schizophrenia). In constructing our
evaluation sets, we process all terms such that they
are lower-cased, and multi-word terms are concate-
nated by underscores. Furthermore, we eliminate
from our evaluation sets any knowledge base terms
that do not appear in the training corpus described
in §3 at least 5 times. It should be noted that across
these sets, a single biomedical entity may appear
with numerous spellings and naming conventions.

Table 2 shows the corresponding relationship
type for each of the knowledge bases we use, as
well as the number of pairs from each that are used
in our evaluation data. The relationship retrieval
data consists of knowledge base pairs that appear
in our training corpus connected by a dependency
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path at least once, while the literature-based dis-
covery targets are those knowledge base pairs that
do not appear connected by a dependency path in
the corpus.

5 Training Details

SGNS With SGNS, a shallow neural network is
trained to estimate the probability of encounter-
ing a context term, tc, within a sliding window
centered on an observed term, to. The train-
ing objective involves maximizing this probabil-
ity for true context terms P (tc|to), and minimiz-
ing it for randomly drawn counterexamples t¬c,
P (t¬c|to), with probability estimated as the sig-
moid function of the scalar product between the in-
put weight vector for the observed term and the out-
put weight vector of the context term, σ(

−→
to .
−−→
tc|¬c).

We used the Semantic Vectors5 implemen-
tation of SGNS (which performs similarly to the
fastText implementation across a range of ana-
logical retrieval benchmarks (Cohen and Widdows,
2018)) to train 250-dimensional embeddings, with
a sliding window radius of two, on the complete
set of full sentences from the corpus described in
§3 as the training corpus. As previously mentioned,
multi-word phrases corresponding to named enti-
ties recognized by the PubTator system in these
sentences are concatenated by underscores, and
consequently receive a single vector representation.

ESD With ESD, a shallow neural network is
trained to estimate the probability of encountering
the object, o, of a subject-predicate-object triple
sPo. The training objective involves maximiz-
ing this probability for true objects P (o|s, P ) and
minimizing it for randomly drawn counterexam-
ples, ¬o, P (¬o|s, P ). We adapted the Semantic
Vectors5 implementation of ESP to encode de-
pendency paths, with binary vectors as represen-
tational basis (Widdows and Cohen, 2012) and
the non-negative normalized Hamming distance
(NNHD) to estimate the similarity between them.

NNHD = max

(
0, 1− 2×Hamming distance

dimensionality

)

With this representational paradigm, probabil-
ity can be estimated as NNHD(o, s⊗ P ), where
⊗ represents the use of pairwise exclusive OR as
a binding operator, in accordance with the Bi-
nary Spatter Code (Kanerva, 1996). While ESP

5https://github.com/semanticvectors/semanticvectors

was originally developed to encode knowledge ex-
tracted from the literature using a small set of prede-
fined predicates (e.g. TREATS), we adapt it here to
encode a large variety (n=546,085) of dependency
paths. For training, we concatenate the dependency
relations (the underscored parts in Figure 2) into a
single predicate token for which a vector is learned.
Some examples of path tokens (concatenated de-
pendency relations) can be seen in Table 1. Unlike
the original ESP implementation where predicate
vectors were held constant, we permit dependency
path vectors to evolve during training6. Further de-
tails on ESP can be found in (Cohen and Widdows,
2017). For the current work, we set the dimension-
ality at 8000 bits (as this is equivalent in representa-
tional capacity to 250-dimensional single precision
real vectors). For ESD, Table 1 shows the nearest
neighboring dependency path vectors to the bound
product I(metformin) ⊗ O(diabetes), illustrat-
ing paths that indicate the relationship between
these terms, and ESD’s capability to learn similar
representations for paths with similar meaning.

Both SGNS and ESD were trained over five
epochs, with a subsampling threshold of 10−5, a
minimum term frequency threshold of 5 (which
includes concatenated dependency paths for ESD),
and a maximum frequency threshold of 106.

6 Evaluation Methods

We use a proportional analogy ranked retrieval task
for both the RR and LBD tasks, following prior
work as described in §2. Figure 3 visualizes this
process. From a set of (X, Y) entity pairs from a
knowledge base, given a term C and all terms D
such that (C, D) is a pair in the set, we select n
random (A, B) cue pairs from a disjoint set of pairs.
We refer to (C, D) pairs as ‘target pairs,’ correct D
completions as ‘targets,’ and (A, B) pairs as ‘cues.’
The vectors for the cue terms (A, B) and the term
C are summed in the following fashion to produce
the resulting vector v. Given an analogical pair
A:B::C:D, where A and C, B and D are of the same
semantic type, respectively, we develop cue vectors
for the target D in each model as follows:

SGNS : −→v =
−→
B −−→A +

−→
C

ESD : −→v =
−−→
I(A)⊗−−−→O(B)⊗−−→I(C)

6This capability has been used to to predict drug interac-
tions, with performance exceeding that of models with orders
of magnitude more parameters (Burkhardt et al., 2019).
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SCORE PATH

0.974 controlled nmod start entity end entity amod controlled
0.935 add-on nmod start entity end entity amod add-on
0.565 reduces nsubj start entity reduces dobj requirement requirement nmod end entity
0.537 associated compound start entity end entity nsubj associated
0.516 start entity conj efficacy efficacy acl treating treating dobj end entity
0.438 treatment amod start entity treatment nmod end entity

Table 1: Nearest neighboring dependency path embeddings to I(metformin)⊗O(diabetes) where I andO indicate
input and output weight vectors respectively.

Figure 3: Overview of analogical ranked retrieval paradigm.

where I and O represent the input and out-
put weight vectors of the ESD model, respec-
tively. The SGNS method is the same as the
3COSADD method as described in Levy and Gold-
berg (2014b).

A K-nearest neighbor search is performed for v
(using cosine distance for SGNS, NNHD for ESD)
over the search space, and we record the ranks
for each correct D target. The search space is con-
strained such that it consists of those terms from our
training corpus that have a vector in both ESD and
SGNS, a total of about 300,000 terms overall. For
ESD, this space consists of the output weight vec-
tors for each concept. For the proportional analogy
task using K-nearest neighbors to rank completions
to the analogy, the desired outcome is for the cor-
rect targets to be highly similar to the analogy cue
vector v, such that the highest ranks are assigned to
the correct target terms D in a search over the entire
vector space. In this fashion, we perform this KNN
search for every (X, Y) pair in the knowledge base
and record the ranks for correct targets. We then
compare the ranks of terms D across both vector
spaces; the higher the ranks, the better the model is
at capturing relational similarity.

Table 2 shows, for each knowledge base, how
many total unique X terms and total (X, Y) pairs
are used for each task. Additionally, we show the
average number of correct Y terms per X and the
maximum number of correct Y terms per X. For
the relationship retrieval task, we consider those
(X, Y) pairs which are connected by at least one
dependency path in our corpus. Meanwhile, (X, Y)
pairs for the LBD task must not be connected by a
dependency path in the corpus (we treat these held-
out pairs as a proxy for estimating the quality of
novel hypotheses). We know from the (X, Y) pair’s
presence in the knowledge base that it is a gold
standard pair for the given relationship type, but
from the models’ perspective this information is
not available from the text alone. Thus, we believe
it is a good test of the models’ ability to generate
plausible hypotheses. To reiterate, the methodology
for both the relationship retrieval and literature-
based discovery evaluations is the same; the only
difference is in which pairs of terms from each
knowledge base are used for evaluation data.

We examine the role of increasing the number
of cues in improving retrieval. For example, for a
given (C, D) target pair, we can combine vectors
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Relationship Retrieval Literature-based Discovery
Total X Total Pairs Mean Y / X Max Y / X Total X Total Pairs Mean Y / X Max Y / X

Chem-Gene

Gene Targets (DrugBank) 1626 6290 4 107 3569 37162 10 420
PGKB 535 2089 4 48 1563 28053 18 144
Agonists (TTD) 148 172 1 3 307 462 2 7
Antagonists (TTD) 188 200 1 2 508 620 1 5
Gene Targets (TTD) 1179 1436 1 7 4088 6430 2 15
Inhibitors (TTD) 522 669 1 7 1273 2082 2 15

Chem-Disease

Side Effects (SIDER) 334 1289 4 31 892 6591 7 46
Drug Indication (SIDER) 1077 2737 3 22 2160 8356 4 45
Biomarker-Disease (TTD) 298 417 1 11 253 321 1 6
Drug Indication (TTD) 1749 1958 1 6 2664 2999 1 10
Disease Targets (TTD) 710 1502 2 22 1085 3088 3 27

Gene-Disease
OMIM 2197 2870 1 9 3461 5545 2 11
PGKB 600 1693 3 34 1609 12605 8 73

Gene-Gene

Enzymes (DrugBank) 966 3622 4 33 1781 16242 9 71
Carriers (DrugBank) 203 345 2 27 444 1174 3 18
Transporters (DrugBank) 510 2357 5 44 1140 13889 12 94
PGKB 497 2595 5 50 940 14142 15 89
Complex (Reactome) 1757 3061 2 9 2550 6593 3 31
Reaction (Reactome) 579 1031 2 9 1274 4024 3 29

Table 2: Total unique X terms, total (X, Y) pairs, average number of correct Y terms per X, and maximum number
of correct Y terms per X for each knowledge base.

for multiple (A, B) pairs with the C term vector to
produce a final cue vector that is closer to the target
D. When multiple cues are used, we superpose the
cue vector for each of the cues, and normalize the
resulting vector, with normalization of real vectors
to unit length in SGNS, and normalization of binary
vectors using the majority rule with ties split at
random with ESD. Cues are always selected from
the subset of knowledge base pairs that co-occur
in our training corpus. We ensure that none of the
(A, B) cue terms overlap with each other, nor with
the (C, D) target terms, to assure that self-similarity
does not inflate performance. We produced results
for a range of 1, 5, 10, 25, and 50 cues, finding that
the best results come from using 25 cues; we only
report these resulting scores in §7.

As a baseline inspired partly by Linzen (2016),
we compute the similarity of vectors for B and D
terms and C and D terms compared directly to each
other, omitting the analogical task. The intuition
here is that C and D terms are potentially close
together in the vector space merely due to frequent
co-occurrence in the corpus, and any analogical
reasoning performance is merely relying on that
fact. Meanwhile, terms B and D can be close to-
gether in the vector space simply because they are
the same semantic type, and thus occur in similar
contexts. In this case, relational analogy might not
explain the performance, but mere distributional
similarity. In the B:D comparison setting, cues B
are added together to create a single cue vector with
which to perform the KNN ranking over terms in
which to find the target term D. These cue terms

B are extracted from the same A, B cue pairs as
those used for the full analogy setting to ensure a
reasonable comparison across methods. In the C:D
comparison setting, no cues are aggregated.

7 Results

We present qualitative and quantitative results for
each vector space model’s ability to represent and
retrieve relational information.

Qualitative Results Table 3 shows a side-by-
side comparison of the top 10 retrieved terms given
the vector for the term risperidone composed with
25 randomly selected (drug, indication) cues from
SIDER. The goal is to complete the proportional
analogy corresponding to the treatment relation-
ship. Of the top 10 terms retrieved in the ESD vec-
tor space, 4 are correct completions to the analogy,
while 3 more are plausible completions based on lit-
erature. ‘Tardive oromandibular dystonia,’ while of
the correct semantic type targeted by this analogy,
is actually a side effect of risperidone. A major-
ity of the retrieved results, however, are known or
plausible treatment targets. Meanwhile, most of the
top 10 terms retrieved by SGNS are names of other
drugs that are similar to risperidone. Additionally,
‘psychiatric and visual disturbances’ and ‘tardive
dyskinesia’ are side effects of risperidone, not treat-
ment targets. Notably, all of the results retrieved
with ESD are of the correct semantic type, i.e., they
are disorders, while SGNS retrieves a mix of drugs
and side effects.

Quantitative Results For each C term in each
evaluation set, we record the ranks of all D tar-
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rank ESD (ours) SGNS
1 separation anxiety risperidone ×
2 schizophrenia olanzapine ×
3 depressed state quetiapine ×
4 bipolar mania aripiprazole ×
5 tardive oromanibular dystonia clozapine ×
6 treatment of trichotillomania ∗ psychiatric and visual disturbances
7 pervasive developmental disorder (NOS) ∗ ziprasidone ×
8 borderline personality disorder amisulpride ×
9 psychotic disorders paliperidone ×

10 mania tardive dyskinesia

Table 3: Top 10 results for a K-nearest neighbor search over terms for treatment targets for the drug risperidone
(an antipsychotic drug), using 25 (drug, indication) pairs from SIDER as cues. Bolded terms are correct targets,
i.e., they are listed as treatment targets for risperidone in SIDER. ∗: a disorder that risperidone treats or might treat,
based on external literature or a synonym for a target from SIDER; ×: a chemical, i.e., something that could not
be a treatment target for a drug.

get terms resulting from the K-nearest neighbor
search. For ease of comparison, we normalize all
raw ranks by the length of the full search space
(324363 terms in total), and then subtract this value
from 1 so that lower ranks (i.e., better results) are
displayed as higher numbers, for ease of interpre-
tation. For a baseline score, we ran a simulation
in which the entire search space was shuffled ran-
domly 100 times, and recorded the median ranks of
multiple target D terms, given some C. We find that
the median rank for D terms in a randomly shuffled
space tended toward the middle of the ranked list.
Thus, the baseline score is established as 0.5; any
score lower than this means the model performed
worse than a random shuffle at retrieving target
terms. In Table 4, 1 is the highest possible score,
and 0 is the lowest.

We report results at 25 (A, B) cues, the setting
for which performance was best for both ESD and
SGNS. ‘Full’ in Table 4 refers to evaluation with
a full A:B::C:D analogy, while ‘B:D’ refers to the
baseline that compares vectors for terms directly,
rather than using relational information. We do
not report C:D comparison results, as they were
categorically worse than both Full and B:D results.

8 Discussion

The results in Table 4 show that ESD outperforms
SGNS on the RR task for 18 of 19 databases, and
for 17 of 19 databases on the LBD task. It is clear
that literature-based discovery is harder than rela-
tionship retrieval, as the scores are generally lower
across the board for this task. We discuss the results

for each task separately.

8.1 Relationship retrieval
For a total of 12 out of 19 sets, ESD on full analo-
gies outperforms ESD on direct B:D comparisons,
suggesting that the model has learned generalizable
relationship information for these types of relations
rather than relying on distributional term similarity.
Because gene-gene pairs consist of entities of the
same semantic type, it can be argued that B:D simi-
larity should be very high, and yet scores are higher
for the full analogy over the B:D baseline for most
of these sets, for both ESD and SGNS. For SIDER
side effects, the B:D baseline for ESD shows higher
scores than the full analogy for both LBD and RR;
one reason for this could be that there is a high
degree of side effect overlap between drugs, and so
the side effect terms themselves are highly similar
to each other.

8.2 Literature-based discovery
The best performance on a majority of the sets
comes from the ESD B:D model, suggesting that
the model relies on term similarity over relational
information for performance. Although SGNS
doesn’t perform the best overall, the full analogy
model tends to outperform its B:D counterpart, sug-
gesting that SGNS has managed to extrapolate re-
lational information to the retrieval of held-out tar-
gets. As previously mentioned, performance on
this task is made difficult due to the lack of normal-
ization of concepts across our datasets. Addition-
ally, as Table 4 shows, several top ranked terms are
plausible analogy completions, but do not appear as
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Relationship retrieval LBD
ESD (ours) SGNS ESD (ours) SGNS

Full B:D Full B:D Full B:D Full B:D

Chem-Gene

Gene Targets (DrugBank) 0.912 0.897 0.839 0.212 0.715 0.806 0.496 0.250
PGKB 0.969 0.994 0.705 0.361 0.737 0.918 0.366 0.317
Agonists (TTD) 0.997 0.907 0.998 0.647 0.802 0.781 0.924 0.708
Antagonists (TTD) 1.000 0.900 0.999 0.732 0.802 0.703 0.831 0.750
Gene Targets (TTD) 0.998 0.867 0.994 0.387 0.746 0.760 0.625 0.479
Inhibitors (TTD) 0.998 0.874 0.993 0.415 0.773 0.759 0.682 0.392

Chem-Disease

Side Effects (SIDER) 0.997 0.999 0.967 0.942 0.952 0.994 0.799 0.932
Drug Indication (SIDER) 1.000 0.995 0.949 0.588 0.969 0.988 0.663 0.605
Biomarker-Disease (TTD) 0.996 0.997 0.944 0.781 0.932 0.977 0.799 0.726
Drug Indication (TTD) 1.000 0.994 0.981 0.675 0.977 0.992 0.722 0.661
Disease Targets (TTD) 0.990 0.997 0.900 0.711 0.887 0.989 0.663 0.648

Gene-Disease
OMIM 0.997 0.911 0.950 0.599 0.668 0.792 0.578 0.578
PGKB 0.982 0.996 0.781 0.624 0.836 0.969 0.592 0.618

Gene-Gene

Enzymes (DrugBank) 1.000 1.000 0.987 0.981 0.979 0.999 0.900 0.975
Carriers (DrugBank) 0.987 1.000 0.636 0.555 0.841 0.962 0.360 0.487
Transporters (DrugBank) 1.000 1.000 0.974 0.947 0.996 0.999 0.870 0.951
PGKB 0.999 0.995 0.899 0.471 0.907 0.956 0.479 0.425
Complex (Reactome) 1.000 0.819 1.000 0.206 0.866 0.731 0.838 0.399
Reaction (Reactome) 1.000 0.917 0.996 0.273 0.878 0.826 0.699 0.366

Table 4: Results for relationship retrieval (RR) and literature-based discovery (LBD) for full analogy (A:B::C:D)
and B:D retrieval. Scores are displayed here as the median of scores (1 - normalized rank) for all D terms in a
knowledge base evaluation set.

gold-standard targets in the databases. Considering
the case of SIDER, which is built from automati-
cally extracted information (not human-curated)
the plausible results here are missing from the
database but are supported by evidence from pub-
lished papers (e.g. Oravecz and Štuhec (2014)).

9 Conclusion

We have compared two vector space models of
language, Embedding of Structural Dependencies
and Skip-gram with Negative Sampling, for their
ability to represent biomedical relationships from
literature in an analogical retrieval task. Our results
suggest that encoding structural information in the
form of dependency paths connecting biomedical
entities of interest can improve performance on
two analogical retrieval tasks, relationship retrieval
and literature-based discovery. In future work, we
would like to compare our methods with knowledge
base completion techniques using contextualized
vectors from language models as in Bosselut et al.
(2019) as another method applicable to literature-
based discovery.
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Orsay, France
pap@limsi.fr

Abstract

Improving the quality of medical research re-
porting is crucial to reduce avoidable waste in
research and to improve the quality of health
care. Despite various initiatives aiming at im-
proving research reporting – guidelines, check-
lists, authoring aids, peer review procedures,
etc. – overinterpretation of research results,
also known as distorted reporting or spin, is
still a serious issue in research reporting.

In this paper, we propose a Natural Language
Processing (NLP) system for detecting several
types of spin in biomedical articles reporting
randomized controlled trials (RCTs). We use a
combination of rule-based and machine learn-
ing approaches to extract important informa-
tion on trial design and to detect potential spin.

The proposed spin detection system includes
algorithms for text structure analysis, sentence
classification, entity and relation extraction,
semantic similarity assessment. Our algo-
rithms achieved operational performance for
the these tasks, F-measure ranging from 79,42
to 97.86% for different tasks. The most diffi-
cult task is extracting reported outcomes.

Our tool is intended to be used as a semi-
automated aid tool for assisting both authors
and peer reviewers to detect potential spin.
The tool incorporates a simple interface that al-
lows to run the algorithms and visualize their
output. It can also be used for manual annota-
tion and correction of the errors in the outputs.

The proposed tool is the first tool for spin de-
tection. The tool and the annotated dataset are
freely available.

At the time of reported work, Anna Koroleva was a PhD
student at LIMSI-CNRS in Orsay, France and at the Academic
Medical Center, University of Amsterdam in Amsterdam, the

1 Background

It is widely acknowledged nowadays that that the
quality of reporting of research results in the clin-
ical domain is suboptimal. As a consequence, re-
search findings can often not be replicated, and
billions of euros may be wasted yearly (Ioannidis,
2005).

Numerous initiatives aim at improving the qual-
ity of research reporting. Guidelines and checklists
have been developed for every type of clinical re-
search. Still, the quality of reporting remains low:
authors fail to choose and follow a correct guide-
line/checklist (Samaan et al., 2013). Automated
tools, such as Penelope1, are introduced to facili-
tate the use of guidelines/checklists. It was proved
that authoring aids improve the completeness of
reporting (Barnes et al., 2015).

Enhancing the quality of peer reviewing is an-
other step to improve research reporting. Peer re-
viewing requires assessing a large number of in-
formation items. Nowadays, Natural Language
Processing (NLP) is applied to facilitate laborious
manual tasks such as indexing of medical literature
(Huang et al., 2011) and systematic review process
(Ananiadou et al., 2009). Similarly, the peer re-
viewing process can be partially automated with
the help of NLP.

Our project tackles a specific issue of research
reporting that, to our knowledge, has not been ad-
dressed by the NLP community: spin, also referred
to as overinterpretation of research results. In the
context of clinical trials assessing a new (experi-

Netherlands. Sanjay Kamath was a PhD student at LIMSI-
CNRS and LRI Univ. Paris-Sud in Orsay, France.

1https://www.penelope.ai/
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mental) intervention, spin consists in exaggerating
the beneficial effects of the studied intervention
(Boutron et al., 2010).

Spin is common in articles reporting random-
ized controlled trials (RCTs) - clinical trials com-
paring health interventions, to which participants
are allocated randomly to avoid biases - with non-
significant primary outcome. Abstracts are more
prone to spin than full texts. Spin is found in a
high percentage of abstracts of articles in surgical
research (40%) (Fleming, 2016), cardiovascular
diseases (57%) (Khan et al., 2019), cancer (47%)
(Vera-Badillo et al., 2016), obesity (46.7%) (Austin
et al., 2018), otolaryngology (70%) (Cooper et al.,
2018), anaesthesiology (32,2%) (Kinder et al.,
2018), and wound care (71%) (Lockyer et al.,
2013). Although the problem of spin has started to
attract attention in the medical community in the
recent years, the shown prevalence of spin proves
that it often remains unnoticed by editors and peer
reviewers.

Abstracts are often the only part of the article
available to readers, and spin in abstracts of RCTs
poses a serious threat to the quality of health care
by causing overestimation of the intervention by
clinicians (Boutron et al., 2014), which may lead to
the use of an ineffective of unsafe intervention in
clinical practice. Besides, spin in research articles
is linked to spin in press releases and health news
(Haneef et al., 2015; Yavchitz et al., 2012), which
has the negative impact of raising false expectations
regarding the intervention among the public.

The importance of the problem of spin motivated
our work. We aimed at developing NLP algorithms
to aid authors and readers in detecting spin. We
focused on randomized controlled trials (RCTs) as
they are the most important source of evidence for
Evidence-based medicine, and spin in RCTs has
high negative impact.

Our work lies within the scope of the Methods in
Research on Research (MiRoR) project2, an inter-
national project devoted to improving the planning,
conduct, reporting and peer reviewing of health
care research. For the design and development
of our toolkit, we benefited from advice from the
MiRoR consortium members.

In this paper, we introduce a prototype of a sys-
tem, called DeSpin (Detector of Spin), that au-
tomatically detects potential spin in abstracts of
RCTs and relevant supporting information. This

2http://miror-ejd.eu/

prototype comprises a set of spin-detecting algo-
rithms and a simple interface to run the algorithms
and display their output.

This paper is organized as follows: first, we pro-
vide an overview of some existing semi-automated
aid systems for authors, reviewers and readers of
biomedical articles. Second, we introduce in more
detail the notion of spin, the types of spin that we
address, and the information that is required to as-
sess an article for spin. After that, we describe our
current algorithms, methods employed and provide
their evaluation. Finally, we discuss the potential
future development of the prototype.

2 Related work

Although there has been no attempt to automate
spin detection in biomedical articles, a number of
works addressed developing automated aid tools
to assist authors and readers of scientific articles
in performing various other tasks. Some of these
tools were tested and were shown to reduce the
workload and improve the performance of human
experts on the corresponding task.

2.1 Authoring aid tools

Barnes et al. (2015) assessed the impact of a writing
aid tool based on the CONSORT statement (Schulz
et al., 2010) on the completeness of reporting of
RCTs. The tools was developed for six domains of
the Methods section (trial design, randomization,
blinding, participants, interventions, and outcomes)
and consisted of reminders of the corresponding
CONSORT item(s), bullet points enumerating the
key elements to report, and good reporting exam-
ples. The tool was assessed in an RCT in which
the participants were asked to write a Methods sec-
tion of an article based on a trial protocol, either
using the aid tool (’intervention’ group) or without
using the tool (’control’ group). The results of 41
participants showed that the mean global score for
reporting completeness was higher with the use of
the tool than without it.

2.2 Aid tools for readers and reviewers

Kiritchenko et al. (2010) developed a system called
ExaCT to automatically extract 21 key characteris-
tics of clinical trial design, such as treatment names,
eligibility criteria, outcomes, etc. ExaCT consists
of an information extraction algorithm that looks
for text fragments corresponding to the target in-
formation elements, a web-based user interface
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through which human experts can view and correct
the suggested fragments.

The National Library of Medicine’s Medical
Text Indexer (MTI) is a system providing auto-
matic recommendations based on the Medical Sub-
ject Headings (MeSH) terms for indexing medical
articles (Mork et al., 2013). MTI is used to assist
human indexers, catalogers, and NLM’s History of
Medicine Division in their work. Its use by index-
ers was shown to grow over years (used to index
15.75% of the articles 2002 vs 62.44% in 2014)
and to improve the performance (precision, recall
and F-measure) of indexers (Mork et al., 2017).

Marshall et al. (2015) addressed the task of au-
tomating assessment of risk of bias in clinical trials.
Bias is phenomenon related to spin: it is a sys-
tematic error or a deviation from the truth in the
results or conclusions that can cause an under- or
overestimation of the effect of the examined treat-
ment (Higgins and Green, 2008). The authors de-
veloped a system called RobotReviewer that used
machine learning to assess an article for the risk
of different types of bias and to extract text frag-
ments that support these judgements. These works
showed that automated risk of bias assessment can
be achieve reasonable performance, and the extrac-
tion of supporting text fragments reached similar
quality to that of human experts. Marshall et al.
(2017) further developed RobotReviewer, adding
functionality for extracting the PICO (Population,
Interventions/Comparators, Outcomes) elements
from articles and detecting study design (RCT),
for the purpose of automated evidence synthesis.
Soboczenski et al. (2019) assessed RobotReviewer
in a user study involving 41 participants, evaluating
time spent for bias assessment, text fragment sug-
gestions by machine learning, and usability of the
tool. Semi-automation in this study was shown to
be quicker than manual assessment; 91% of the au-
tomated risk of bias judgments and 62% of support-
ing text suggestions were accepted by the human
reviewers.

The cited works demonstrate that semi-
automated aid tools can prove useful for both au-
thors and readers/reviewers of medical articles and
has a potential to improve the quality of the articles
and facilitate the analysis of the texts.

3 Spin: definition and types

We adopt the definition and classification of spin
introduced by Boutron et al. (2010) and Lazarus

et al. (2015), who divided instances of spin into
several types and subtypes.

We addressed the following types of spin:

1. Outcome switching – unjustified change of the
pre-defined trial outcomes, leading to report-
ing only the favourable outcomes that support
the hypothesis of the researchers (Goldacre
et al., 2019). Outcome switching is one of the
most common types of spin. It can consist in
omitting the primary outcome in the results /
conclusions of the abstract, or in the focus on
significant secondary outcomes, e.g.:

The primary end point of this trial was overall
survival. <...> This trial showed a signifi-
cantly increased R0 resection rate although
it failed to demonstrate a survival benefit.

In this example, the primary outcome (”over-
all survival”), the results for which were not
favourable, is mentioned in the conclusion,
but it is not reported in the first place and oc-
curs within a concessive clause (starting by
”although”). This way of reporting puts the
focus on the other, favourable, outcome (”R0
resection rate”).

2. Interpreting non-significant outcome as a
proof of equivalence of the treatments, e.g.:

The median PFS was 10.3 months in the
XELIRI and 9.3 months in the FOLFIRI arm
(p = 0.78). Conclusion: The XELIRI regi-
men showed similar PFS compared to the
FOLFIRI regimen.

The results for the outcome ”median PFS” are
not significant, which is often erroneously
interpreted as a proof of similarity of the
treatments. However, a non-significant result
means that the null hypothesis of a difference
could not be rejected, which is not equivalent
to a demonstration of similarity of the treat-
ments. This would require the rejection of the
null hypothesis of a difference, or a substantial
difference, in outcomes between treatments.

3. Focus on within-group comparisons, e.g.:

Both groups showed robust improvement in
both symptoms and functioning.

The goal of randomized controlled trials is to
compare two treatments with regard to some
outcomes. If the superiority of the experimen-
tal treatment over the control treatment was

51



not shown, within-group comparisons (report-
ing the changes within a group of patients
receiving a treatment, instead of comparing
patients receiving different treatments) can be
used to persuade the reader of beneficial ef-
fects of the experimental treatment.

Two concepts are vital for spin detection and
play a key role in our algorithms:

1. The primary outcome of a trial – the most
important variable monitored during the trial
to assess how the studied treatment impacts
it. Primary outcomes are recorded in trial
registries (open online databases storing the
information about registered clinical trials),
and should be defined in the text of clinical
articles, e.g.:

The primary end point was a difference of
> 20% in the microvascular flow index of
small vessels among groups.

2. Statistical significance of the primary out-
come. Statistical hypothesis testing is used to
check for a significant difference in outcomes
between two patient groups, one receiving the
experimental treatment and the other receiving
the control treatment. Statistical significance
is often reported as a P-value compared to pre-
defined threshold, usually set to 0.05. Spin
most often occurs when the results for the
primary outcome are not significant (Boutron
et al., 2010; Fleming, 2016; Khan et al., 2019;
Vera-Badillo et al., 2016; Austin et al., 2018;
Cooper et al., 2018; Kinder et al., 2018; Lock-
yer et al., 2013), although trials with signifi-
cant effect on the primary outcome may also
be prone to spin (Beijers et al., 2017).

Trial results are commonly reported as an ef-
fect on the (primary) outcome3, along with
the p-value.

Microcirculatory flow indices of small and
medium vessels were significantly higher in
the levosimendan group as compared to the
control group (p < 0.05).

Statistical significance levels of trial outcomes
are vital for spin detection, as spin is com-
monly related to non-significant results for

3It is important to distinguish between the notions of out-
come, effect and result in this context: an outcome is a mea-
sure/variable monitored during a clinical trial; effect refers to
the change in an outcome observed during a trial; trial results
refer to the set of effects for all measured outcomes.

the primary outcome, or to selective reporting
of significant outcomes only.

4 Algorithms

Spin is a complex notion and thus detecting spin
cannot be seen as a binary classification problem.
We believe that the most viable approach to spin de-
tection is to assess each (sub)type of spin separately.
We aimed at developing algorithms to extract and
analyse pieces of information relevant to the ad-
dressed types of spin. The extracted information
and its analysis, provided by our tool, can help hu-
man experts in making the conclusion on presence
or absence of spin of the given (sub)type.

Detection of spin and related information is a
complex task which cannot by fully automated.
Our system is designed as a semi-automated tool
that finds potential instances of the addressed types
of spin and extracts the supporting information that
can help the user to make the final decision on
the presence of spin. In this section, we present
the algorithms currently included in the system,
according to the types of spin that they are used to
detect.

As we aim at detecting spin in the Results and
Conclusions sections of articles’ abstracts, we first
need an algorithm analyzing the given article to
detect its abstract and the Results and Conclusions
sections within the abstract. We will not mention
this algorithm in the list of algorithms for each spin
type to avoid repetition. If we talk about extracting
some information from the abstract, it implies that
the text structure analysis algorithm was applied.

4.1 Outcome switching
We focus on the switching (change/omission) of
the primary outcome. Primary outcome switching
can occur at several points:

• the primary outcome(s) recorded in the trial
registry can differ from the primary out-
come(s) declared in the article;

• the primary outcome(s) declared in the ab-
stract can differ from the primary outcome(s)
declared in the body of the article;

• the primary outcome(s) recorded in the trial
registry can be omitted when reporting the
results for the outcomes in the abstract;

• the primary outcome(s) recorded in the article
can be omitted when reporting the results for
the outcomes in the abstract.
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Primary outcome switching detection involves the
following algorithms:

1. Identification of primary outcomes in trial reg-
istries and in the article’s text.

2. Identification of reported outcomes from sen-
tences reporting the results, e.g. (reported
outcomes are in bold):

The results of this study showed that symptom
Scores in massage group were improved sig-
nificantly compared with control group, and
the rate of dyspnea, cough and wheeze in the
experimental group than the control group
were reduced by approximately 45%, 56% and
52%.

3. Assessment of semantic similarity of pairs of
outcomes extracted by the above algorithms to
check for missing outcomes. We perform the
assessment for the following sets of outcomes:

• The primary outcome extracted from the
registry is compared to the primary out-
come(s) declared in the article;
• The primary outcome extracted from the

abstract is compared to the primary out-
come(s) declared in the body of the arti-
cle;
• The primary outcome extracted from the

article is compared to the outcomes re-
ported in the abstract;
• The primary outcome extracted from the

registry is compared to the outcomes re-
ported in the abstract.

These assessments allow to detect switching
of the primary outcome at all the possible
stages. If the primary outcome in the registry
and in the article, or in the abstract and body of
the article differ, we conclude that there is po-
tential outcome switching, which is reported
to the user. Similarly, if the primary outcome
(from the article or from the registry) is miss-
ing from the list of the reported outcomes, we
suspect selective reporting of outcomes, and
the system reports it to the user.

In the example on the page 3, the system
should extract ”overall survival” as the pri-
mary outcome, and ”R0 resection rate” and
”survival” as reported outcomes. The similar-
ity between ”overall survival” and ”R0 resec-
tion rate” is low, while the similarity between

”overall survival” and ”survival” is high, thus,
we conclude that the primary outcome ”over-
all survival” is reported as ”survival”.

As semantic similarity often depends on the
context, the conclusions of the system are pre-
sented to the user, who can check them to
make the conclusions on correctness of the
analysis.

4. Assessing the discourse prominence of the
reported primary outcome (detected by the
previous algorithms) by checking if it is re-
ported the first place among all the outcomes;
if it is reported in a concessive clause.

In the example above, the system will de-
tect that the primary outcome ”survival” is
reported within a concessive clause (starting
by ”although”) and will flag the sentence as
potentially focusing on secondary outcomes.

4.2 Interpreting non-significant outcome as a
proof of equivalence of the treatments

As we stated above, conclusions on the similar-
ity/equivalence of the studies treatments are justi-
fied only if the trial was of non-inferiority or equiv-
alence type. Thus, we employ two algorithms to
detect this type of spin:

1. Identification of statements of similarity be-
tween treatments, e.g.:

Both products caused similar leukocyte
counts diminution and had similar safety pro-
files.

2. Identifying the markers of non-inferiority or
equivalence trial design, e.g.:

ONCEMRK is a phase 3, multicenter, double-
blind, noninferiority trial comparing ralte-
gravir 1200mg QD with raltegravir 400mg
BID in treatment-naive HIV-1–infected adults.

If there is a statement of similarity of treatments
while no markers of non-inferiority / equivalence
design are found, we conclude the presence of spin
and report it to the user.

4.3 Focus on within-group comparisons
Any statement in the results and conclusions of the
abstract that presents a comparison of two states
of a patient group without comparing it to another
group is a within-group comparison. This type of
spin is detected by a single algorithm that identifies
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within-group comparisons that are further reported
to the user:

Young Mania Rating Scale total scores improved
with ritanserin.

4.4 Other algorithms

We support extraction of some information that is
not directly involved in the detection of spin, but
that can help user in spin assessment and that can
be used in the future when new spin types are added.
The algorithms include:

1. Extraction of measures of statistical signifi-
cance, both numerical and verbal (in bold):

Study group patients had a significant lower
reintubation rate than did controls; six
patients (17%) versus 19 patients (48%),
P<0.05; respectively.

2. Extraction of the relation between the reported
outcomes and their statistical significance, ex-
tracted at the previous stages. For the ex-
ample above, we extract pairs (”reintubation
rate”, ”significant”) and (”reintubation rate”,
”P<0.05”).

These algorithms, in combination with the
assessment of semantic similarity of extracted
outcomes, allows to identify the significance
level for the primary outcome.

5 Methods

In this section, we briefly outline the methods used
in our algorithms, the datasets used for evaluation,
and the current performance of the algorithms. Our
approach is based on some previous works for the
related tasks. As the details on development of the
algorithms, annotating the data and testing differ-
ent approaches are described in detail in the corre-
sponding articles, we limit ourselves here to only
a brief description of the best-performing method
that we selected for each task.

The methods we employ can be divided into two
groups: machine learning, including deep learning,
used for the core tasks for which we have sufficient
training data, and rule-based methods, used for the
simpler tasks or for tasks where we do not have
enough data for machine learning.

5.1 Rule-based methods

We developed rules for the following tasks:

• To find the abstract, we use regular expres-
sions rules that are evaluated on the set of
3938 PubMed Central (PMC)4 articles in
XML format with a specific tag for the ab-
stract, used as the gold standard. To evaluate
our algorithm, we applied it to the raw texts
extracted from the XML files and compared
the extracted abstracts to those obtained using
the XML tag.

• To extract outcomes from trial registries, we
use regular expressions to extract the trial reg-
istration number from the article; using it, we
find on the web, download and parse the reg-
istry entry corresponding to the trial.

• To extract significance levels, we use rules
based on regular expressions and token,
lemma and pos-tag information.

• To assess the discourse prominence of an out-
come, to detect statements of similarity be-
tween treatments, within-group comparisons
and markers of non-inferiority design, we em-
ploy rules based on token, lemma and pos-tag
information.

We annotated abstracts of 180 articles (2402
sentences) for similarity statements and
within-group comparisons (Koroleva, 2020).
The proportion of these types of statements
in our corpus is low: we identified only 72
similarity statements and 127 within-group
comparisons. The evaluation of statements
of similarity between treatments and within-
group comparisons was performed with two
settings: 1) using the whole text of abstracts;
2) using only the Results and Conclusions
sections of the abstract, which raised the pre-
cision, as expected (Table 1).

5.2 Machine learning methods
For the core tasks of our system, we either used
an existing annotated corpus or annotated our own
corpora. Our corpora were annotated by a single
annotator (AK), consulted by consulted our med-
ical advisors from the MiRoR network (Isabelle
Boutron, Patrick Bossuyt and Liz Wager).

We tested several approaches for each task,
including rule-based and machine-learning ap-
proaches (see details below). Overall, we found
that the best performance on our tasks was shown

4https://www.ncbi.nlm.nih.gov/pmc/
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Algorithm Method Annotated dataset Precision Recall F1
Primary outcomes
extraction

Deep
learning

2,000 sentences / 1,694
outcomes

86.99 90.07 88.42

Reported out-
comes extraction

Deep
learning

1,940 sentences / 2,251
outcomes

81.17 78.09 79.42

Outcome similar-
ity assessment

Deep
learning

3,043 pairs of outcomes 88.93 90.76 89.75

Similarity state-
ments extraction

Rules 180 abstracts / 2402 sen-
tences
whole abstract 77.8 87.5 82.4
results and conclusions 85.1 87.5 86.3

Within-group com-
parisons

Rules 180 abstracts / 2402 sen-
tences
whole abstract 53.2 90.6 67.1
results and conclusions 71.9 90.6 80.1

Abstract extrac-
tion

Rules 3938 abstracts 94.7 94 94.3

Text structure
analysis: sections
of abstract

Deep
learning

PubMed200k 97.82 95.81 96.8

Extraction of sig-
nificance levels

Rules 664 sentences / 1,188
significance level markers

99.18 96.58 97.86

Outcome - signif-
icance level rela-
tion extraction

Deep
learning

2,678 pairs of outcomes
and significance level
markers

94.3 94 94

Table 1: Overview of algorithms, methods, results and annotated datasets

by a deep learning approach that was recently
proved to be highly successful in many NLP appli-
cations. It employs language representations pre-
trained on large unannotated data and fine-tuned
on a relatively small amount of annotated data for
a specific downstream task. The language repre-
sentations that we tested include: BERT (Bidirec-
tional Encoder Representations from Transformers)
models (Devlin et al., 2018), trained on a general-
domain corpus of 3.3B words; BioBERT model
(Lee et al., 2019), trained on the BERT corpus and
a biomedical corpus of 18B words; and SciBERT
models (Beltagy et al., 2019), trained on the BERT
corpus and a scientific corpus of 3.1B words. For
each task, we chose the best-performing model.

Details about the annotated datasets that we used
and the tested approaches can be found below. The
best results for each task are summarised in Table 1.

5.2.1 Identification of sections in the abstract
For identifying sections within the abstract (in par-
ticular, Results and Conclusions), we used the
PubMed 200k dataset introduced in Dernoncourt
and Lee (2017). This dataset contains approxi-
mately 200,000 abstracts of RCTs with 2.3 million
sentences. Each sentence is annotated with one of
the following classes, corresponding to the sections
of the abstract: background, objective, method, re-
sult, or conclusion. We used the train-dev-test split
provided by the developers of the dataset.

We compared a rule-based approach and BERT,
SciBERT and BioBERT models, fine-tuned for the
sentence classification task on the PubMed 200k
dataset. The best performance was shown by the
fine-tuned BioBERT model.

5.2.2 Outcome extraction
The outcome extraction task includes two subtasks:
extracting primary and reported outcomes. For
each subtask, we annotated a separate corpus. For
primary outcome extraction, we annotated a cor-
pus of 2,000 sentences, coming from 1,672 articles.
The sentences were selected randomly, from both
abstracts and full texts, without restriction to a par-
ticular medical domain. A total of 1,694 primary
outcomes was annotated (Koroleva, 2019a). For re-
ported outcome extraction, we annotated reported
outcomes in the abstracts of articles for which we
annotated the primary outcomes. The corpus con-
tains 1,940 sentences from 402 articles, with a total
of 2,251 reported outcomes (Koroleva, 2019a).

We compared a rule-based system and several
machine learning algorithms for primary and re-
ported outcome extraction. Details about the an-
notated datasets and the methods that we tested
can be found in Koroleva et al. (EasyChair, 2020).
We selected the best performing approach to be
included in our tool

For primary outcomes extraction, the best perfor-
mance was demonstrated by the BioBERT model
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fine-tuned for named entity recognition task on our
corpus of 2,000 sentences annotated for primary
outcomes. For reported outcomes extraction, the
best performance was achieved by the SciBERT
model fine-tuned for named entity recognition task
on our corpus of 1,940 sentences annotated with
reported outcomes.

5.2.3 Assessment of semantic similarity of
outcomes

To annotate semantic similarity between outcomes,
we used pairs of sentences from our corpora of
outcomes: the first sentence in each pair comes
from the corpus of primary outcomes, the second
sentence comes from the corpus of reported out-
comes, and both sentences are from the same arti-
cle. We assigned a binary label of similarity (sim-
ilar/dissimilar) to each pair of outcomes in each
sentence pair. The corpus contains 3,043 pairs of
outcomes (Koroleva, 2019b).

We tested several semantic similarity measures
(string-based, lexical, vector-based) and the BERT,
SciBERT and BioBERT models, fine-tuned for sen-
tence pair classification task on the corpus of out-
come pairs. Details on the corpus annotation and
on the methods tested can be found in Koroleva
et al. (2019). The best performance was shown by
the fine-tuned BioBERT model.

5.2.4 Extraction of the relation between
reported outcomes and statistical
significance levels

To annotate the relation between reported outcomes
and statistical significance levels, we selected sen-
tences containing markers of statistical significance
from the corpus annotated with reported outcomes.
We annotated the pairs of outcomes and signifi-
cance levels with a binary label (“positive”: the
significance level is related to the outcome; “neg-
ative”: the significance level is not related to the
outcome). The final corpus contains 663 sentences
with 2,552 annotated relations (Koroleva, 2019c).

We tested several machine learning algorithms
and the BERT, SciBERT and BioBERT model fine-
tuned for the relation extraction task on the anno-
tated corpus. The details on the corpus and the
method can be found in Koroleva and Paroubek
(2019). The best result for this task was achieved
by the fine-tuned BioBERT model.

6 Interface

Our prototype system allows the user to load a
text (with or without annotations), run algorithms,
visualize their output, correct, add or remove anno-
tations. The expected input is an article reporting
an RCT in the text format, including the abstract.

Figure 1 shows the interface with an example of
a processed text.

The main items of the drop-down menu on the
top of the page are Annotations, allowing to visu-
alize and manage the annotations, and Algorithms,
allowing to run the described algorithms to detect
potential spin and the related information. The text
fragments identified by the algorithms can be high-
lighted in the text. When running the algorithms,
a report is generated that contains the extracted
information and its analysis by the tool (e.g. a
mismatch between the outcomes in the text and
in the trial registry; absence of the declared pri-
mary outcome among the reported outcomes in
the abstract). The report is saved into the Meta-
data section of Annotations menu, which can be
accessed through the interface, and can be exported
to a file via the Generate report item of the Algo-
rithms menu. Human experts can use this report
to check the extracted information and the analysis
performed by the tool, and to make a final decision
on the presence/absence of a given type of spin.

7 Results and conclusions

The current functionality, methods in use, anno-
tated datasets and the best achieved results are out-
lined in Table 1. Performance is assessed per-token
for outcome and significance level extraction and
per-unit for other tasks.

In this paper, we presented a first prototype tool
for assisting authors and reviewers to detect spin
and related information in abstracts of articles re-
porting RCTs. The employed algorithms show op-
erational performance in complex semantic tasks,
even with relatively low volume of available an-
notated data. We envisage two possible applica-
tions of our system: as an authoring aid or as peer-
reviewing tool. The authoring aid version can be
further developed into an educational tool, explain-
ing the notion of spin and its types to the user.

Possible directions for future work include: im-
proving the implementation and interface (adding
prompts for interaction with the user; facilitating
installation process), algorithms (improving cur-
rent performance, adding detection of new spin
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Figure 1: Example of a processed text

types), application (promoting the tool among the
target audience; encouraging users to submit their
manually annotated data, to be used to improve the
algorithms), and optimization (parallel processing
of multiple input text files). Our system can be
easily incorporated into other text processing tools.

Another interesting yet challenging direction for
the future work is detecting spin/distorted reporting
in texts belonging to scientific domains other than
biomedicine. First of all, a qualitative study of spin
is needed to define and classify spin in each scien-
tific domain (similar to the work of Boutron et al.
(2010) and Lazarus et al. (2015) for clinical trials).
To our best knowledge, there have been no attempts
to conduct such a study for non-biomedical texts.
It is therefore difficult to hypothesise whether spin-
detection algorithms developed for texts reporting
clinical trials could be applicable for other domains.
It appears that the definition and the types of spin
are domain-specific (e.g. outcome-related types of

spin, prevalent in the biomedical domain, would
not be relevant in domains that do not use the no-
tion of outcome). Hence, we suppose that spin-
detection algorithms are domain-specific as well
and cannot be applied to other domains.

8 Availability

The proposed prototype tool and associated models
are available at:
https://github.com/aakorolyova/DeSpin.
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Abstract

Current research in machine learning for ra-
diology is focused mostly on images. There
exists limited work in investigating intelligent
interactive systems for radiology. To address
this limitation, we introduce a realistic and
information-rich task of Visual Dialog in radi-
ology, specific to chest X-ray images. Using
MIMIC-CXR, an openly available database
of chest X-ray images, we construct both a
synthetic and a real-world dataset and pro-
vide baseline scores achieved by state-of-the-
art models. We show that incorporating medi-
cal history of the patient leads to better perfor-
mance in answering questions as opposed to
conventional visual question answering model
which looks only at the image. While our ex-
periments show promising results, they indi-
cate that the task is extremely challenging with
significant scope for improvement. We make
both the datasets (synthetic and gold standard)
and the associated code publicly available to
the research community.

1 Introduction

Answering questions about an image is a complex
multi-modal task demonstrating an important ca-
pability of artificial intelligence. A well-defined
task evaluating such capabilities is Visual Question
Answering (VQA) (Antol et al., 2015) where a sys-
tem answers free-form questions reasoning about
an image. VQA demands careful understanding
of elements in an image along with intricacies of
the language used in framing a question about it.
Visual Dialog (VisDial) (Das et al., 2017; de Vries
et al., 2016) is an extension to the VQA problem,
where a system is required to engage in a dialog
about the image. This adds significant complex-
ity to VQA where a system should now be able
to associate the question in the image, and reason

∗ Equal contribution, Work done at IBM Research

over additional information gathered from previous
question answers in the dialog.

Although limited work exploring VQA in radiol-
ogy exists, VisDial in radiology remains an unex-
plored problem. With the healthcare setting increas-
ingly requiring efficiency, evaluation of physicians
is now based on both the quality and the timeli-
ness of patient care. Clinicians often depend on
official reports of imaging exam findings from ra-
diologists to determine the appropriate next step.
However, radiologists generally have a long queue
of imaging studies to interpret and report, caus-
ing subsequent delay in patient care (Bhargavan
et al., 2009; Siewert et al., 2016). Furthermore, it is
common practice for clinicians to call radiologists
asking follow-up questions on the official reporting,
leading to further inefficiencies and disruptions in
the workflow (Mangano et al., 2014).

Visual dialog is a useful imaging adjunct that
can help expedite patient care. It can potentially
answer a physician’s questions regarding official in-
terpretations without interrupting the radiologist’s
workflow, allowing the radiologist to concentrate
their efforts on interpreting more studies in a timely
manner. Additionally, visual dialog could provide
clinicians with a preliminary radiology exam in-
terpretation prior to receiving the formal dictation
from the radiologist. Clinicians could use the infor-
mation to start planning patient care and decrease
the time from the completion of the radiology exam
to subsequent medical management (Halsted and
Froehle, 2008).

In this paper, we address these gaps and make
the following contributions: 1) we introduce con-
struction of RadVisDial - the first publicly available
dataset for visual dialog in radiology, derived from
the MIMIC-CXR (Johnson et al., 2019) dataset,
2) we compare several state-of-the-art models for
VQA and VisDial applied to these images, and 3)
we conduct a comprehensive set of experiments
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highlighting different challenges of the problem
and propose solutions to overcome them.

2 Related Work

Most of the large publicly available datasets (Kag-
gle, 2017; Rajpurkar et al., 2017) for radiology
consist of images associated with a limited amount
of structured information. For example, Irvin et al.
(2019); Johnson et al. (2019) make images avail-
able along with the output of a text extraction mod-
ule that produces labels for 13 abnormalities in a
chest X-ray. Of note recently, the task of generating
reports from radiology images has become popular
in the research community (Jing et al., 2018; Wang
et al., 2018). Two recent shared tasks at Image-
CLEF explored the VQA problem with radiology
images (Hasan et al., 2018; Abacha et al., 2019).
Lau et al. (2018) also released a small dataset VQA-
RAD for the specific task.

The first VQA shared task at ImageCLEF (Hasan
et al., 2018) used images from articles at PubMed
Central. While Abacha et al. (2019) and Lau
et al. (2018) use clinical images, the sizes of these
datasets are limited. They are a mix of several
modalities including 2D modalities such as X-rays,
and 3D modalities such as ultrasound, MRI, and CT
scans. They also cover several anatomic locations
from the brain to the limbs. This makes a multi-
modal task with such images overly challenging,
with shared task participants developing separate
models (Al-Sadi et al., 2019; Abacha et al., 2018;
Kornuta et al., 2019) to first address these subtasks
(such as modality detection) before actually solving
the problem of VQA.

We address these limitations and build up on
MIMIC-CXR (Johnson et al., 2019) the largest
publicly available dataset of chest X-rays and cor-
responding reports. We focus on the problem of
visual dialog for a single modality and anatomy in
the form of 2D chest X-rays. We restrict the num-
ber of questions and generate answers for them
automatically which allows us to report results on
a large set of images.

3 Data

3.1 MIMIC-CXR
The MIMIC-CXR dataset1 consists of 371,920
chest X-ray images in the Digital Imaging and
Communications (DICOM) format along with

1https://physionet.org/content/
mimic-cxr/1.0.0/

206,576 reports. Each report is well structured and
typically consists of sections such as Medical
Condition, Comparison, Findings, and
Impression. Each report can map to one or
more images and each patient can have one or
more reports. The images consist of both frontal
and lateral views. The frontal views are either
anterior-posterior (AP) or posterior-anterior (PA).
The initial release of data also consists of annota-
tions for 14 labels (13 abnormalities and one No
Findings label) for each image. These anno-
tations are obtained by running the CheXpert la-
beler (Irvin et al., 2019); a rule-based NLP pipeline
against the associated report. The labeler output
assigns one of four possibilities for each of the 13
abnormalities: {yes, no, maybe, not mentioned in
the report}.

3.2 Visual Dialog dataset construction

Every training record of the original VisDial dataset
(Das et al., 2017) consists of three elements: an im-
age I , a caption for the image C, and a dialog
history H consisting of a sequence of ten question-
answer pairs. Given the image I , the caption C,
a possibly empty dialog history H , and a follow-
up question q, the task is to generate an answer a
where {q, a} ∈ H . Following the original formula-
tion, we synthetically create our dataset using the
plain text reports associated with each image (this
synthetic dataset will be considered to be silver-
standard data for the experiments described in sec-
tion 5). The Medical Condition section of
the radiology report is a single sentence describing
the medical history of the patient. We treat this sen-
tence from the Medical Condition section as
the caption of the image. We use NegBio (Peng
et al., 2018) for extracting sections within a report.

We discard all images that do not have a medical
condition in their report. Further, each CheXpert
label is formulated as a question probing the pres-
ence of a disorder, and the output from the labeler
is treated as the corresponding answer. Thus, ignor-
ing the No Findings label, there are 52 possible
question-answer pairs as a result of 13 questions
and 4 possible answers.

We decided to focus on PA images for most of
our experiments as this is the most informative
view for chest X-rays, according to our team radi-
ologists. The original VisDial dataset (Das et al.,
2017) consists of ten questions per dialog and one
dialog per image. Since we only have a set of 13
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	Q:	Airspace	opacity?
	A:	Yes
	Q:	Fracture?
	A:	Not	in	report
	Q:	Lung	lesion?
	A:	No

	Pneumonia?
	Yes

80 year old man s/p  vats R lower lobectomyTwo people are in a wheelchair and one is holding a racket

Figure 1: Comparison of VisDial 1.0 (left) with our synthetically constructed dataset (right).

possible questions, we limit the length of the dialog
to 5 randomly sampled questions. The resulting
dataset has 91060 images in the PA view (with
train/validation/test splits containing 77205, 7340
and 6515 images, respectively). This synthetic data
will be made available through the MIMIC Derived
Data Repository.2 Thus any individual with access
to MIMIC-CXR will have access to our data. Fig-
ure 1 shows an example from our dataset and how
it compares with one from VisDial 1.0.

3.3 Evaluation

The questions in our dataset are limited to probing
the presence of an abnormality in a chest X-ray.
Similarly, the answers are limited to one of the
four choices. Owing to the restricted nature of the
problem, we deviate from the evaluation protocol
outlined in (Das et al., 2017) and instead calculate
the F1-score for each of the four answers. We also
report a macro-averaged F1 score across the four
answers to make model comparisons easier.

4 Models

For our experiments, we selected a set of models
designed for image-based question answering tasks.
Namely, we experimented with three architectures:
Stacked Attention Network (SAN) (Yang et al.,
2016), Late Fusion Network (LF) (Das et al., 2017),
and Recursive Visual Attention Network (RVA)
(Niu et al., 2019). Following the original VisDial
study (Das et al., 2017), we use an encoder-decoder
structure with a discriminative decoder for each of
the models. Below we give an overview of all the
three algorithms.

4.1 Stacked Attention Network

The original configuration of SAN was introduced
for the general-domain VQA task. The model per-
forms multi-step reasoning by refining question-

2https://physionet.org/physiotools/
mimic-code/HEADER.shtml

NoLSTM

LSTM

Pneumonia?

Airspace
opacity? 

No
...

+

Figure 2: The modified architecture of the SAN model
(image taken from (Yang et al., 2016)). The proposed
modification shown in orange incorporates the history
of dialog turns in the same way as the question through
an LSTM. In our ablation experiments the changed part
either reduces to encoding an image caption only or
gets cut completely.

guided attention over image features in an itera-
tive manner. The attended image features are then
combined with the question features for answer
prediction. SAN has been successfully adapted for
medical VQA tasks such as VQA-RAD (Lau et al.,
2018) and VQA-Med task of the ImageCLEF 2018
challenge (Ionescu et al., 2018). In our setup, we
use a stack of two image attention layers and an
LSTM-based question representation.

To take the dialog history into account and there-
fore adjust the SAN model for the needs of the
Visual Dialog task, we modify the first image at-
tention layer of the network by adding a term for
LSTM representation of the history. This modifica-
tion forces the image attention weights to become
both question- and history-guided (see Figure 2).

4.2 Late Fusion Network

Proposed by (Das et al., 2017) as a baseline model
for the Visual Dialog task, Late Fusion Network
encodes the question and the dialog history through
two separate RNNs, and the image through a CNN.
The resulting representations are simply concate-

62



nated in a single vector, which is then used by
a decoder for predicting the answer. We use this
model unchanged, as released in the original Visual
Dialog challenge.

4.3 Recursive Visual Attention

This model is the winner of the 2019 Visual Di-
alog challenge3. It recursively browses the past
history of dialog turns until the current question is
paired with the turn containing the most relevant
information. This strategy is particularly useful
for resolving co-references, naturally occurring in
general-domain dialog questions. As previously,
we do not modify the architecture of the model.

5 Experiments

This section presents our down-sampling strategy,
gives details about conducted ablation studies, and
describes experiments with various representations
of images and texts.

5.1 Downsampling

A closer analysis of our data showed that the major-
ity of the reports processed by the CheXpert labeler
resulted in no mention of most of the 13 patholo-
gies. This presented a heavily skewed dataset that
would lead to a biased model instead of true visual
understanding. This issue is not unique to radiol-
ogy; it is observed even in the current benchmarks
for VQA, and attempts have been made to miti-
gate the resulting problems (Hudson and Manning,
2019; Zhang et al., 2016; Agrawal et al., 2018).

In order to dissuade the answer biases, we per-
formed data balancing, specifically by downsam-
pling major labels in our dataset. As mentioned
above, the CheXpert labeler outputs four possible
answers for 13 labels. To investigate the skew in the
data, we plotted a distribution of the 52 question-
answer pairs (Figure 3). Further, we downsampled
the question-answer pairs to fit a smoother answer
distribution with the method presented in GQA
based on the Earth Mover’s Distance method (Hud-
son and Manning, 2019; Rubner et al., 2000). We
iterated over the 52 pairs in decreasing frequency
order and downsampled the categories belonging
to the skewed head of the distribution. The relative
label ranks by frequency remained the same for the
balanced sets as with the unbalanced sets. For ex-
ample, the pairs {‘Other pleural findings’→ ‘Not

3https://visualdialog.org/challenge/
2019

Figure 3: Downsampling strategies. Every bar along
the X axis represents a single question-answer pair,
where questions (13 in total) and answers (4 in total)
are obtained through CheXpert.

in report’ } and {‘Fracture’ → ‘Not in report’ }
remained the first and second largest counts in both
the unbalanced and downsampled versions of the
datasets. To reduce the disparity between dominant
and underrepresented categories, we tuned the pa-
rameters outlined in (Hudson and Manning, 2019).
We experimented with two different sets of param-
eter values and obtained two datasets with more
balanced question-answer distributions. We further
refer to them as “minor” and “major” downsam-
pling, reflecting the total amount of data reduced
(shown in blue and gray in Figure 3).

5.2 Evaluating importance of context

To assess the importance of the dialog context for
question answering, we compare the performance
of different variations of the Stacked Attention Net-
work, selected as the best-performing model in the
previous experiment (see subsection 6.1). In par-
ticular, we examine three scenarios: (a) the model
makes a prediction based solely on a given image
(essentially solving the VQA task rather than the
Visual Dialog task), (b) the model makes its pre-
diction given an image and its caption, and (c) the
model makes its prediction given an image, a cap-
tion, and a history of question-answer pairs. Simi-
lar to the model modifications described in subsec-
tion 4.1 and Figure 2, we achieve the goal through
experimenting with the SAN model by changing its
first image attention layer to accordingly take in (a)
question and image features, (b) question, image,
and caption features, and (c) question, image, and
full dialog history features.
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5.3 Image representations

We test three approaches for pre-trained image rep-
resentations. The first approach uses a ResNet-
101 architecture (He et al., 2016) for multiclass
classification of input X-ray images into 14 find-
ing labels extracted from the associated reports
(as described in section 3.2). Our second method
aims to replicate the original CheXpert study (Irvin
et al., 2019). Here we use a DenseNet-121 image
classifier trained for prediction of five pre-selected
and clinically important labels, namely, atelectasis,
cardiomegaly, consolidation, edema, and pleural
effusion. In both ResNet and DenseNet-based ap-
proaches we take the features obtained from the
last pooling layer.

Finally, we adopted a bottom-up mechanism for
image region proposal introduced by Anderson
et al. (2018). More specifically, we first trained
a neural network predicting bounding boxes for
the image regions, corresponding to a set of 11
handcrafted clinical annotations adopted from an
existing chest X-ray dataset4. We then represented
every region as a latent feature vector of a trained
patch-wise convolution autoencoder, and (3) con-
catenated all the obtained vectors to represent the
entire image.

Based on the results of the experiment (subsec-
tion 6.3), we found that ResNet-101 image vectors
yielded the best performance, so we used them in
other experiments.

5.4 Effect of incorporating a lateral view

One of the crucial aspects of X-ray radiography
exams is to capture the subject from multiple views.
Typically, in case of chest X-rays, radiologists order
an additional lateral view to confirm and locate
findings that are not clearly visible from a frontal
(PA or AP) view. We test whether the VisDial
models are able to leverage the additional visual
information offered by a lateral (LAT) view. We
filter the data down to the patients whose chest X-
ray exams had both a frontal and lateral views and
re-sample the resulting data-set into train (52952
PA and 8086 AP images), validation (6614 PA and
964 AP images), and test (6508 PA and 1035 AP
images). We train a separate ResNet-101 model
for each of the three views on this re-sampled data
using the method described in the previous section.
The vector representations of a frontal view and the

4https://www.kaggle.com/c/
rsna-pneumonia-detection-challenge

corresponding lateral view are concatenated as an
aggregate image representation.

5.5 Text representations

Finally, we investigate the best way for represent-
ing the textual data by incorporating different pre-
trained word vectors. More specifically, we mea-
sure the performance of our best-performing SAN
model reached with (a) randomly initialized word
embeddings trained jointly with the rest of the
models, (b) domain-independent GloVe Common
Crawl embeddings (Pennington et al., 2014), and
(c) domain-specific fastText embeddings trained
by (Romanov and Shivade, 2018). The latter are
initialized with GloVe embeddings trained on Com-
mon Crawl, followed by training on 12M PubMed
abstracts, and finally on 2M clinical notes from
MIMIC-III database (Johnson et al., 2016). In
all the experiments, we use 300-dimensional word
vectors. We also experimented with transformer-
based contextual vectors using BERT (Devlin et al.,
2019). More specifically, instead of using LSTM
representations of the textual data, we extracted the
last layer vectors from ClinicalBERT (Alsentzer
et al., 2019) pre-trained on MIMIC notes, and aver-
aged them over input sequence tokens.

5.6 Question order

In a visual dialog setting, a model is conditioned on
the image vector, the image caption, and the dialog
history to predict the answer to a new question.
We hypothesized that a model should be able to
answer later questions in a dialog better since it
has more information from the previous questions
and their answers. As described in Section 3.2, we
randomly sample 5 questions out of 13 possible
choices to construct a dialog. We re-ordered the
question-answer pairs in the dialog to reflect the
order in which the corresponding abnormality label
mentions occurred in the report. However, results
for questions ordered based on their occurrence in
the narrative did not vary from the setup with a
random order of questions.

6 Results

We report macro-averaged F1-scores achieved on
the same unbalanced validation set for each of the
experiments. When experimenting with different
configurations of the same model, we also break
down the aggregate score to the F1 scores for indi-
vidual answer options.
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Model ‘Yes’ ‘No’ ‘Maybe’ ‘Not in report’ Macro F1

SAN (VQA) 0.24 0 0.09 0.84 0.29
SAN (caption only) 0.30 0.09 0.09 0.81 0.33
SAN (full history) 0.22 0.26 0.04 0.83 0.34

Table 1: Ablation experiments. Per-answer F1-scores along with the macro F1-score are shown for tested SAN
configurations.

6.1 Downsampling
Our results show (Table 2) consistent improvement
of the scores across all the models as the train-
ing data becomes more balanced. All the mod-
els yielded comparable scores, with SAN being
slightly better than other models (0.34 against 0.33
macro F1-score). Later in our experiments, we used
the major down sampled version of the data-set.

Model Unbalanced Downsampled
Minor Major

SAN 0.25 0.28 0.34
LF 0.28 0.31 0.33
RvA 0.24 0.33 0.33

Table 2: Data balancing experiments. Macro F1 scores
are reported for every tested model.

6.2 Evaluating importance of context
One of the main findings of our study revealed the
importance of contextual information for answer-
ing questions about a given image. As shown in
Table 1, adding the image caption and the history
of turns results in incremental increases of macro
F1-scores. Notably, the VQA setup in which the
model relies on the image only, it fails to detect the

‘No’ answer, whereas the history-aware configura-
tion leads to a significant performance gain for this
particular label. As expected and due to the skewed
nature of the data-set, the highest and the lowest
per-label scores were achieved for the most and the
least frequent labels (‘Not in report’ and ‘Maybe’),
respectively.

6.3 Image representation
Out of the tested image representations, ResNet-
derived vectors perform consistently better than the
other approaches (see Table 3). Although in our
DenseNet-121 image classification pre-training we
were able to replicate the performance of (Irvin
et al., 2019), the Visual Dialog scores for the corre-
sponding vectors turned out to be lower. We believe

this might be due to the fact that, by design, the net-
work uses a limited set of pre-training classes not
sufficient to generalize well to a full set of diseases
used in the Visual Dialog task.

Model DenseNet-121 Region
Proposal

ResNet

SAN 0.27 0.29 0.34
LF 0.33 0.31 0.33
RvA 0.29 0.32 0.33

Table 3: Comparative performance (macro-F1) of Vi-
sual Dialog models on the test set with different image
representations.

6.4 Effect of incorporating a lateral view

As expected, for both variations of the frontal view
(i.e. AP and PA) appending lateral image vectors
enhanced the performance of the tested SAN model
(see Table 4). This suggests that lateral and frontal
image vectors complement each other, and the mod-
els can benefit from using both. However, in our
data-set only a subset of reports has both views
available, which significantly reduces the amount
of training data.

6.5 Word embeddings

Another observation from our experiments is that
domain-specific pre-trained word embeddings con-
tribute to better scores (see Table 5). This is due
to the fact that domain-specific embeddings con-
tain medical knowledge that helps the model make
more justified predictions.

When using BERT, we did not notice gains in
performance, which most likely means that the last-
layer averaging strategy is not optimal and more
sophisticated approaches such as (Xiao, 2018) are
required . Alternatively, the final representation of
the CLS can be used to represent input text.
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View ‘Yes’ ‘No’ ‘Maybe’ ‘Not in report’ Macro F1

A
P+

L
A

T AP 0.40 0.21 0.12 0.79 0.381
LAT 0.41 0.23 0.13 0.75 0.379
AP + LAT 0.41 0.22 0.12 0.79 0.385

PA
+L

A
T PA 0.30 0.30 0.08 0.88 0.392

LAT 0.32 0.32 0.07 0.86 0.391
PA + LAT 0.32 0.34 0.06 0.87 0.396

Table 4: Effect of adding the lateral view to a frontal view (AP and PA).

Embedding ‘Yes’ ‘No’ ‘Maybe’ ‘Not in report’ Macro F1

Random 0.26 0.22 0.04 0.73 0.31
GloVe (common crawl) 0.27 0 0.09 0.80 0.29
fastText (MedNLI) 0.24 0.22 0.07 0.84 0.33

Table 5: Comparative performance of the SAN model with different word embeddings.

7 Comparison with the gold-standard
data

To complement our experiments with the silver
data and investigate the applicability of the trained
models to real-world scenarios, we also collected a
set of gold standard data which consisted of two ex-
pert radiologists having a dialog about a particular
chest X-ray. These X-ray images were randomly
sampled PA views from the test our data. In this
section, we present the data collection workflow,
outline the associated challenges, compare the re-
sulting data-set with the silver-standard, and report
the performance of trained models.

7.1 Gold Standard Data Collection
We laid the foundations for our data collection in
a manner similar to that of the general visual dia-
log challenge (Das et al., 2017). Two radiologists,
designated as a “questioner” and an “answerer”,
conversed with each other following a detailed an-
notation guideline created to ensure consistency.
The “answerer” in each scenario was provided with
an image and a caption (medical condition). The
“questioner” was provided with only the caption,
and tasked with asking follow-up questions about
the image, visible only to the “answerer”. In or-
der to make the gold data-set comparable to the
silver-standard one, we restricted the beginning of
each answer to contain a direct response of ‘Yes’,

‘No’, ‘Maybe’, or ‘Not mentioned’. In our anno-
tation guidelines ‘Not mentioned’ referred to the
lack of evidence of the given medical condition
that was asked by the “questioner” radiologist. The

answer was elaborated with additional information
if the radiologists found it necessary. The whole
data collection procedure resulted in 100 annotated
dialogs.

7.2 Gold standard results

Following the gold standard data collection, we
performed some preliminary analyses with the best
silver standard SAN model. Our gold standard data
was split into train (70), validation (20), and test
(10) sets. We experimented with three setups: (a)
evaluating the silver-data trained networks on the
gold standard data, (b) training and evaluating the
models on the gold data, and (c) fine-tuning the
silver-data trained networks on the gold standard
data. Table 6 shows the results of these experiments.
We found the best macro-F1 score of 0.47 was
achieved by the silver data-trained SAN network
fine-tuned on the gold standard data. We observed
that the model could not directly predict any of the
classes if directly evaluated on the gold data-set,
suggesting that it was trained to fit the data patterns
significantly different from those present in the
collected data-set. However, pre-training on the
silver data serves as a good starting point for further
model fine-tuning. The obtained scores in general
imply that there are many differences between the
gold and silver data, including their vocabularies,
answer distributions, and level of question detail.

7.3 Comparison of gold and silver data

To provide a meaningful analysis of the sources
of difference between the gold and silver datasets,
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Train data ‘Yes’ ‘No’ Macro F1

Silver 0.00 0.00 0.00
Gold 0.27 0.77 0.35
Silver+gold 0.60 0.82 0.47

Table 6: Comparative performance of the SAN model
trained on different combinations of silver and gold
data, and evaluated on the test subset of gold data. Note
that the gold annotations did not contain ‘Not in report’
and ‘Maybe’ options.

we grouped the gold questions semantically by us-
ing the CheXpert vocabulary for the 13 labels used
for the construction of the silver dataset. The gold
questions that are unable to be grouped via CheX-
pert were mapped manually using expert clinical
knowledge. We systematically compared the gold
and silver dialogs on the same 100 chest X-rays
and noted the following differences.

• Frequency of semantically equivalent ques-
tions. Just under half of the gold question
types were semantically covered by the ques-
tions in the silver dataset.

• Granularity of questions. We observed that
the silver dataset tends to ask highly granular
questions about specific findings (e.g. “con-
solidation”) as expected. The radiology ex-
perts, however, asked a range of low (e.g.
“Are there any bone abnormalities?), medium
(e.g. “Are the lungs clear?”) and high (e.g.
“Is there evidence of pneumonia?”) granular-
ity questions. The gold dialogs tend to start
with broader (low granularity) questions and
narrow the differential diagnosis down as the
dialogs progress.

• Question sense. The radiologists also asked
questions in the form of whether some struc-
ture is “normal” (e.g. “Is the soft tissue
normal?”). Whereas, the silver questions
only asked whether an abnormality is present.
Since chest X-rays are screening exams where
a good proportion of the images may be “nor-
mal”, having more questions asking whether
different anatomies are normal would, there-
fore, yield more ‘Yes’ answers.

• Answer distributions The answer distribu-
tions of the gold and silver data differ greatly.
Specifically, while the gold data was com-

posed heavily of ‘Yes’ or ‘No’ answers, the
silver comprised mostly of ‘Not in report’.

8 Discussion

Our main finding is that the introduced task of vi-
sual dialog in radiology presents a lot of challenges
from the machine learning perspective, including a
skewed distribution of classes and a required abil-
ity to reason over both visual and textual input
data. The best of our baseline models achieved
0.34 macro-averaged F1-score, indicating on a sig-
nificant scope for potential improvements. Our
comparison of gold and silver standard data shows
some trends are in line with medical doctors’ strate-
gies in medical history taking, starting with broader,
general questions and then narrowing the scope of
their questions to more specific findings (Talbot
et al.; Campillos-Llanos et al., 2020).

Despite the difficulty and the practical usefulness
of the task, it is important to list the limitations of
our study. The questions were limited to presence
of 13 abnormalities extracted by CheXpert and the
answers were limited to 4 options. The studies
used in this work (from MIMIC-CXR) originate
from a single tertiary hospital in the United States.
Moreover, they correspond to a specific group of
patients, namely those admitted to the Emergency
Department (ED) from 2012 to 2014. Therefore,
the data and hence the model reflect multiple real-
world biases. It should also be noted that chest
X-rays are mostly used for screening than diagnos-
tic purposes. A radiology image is only one of the
many data points (e.g. labs, demographics, medi-
cations) used while making a diagnosis. Therefore,
although predicting presence of abnormalities (e.g.
pneumonia) based on brief knowledge of the pa-
tient’s medical history and the chest X-ray might
be a good exercise and a promising first step in
evaluating machine learning models, it is clinically
limited.

There are plenty of directions for future work
that we intend to pursue. To make the synthetic
data more realistic and expressive, both questions
and answers should be diversified with the help of
clinicians’ expertise and external knowledge bases
such as UMLS(Bodenreider, 2004). We plan to
enrich the data with more question types, address-
ing, for example, the location or the size of a given
lung abnormality. We plan to collect more real life
dialog between radiologists and augment the two
datasets to get a richer set of more expressive dia-
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log. We anticipate that bridging the gap between
the silver- and the gold-standard data in terms of
natural language formulations would significantly
reduce the difference in model performance for the
two setups.

Another direction is to develop a strategy to man-
age the uncertain labels such as ‘Maybe’ and ‘Not
in report’ to make the dataset more balanced.

9 Conclusion

We explored the task of Visual Dialog for radiol-
ogy using chest X-rays and released the first pub-
licly available silver- and gold-standard datasets
for this task. Having conducted a set of rigorous
experiments with state-of-the-art machine learning
models used for the combination of visual and lan-
guage reasoning, we demonstrated the complexity
of the task and outlined the promising directions
for further research.
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Abstract

Recently BERT has achieved a state-of-the-
art performance in temporal relation extraction
from clinical Electronic Medical Records text.
However, the current approach is inefficient
as it requires multiple passes through each in-
put sequence. We extend a recently-proposed
one-pass model for relation classification to
a one-pass model for relation extraction. We
augment this framework by introducing global
embeddings to help with long-distance rela-
tion inference, and by multi-task learning to
increase model performance and generalizabil-
ity. Our proposed model produces results on
par with the state-of-the-art in temporal rela-
tion extraction on the THYME corpus and is
much “greener” in computational cost.

1 Introduction

The analysis of many medical phenomena (e.g.,
disease progression, longitudinal effects of medi-
cations, treatment regimen and outcomes) heavily
depends on temporal relation extraction from the
clinical free text embedded in the Electronic Medi-
cal Records (EMRs). At a coarse level, a clinical
event can be linked to the document creation time
(DCT) as Document Time Relations (DocTimeRel),
with possible values of BEFORE, AFTER, OVER-
LAP, and BEFORE OVERLAP (Styler IV et al.,
2014). At a finer level, a narrative container
(Pustejovsky and Stubbs, 2011) can temporally
subsume an event as a contains relation. The
THYME corpus (Styler IV et al., 2014) consists
of EMR clinical text and is annotated with time
expressions (TIMEX3), events (EVENT), and tem-
poral relations (TLINK) using an extension of
TimeML (Pustejovsky et al., 2003; Pustejovsky and
Stubbs, 2011). It was used in the Clinical Temp-
Eval series (Bethard et al., 2015, 2016, 2017).

While the performance of DocTimeRel models
has reached above 0.8 F1 on the THYME corpus,

the CONTAINS task remains a challenge for both
conventional learning approaches (Sun et al., 2013;
Bethard et al., 2015, 2016, 2017) and neural models
(structured perceptrons (Leeuwenberg and Moens,
2017), convolutional neural networks (CNNs) (Dli-
gach et al., 2017; Lin et al., 2017), and Long Short-
Term memory (LSTM) networks (Tourille et al.,
2017; Dligach et al., 2017; Lin et al., 2018; Galvan
et al., 2018)). The difficulty is that the limited la-
beled data is insufficient for training deep neural
models for complex linguistic phenomena. Some
recent work (Lin et al., 2019) has used massive
pre-trained language models (BERT; Devlin et al.,
2018) and their variations (Lee et al., 2019) for this
task and significantly increased the CONTAINS
score by taking advantage of the rich BERT rep-
resentations. However, that approach has an input
representation that is highly wasteful – the same
sentence must be processed multiple times, once
for each candidate relation pair.

Inspired by recent work in Green AI (Schwartz
et al., 2019; Strubell et al., 2019), and one-pass en-
codings for multiple relations extraction (Wang
et al., 2019), we propose a one-pass encoding
mechanism for the CONTAINS relation extraction
task, which can significantly increase the efficiency
and scalability. The architecture is shown in Fig-
ure 1. The three novel modifications to the original
one-pass relational model of Wang et al. (2019)
are: (1) Unlike Wang et al. (2019), our model
operates in the relation extraction setting, mean-
ing it must distinguish between relations and non-
relations, as well as classifying by relation type.
(2) We introduce a pooled embedding for relational
classification across long distances. Wang et al.
(2019) focused on short-distance relations, but clin-
ical CONTAINS relations often span multiple sen-
tences, so a sequence-level embedding is necessary
for such long-distance inference. (3) We use the
same BERT encoding of the input instance for both
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Figure 1: Model Architecture. e1, e2, and t repre-
sent entity-embeddings for “surgery”, “scheduled”, and
“March 11, 2014” respectively. G is the pooled embed-
ding for the entire input instance.

DocTimeRel and CONTAINS tasks, i.e. adding
multi-task learning (MTL) on top of one-pass en-
coding. DocTimeRel and CONTAINS are related
tasks. For example, if a medical event A happens
BEFORE the DCT, while event B happens AFTER
the DCT, it is unlikely that there is a CONTAINS
relation between A and B. MTL provides an effec-
tive way to leverage useful knowledge learned in
one task to benefit other tasks. What is more, MTL
can potentially employ a regularization effect that
alleviates overfitting to a specific task.

2 Methodology

2.1 Twin Tasks

Apache cTAKES (Savova et al., 2010)(http://
ctakes.apache.org) is used for segmenting and
tokenizing the THYME corpus in order to gen-
erate instances. Each instance is a sequence of
tokens with the gold standard event and time ex-
pression annotations marked in the token sequences
by logging their positional information. Using the
entity-aware self-attention based on relative dis-
tance (Wang et al., 2019), we can encode every
entity, Ei, by its BERT embedding, ei. If an entity
ei consists of multiple tokens (many time expres-
sions are multi-token), it is average-pooled (local
pool in Figure 1) over the embedding of the corre-
sponding tokens in the last BERT layer.

For the CONTAINS task, we create relation can-
didates from all pairs of entities within an input
sequence. Each candidate is represented by the
concatenation of three embeddings, ei, ej , and G,
as [G:ei:ej], where G is an average-pooled embed-
ding over the entire sequence, and is different from
the embedding of [CLS] token. The [CLS] token is

the conventional token BERT inserts at the start of
every input sequence and its embedding is viewed
as the representation of the entire sequence. The
concatenated embedding is passed to a linear classi-
fier to predict the CONTAINS, CONTAINED-BY,
or NONE relation, r̂ij , as in eq. (1).

P (r̂ij |x, Ei, Ej)=softmax(W
L[G : ei : ej ] + b)

(1)

where WL ∈ R3dz×lr , dz is the dimension of the
BERT embedding, lr = 3 for the CONTAINS la-
bels, b is the bias, and x is the input sequence.

Similarly, for the DocTimeRel (dtr) task we
feed each entity’s embedding, ei, together with the
global pooling G, to another linear classifier to pre-
dict the entity’s five “temporal statuses”: TIMEX
if the entity is a time expression or the dtr type
(BEFORE, AFTER, etc.) if the entity is an event:

P ( ˆdtri|x, Ei) = softmax(WD[G : ei] + b)
(2)

where WD ∈ R2dz×ld , and ld = 5.
For the combined task, we define loss as:

L(r̂ij , rij) + α(L( ˆdtri, dtri) + L( ˆdtrj , dtrj))
(3)

where r̂ij is the predicted relation type, ˆdtri and
ˆdtrj are the predicted temporal statuses for Ei and
Ej respectively, rij is the gold relation type, and
dtri and dtrj are the gold temporal statuses. α is a
weight to balance CONTAINS loss and dtr loss.

2.2 Window-based token sequence processing
Following Lin et al. (2019), we use a set window of
tokens (Token-Window) disregarding natural sen-
tence boundaries for generating instances. BERT
may still take punctuation tokens into account.
Each token sequence is limited by a set number
of entities (Entity-Window) to be processed. We
apply a sliding token window (windows may over-
lap), thus every entity gets processed. Positional
information for each entity is output along the to-
ken sequence and is propagated through different
layers via the entity-aware self-attention mecha-
nism (Wang et al., 2019).

3 Experiments

3.1 Data and Settings
We adopt the THYME corpus (Styler IV et al.,
2014) for model fine-tuning and evaluation. The
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Model P R F1
Multi-pass 0.735 0.613 0.669
Multi-pass+Silver 0.674 0.695 0.684
One-pass 0.647 0.671 0.659
One-pass+[CLS] 0.665 0.673 0.669
One-pass+Pooling 0.670 0.689 0.680
One-pass+Pooling+MTL 0.686 0.687 0.686

Table 1: Model performance of CONTAINS relation on
colon cancer test set. Multi-pass baselines are from Lin
et al. (2019)’s system without and with self-training us-
ing silver instances (system predictions on a unlabeled
colon cancer set). We tested a one pass system with
just argument embeddings; with the [CLS] token as the
global context vector ([CLS]); with argument embed-
dings plus a globally pooled context vector (Pooling);
and with global pooling as well as multi-task learning
(MTL) with DocTimeRel.

one-pass multi-task model is fine-tuned on the
THYME Colon Cancer training set with un-
cased BERT base model, using the code released
by Wang et al. (2019)1 as a base. The batch size
is set to 4, the learning rate is selected from (1e-5,
2e-5, 3e-5, 5e-5), the Token-Window size is se-
lected from (60, 70, 100), the Entity-Window size
is selected from (8, 10, 16), the training epochs
are selected from (2, 3, 4, 5), the clipping distance
k (the maximum relative position to consider) is
selected from (3, 4, 5), and α is selected from (0.01,
0.05). A single NVIDIA GTX Titan Xp GPU is
used for the computation. The best model is se-
lected on the Colon cancer development set and
tested on the Colon cancer test set, and on THYME
Brain cancer test set for portability assessment.

3.2 Results on THYME

Table 1 shows performance of our one-pass models
for the CONTAINS task on the Clinical TempEval
colon cancer test set. The one-pass (OP) model
alone obtains an F1 score of 0.659. Adding the
[CLS] token as the global context vector increases
the F1 score to 0.669. Using a globally average-
pooled context vectors G instead of [CLS] im-
proves performance to 0.680, better than the multi-
pass model without silver instances (Lin et al.,
2019). Applying the MTL setting, the one-pass
twin-task (CONTAINS and DocTimeRel) model
without any silver data reaches 0.686 F1, which
is on par with the multi-pass model trained with
additional silver instances on the CONTAINS task,

1https://github.com/helloeve/mre-in-one-pass

Model Single MTL
AFTER 0.86 0.83
BEFORE 0.88 0.89
BEFORE/OVERLAP 0.63 0.56
OVERLAP 0.89 0.85
TIMEX 0.98 0.98
OVERALL 0.88 0.86

Table 2: Model performance in F1-scores of tem-
poral statuses on colon cancer test set. Single:
One-pass+Pooling for a single dtr Task; MTL: One-
pass+Pooling for twin tasks: CONTAINS and dtr.

Model P R F1
Lin et al. (2019) 0.473 0.700 0.565
One-pass+Pooling 0.506 0.643 0.566
One-pass+Pooling+MTL 0.545 0.624 0.582

Table 3: Model performance of CONTAINS relation on
brain cancer test set.

0.684 F1 (Lin et al., 2019).
Table 2 shows the performance of our one-pass

models for the DocTimeRel task on the Clinical
TempEval colon cancer test set. The single-task
model achieves 0.88 weighted average F1, while
the MTL model compromises the performance to
0.86 F1. Of note, this result is not directly com-
parable to Bethard et al. (2016) results because
the Clinical TempEval evaluation script does not
take into account if an entity is correctly recog-
nized as a time expression (TIMEX). There are two
types of entities in the THYME annotation: events
and time expressions (TIMEX). The Bethard et al.
(2016) evaluation on DocTimeRel was focused on
all events, and classified an event into four Doc-
TimeRel types. Our evaluation was for all entities.
For a given entity, we classify it as a TIMEX or
an event; if it is an event, we classify it into four
DocTimeRel types, for a total of five classes.

Table 3 shows the portability of our one-pass
models on the THYME brain cancer test set. With-
out any tuning on brain cancer data, the MTL
model with global pooling performs at 0.582 F1,
which is better than the multi-pass model trained
with additional silver instances (0.565 F1) re-
ported in Lin et al. (2019), trading roughly equal
amounts of precision for recall to obtain a bet-
ter balance. Without MTL, the one-pass CON-
TAINS model with global context embeddings
(One-pass+Pooling) achieves 0.566 F1 on the brain
cancer test set, significantly lower than the MTL
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Model flops/inst inst# Ratio
OP 218,767,889 20k 1
OP+MTL 218,783,260 20k 1
Multi-pass 218,724,880 427k 23
Multi-pass+Silver 218,724,880 497k 25

Table 4: Computational complexity in flops per in-
stance (flops/inst)×total number of instances (inst#).

model (using a Wilcoxon Signed-rank test over
document-by-document comparisons, as in (Cherry
et al., 2013), p-value=0.01962).

3.3 Computational Efficiency

Table 4 shows the computational burden for dif-
ferent models in terms of floating point operations
(flops). The flops are derived from TensorFlow’s
profiling tool on saved model graphs. The sec-
ond column is the flops per one training instance,
the third column lists the number of instances for
different model settings. The total computational
complexity for one training epoch is thus the mul-
tiplication between column 2 and 3. The Ratio
column is the relative ratio of total complexity us-
ing the OP total flops as the comparator.

For relation extraction, all entities within a se-
quence must be paired. If there are n entities in
a token sequence, there are n × (n − 1)/2 ways
to combine those entities for relational candidates.
The multi-pass model would encode the same se-
quence n × (n − 1)/2 times, while the one-pass
model would only encode it once and add the pair-
ing computation on top of the BERT encoding rep-
resented in Figure 1 with very minor increase in
computation per one instance (about 43K flops);
and the MTL model adds another 15k flops; but
they are of the same magnitude, 219K flops. The
one-pass models save a lot of passes on the training
instances, 20k vs. 497k, which results in a signif-
icant difference in computational load, 1 vs. 25,
which could be several hours to several days differ-
ence in GPU hours. The exact number of training
instances processed by the one-pass model is af-
fected by the Token-Window and Entity-Window
hyper-parameters. However, even in the worst case
scenario, when the Token-Window is set to 100,
and the Entity-Window is set to 8, there are 108K
training instances for the one-pass model, which
is still substantially fewer training instances than
what are used for the multi-pass model. In addi-
tion, since the one-pass models do not run the extra

steps used for generating silver instances (Lin et al.,
2019), the time savings is even greater.

4 Discussion

Through table 1 row 3-5, we can see that sequence-
wise embedding, either global pooling G or [CLS],
is important for clinical temporal relation extrac-
tion which involves long-distance relations that
may go across multiple natural sentences. Entity
embeddings are good for tasks that focus on short-
distance relations (such as (Gábor et al., 2018)), but
may not be sufficient for picking enough context
for long-distance relations.

Combining MTL with a one-pass mechanism
produces a more efficient and generalizable model.
With merely additional 15k flops (table 4 row 1
and 2), the model achieves high performance for
both tasks. However, we found that it is hard for
both tasks to get top performance. If the weight
for dtr loss is increased, the dtr F1 increases at
the cost of the CONTAINS scores. Even though
the majority of entities in CONTAINS relations
have aligned dtr values (e.g., in Figure 2(#1), both
entities have matching dtr value, AFTER), some re-
lations do have conflicted dtr values. For example,
in Figure 2(#2), the dtr for screening is BEFORE,
while test is a BEFORE OVERLAP (the present
perfect tense signifies tests happened in the past but
lasts through present, hence BEFORE OVERLAP).
Even though it is a gold CONTAINS annotation,
the model may be confused by an event that hap-
pened in the past (screening) to contain another
event (test) that is longer than its temporal scope.
Due to these conflicts, we thus pick the more chal-
lenging CONTAINS task as our priority and set α
relatively low (0.01) in order to optimize the model
towards the CONTAINS task, ignoring some of the
dtr errors or conflicts. In the meantime, the MTL
setting does help prevent the model from over-
fitting to one specific task, thus achieving some
level of generalization. The significant 1.6% in-
crease in F1-score on the Brain test set in table 3
demonstrates the improved generalizability.

In conclusion, we built a ”green” model for a
challenging problem. Deployed on a single gpu
with 25 times better efficiency, it succeeded in
both temporal tasks, achieved better generalizabil-
ity, and suited to other pre-trained models (Liu
et al., 2019; Alsentzer et al., 2019; Beltagy et al.,
2019; Lan et al., 2019; Yang et al., 2019, etc.)
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#1: Subsequent
AFTER

staging will include
AFTER

MRI of the pelvis...

#2: His colon cancer
BEFORE

screening in the past has been fecal

occult blood
BEFORE/OVERLAP

tests yearly since the age of 55...

Figure 2: CONTAINS Relations with match-
ing(#1)/conflicting(#2) DocTimeRel values.
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Abstract

Clinical coding is currently a labour-intensive,
error-prone, but critical administrative process
whereby hospital patient episodes are manu-
ally assigned codes by qualified staff from
large, standardised taxonomic hierarchies of
codes. Automating clinical coding has a long
history in NLP research and has recently seen
novel developments setting new state of the art
results. A popular dataset used in this task is
MIMIC-III, a large intensive care database that
includes clinical free text notes and associated
codes. We argue for the reconsideration of the
validity MIMIC-III’s assigned codes that are
often treated as gold-standard, especially when
MIMIC-III has not undergone secondary vali-
dation. This work presents an open-source, re-
producible experimental methodology for as-
sessing the validity of codes derived from
EHR discharge summaries. We exemplify the
methodology with MIMIC-III discharge sum-
maries and show the most frequently assigned
codes in MIMIC-III are under-coded up to
35%.

1 Introduction

Clinical coding is the process of translating state-
ments written by clinicians in natural language to
describe a patient’s complaint, problem, diagnosis
and treatment, into an internationally-recognised
coded format (World Health Organisation, 2011).
Coding is an integral component of healthcare and
provides standardised means for reimbursement,
care administration, and for enabling epidemiolog-
ical studies using electronic health record (EHR)
data (Henderson et al., 2006).

Manual clinical coding is a complex, labour-
intensive, and specialised process. It is also error-
prone due to the subtleties and ambiguities com-
mon in clinical text and often strict timelines im-
posed on coding encounters. The annual cost of
clinical coding is estimated to be $25 billion in the
US alone (Farkas and Szarvas, 2008).

To alleviate the burden of the status quo of man-
ual coding, several Machine learning (ML) auto-
mated coding models have been developed (Larkey
and Croft, 1996; Aronson et al., 2007; Farkas and
Szarvas, 2008; Perotte et al., 2014; Ayyar et al.,
2016; Baumel et al., 2018; Mullenbach et al., 2018;
Falis et al., 2019). However, despite continued in-
terest, translation of ML systems into real-world
deployments has been limited. An important factor
contributing to the limited translation is the fluctuat-
ing quality of the manually-coded real hospital data
used to train and evaluate such systems, where large
margins of error are a direct consequence of the
difficulty and error-prone nature of manual coding.
To our knowledge, the literature contains only two
systematic evaluations of the quality of clinically-
coded data, both based on UK trusts and showing
accuracy to range between 50 to 98% Burns et al.
(2012) and error rates between 1%-45.8% CHKS
Ltd (2014) respectively. In Burns et al. (2012),
the actual accuracy is likely to be lower because
the reviewed trusts used varying statistical evalu-
ation methods, validation sources (clinical text vs
clinical registries), sampling modes for accuracy
estimation (random vs non-random), and the qual-
ity of validators (qualified clinical coders vs lay
people). CHKS Ltd (2014) highlight that 48% of
the reviewed trusts used discharge summaries alone
or as the primary source for coding an encounter,
to minimise the amount of raw text used for code
assignment. However, further portions of the docu-
mented encounter are often needed to assign codes
accurately.

The Medical Information Mart for Intensive
Care (MIMIC-III) database (Johnson et al., 2016)
is the largest free resource of hospital data and con-
stitutes a substantial portion of the training of au-
tomated coding models. Nevertheless, MIMIC-III
is significantly under-coded for specific conditions
(Kokotailo and Hill, 2005), and has been shown
to exhibit reproducibility issues in the problem of
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mortality prediction (Johnson et al., 2017). There-
fore, serious consideration is needed when using
MIMIC-III to train automated coding solutions.

In this work, we seek to understand the limita-
tions of using MIMIC-III to train automated cod-
ing systems. To our knowledge, no work has at-
tempted to validate the MIMIC-III clinical coding
dataset for all admissions and codes, due to the
time-consuming and costly nature of the endeavour.
To illustrate the burden, having two clinical coders,
working 38 hours a week re-coding all 52,726 ad-
mission notes at a rate of 5 minutes and $3 per
document, would amount to ∼$316,000 and ∼115
weeks work for a ‘gold standard’ dataset. Even
then, documents with a low inter-annotator agree-
ment would undergo a final coding round by a
third coder, further raising the approximate cost
to ∼$316,000 and stretching the 70 weeks.

In this work, we present an experimental eval-
uation of coding coverage in the MIMIC-III dis-
charge summaries. The evaluation uses text ex-
traction rules and a validated biomedical named
entity recognition and linking (NER+L) tool, Med-
CAT (Kraljevic et al., 2019) to extract ICD-9 codes,
reconciling them with those already assigned in
MIMIC-III. The training and experimental setup
yield a reproducible open-source procedure for
building silver-standard coding datasets from clin-
ical notes. Using the approach, we produce a
silver-standard dataset for ICD-9 coding based on
MIMIC-III discharge summaries.

This paper is structured as follows: Section 2
reviews essential background and related work in
automated clinical coding, with a particular focus
on MIMIC-III. Section 3 presents our experimental
setup and the semi-supervised development of a sil-
ver standard dataset of clinical codes derived from
unstructured EHR data. The results are presented
in Section 4, while Section 5 discusses the wider
impact of the results and future work.

2 Background

2.1 Clinical Coding Overview

The International Statistical Classification of Dis-
eases and Health Related Problems (ICD) provides
a hierarchical taxonomic structure of clinical ter-
minology to classify morbidity data (World Health
Organisation, 2011). The framework provides con-
sistent definitions across global health care services
to describe adverse health events including illness,
injury and disability. Broadly, patient encounters

with health services result in a set of clinical codes
that directly correlate to the care provided.

Top-level ICD codes represent the highest level
of the hierarchy, with ICD-9/10 (ICD-10 being the
later version) listing 19 and 21 chapters respec-
tively. Clinically meaningful hierarchical subdivi-
sions of each chapter provide further specialisation
of a given condition.

Coding clinical text results in the assignment of
a single primary diagnosis and further secondary
diagnosis codes (World Health Organisation, 2011).
The complexity of coding encounters largely stems
from the substantial number of available codes. For
example, ICD-10-CM is the US-specific extension
to the standard ICD-10 and includes 72,000 codes.
Although a significant portion of the hierarchy cor-
responds to rare conditions, ‘common’ conditions
to code are still in the order of thousands.

Moreover, clinical text often contains special-
ist terminology, spelling mistakes, implicit men-
tions, abbreviations and bespoke grammatical rules.
However, even qualified clinical coders are not per-
mitted to infer codes that are not explicitly men-
tioned within the text. For example, a diagnostic
test result that indicates a condition (with the con-
dition not explicitly written), or a diagnosis that
is written as ‘questioned’ or ‘possible’ cannot be
coded.

Another factor contributing to the laborious na-
ture of coding is the large amount of duplication
present in EHRs, as a result of features such as
copy & paste being made available to clinical staff.
It has been reported that 20-78% of clinicians dupli-
cate sections of records between notes (Bowman,
2013), subsequently producing an average data re-
dundancy of 75% (Zhang et al., 2017).

2.2 MIMIC-III - a Clinical Coding Database

MIMIC-III (Johnson et al., 2016) is a de-identified
database containing data from the intensive care
unit of the Beth Israel Medical Deaconess Center,
Boston, Massachusetts, USA, collected 2001-12.
MIMIC-III is the world’s largest resource of freely-
accessible hospital data and contains demograph-
ics, laboratory test results, procedures, medications,
caregiver notes, imaging reports, admission and dis-
charge summaries, as well as mortality (both in and
out of the hospital) data of 52,726 critical care pa-
tients. MIMIC provides an open-source platform
for researchers to work on real patient data. At the
time of writing, MIMIC-III has over 900 citations.
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2.3 Automated Clinical Coding

Early ML work on automated clinical coding con-
sidered ensembles of simple text classifiers to pre-
dict codes from discharge summaries (Larkey and
Croft, 1996). Rule-based models have also been
formulated, by directly replicating coding manuals.
A prominent example of rule-based models is the
BioNLP 2007 shared task (Aronson et al., 2007),
which supplied a gold standard labelled dataset
of radiology reports. The dataset continues to be
used to train and validate ML coding. For example,
Kavuluru et al. (2015) used the dataset in addition
to two US-based hospital EHRs. Although the two
additional datasets used by Kavuluru et al. (2015)
were not validated to a gold standard, they are re-
flective of the diversity found in clinical text. Their
largest dataset contained 71,463 records, 60,238
distinct code combinations and had an average doc-
ument length of 5303 words.

The majority of automated coding systems are
trained and tested Using MIMIC-III. Perotte et al.
(2014) trained hierarchical support vector machine
models on the MIMIC-II EHR (Saeed et al., 2011),
the earlier version of MIMIC. The models were
trained using the full ICD-9-CM terminology, cre-
ating baseline results for subsequent models of
0.395 F1-micro score. Ayyar et al. (2016) used
a long-short-term-memory (LSTM) neural network
to predict ICD-9 codes in MIMIC-III. However,
Ayyar et al. (2016) cannot be directly compared to
former methods as the model only predicts the top
nineteen level codes.

Methodological developments continued to use
MIMIC-III with Tree-of-sequence LSTMs (Xie
and Xing, 2018), hierarchical attention gated re-
current unit (HA-GRU) neural networks (Baumel
et al., 2018) and convolutional neural networks
with attention (CAML) (Mullenbach et al., 2018).
The HA-GRU and CAML models were directly
compared with (Perotte et al., 2014), achieving
0.405 and 0.539 F1-micro respectively. A recent
empirical evaluation of ICD-9 coding methods pre-
dicted the top fifty ICD-9 codes from MIMIC-III,
suggesting condensed memory networks as a supe-
rior network topology (Huang et al., 2018).

3 Semi-Supervised Extraction of Clinical
Codes

In this section, we describe the data preprocessing,
methodology and experimental design for evaluat-
ing the coding quality of MIMIC-III discharge sum-

maries. We also describe the semi-supervised cre-
ation of a silver-standard dataset of clinical codes
from unstructured EHR text based on MIMIC-III
discharge summaries.

3.1 Data Preparation

Discharge summary reports are used to provide
an overview for the given hospital episode. Au-
tomated coding systems often only use discharge
reports as they contain the salient diagnostic text
(Perotte et al., 2014; Baumel et al., 2018; Mullen-
bach et al., 2018) without over burdening the model.
MIMIC-III discharge summaries are categorised
distinctly from other clinical text. The text is of-
ten structured with section headings and content
section delimiters such as line breaks. We identify
Discharge Diagnosis (DD) sections in the majority
of discharge summary reports 92% (n=48,898) us-
ing a simple rule based approach. These sections
are lists of diagnoses assigned to the patient during
admission. Xie and Xing (2018) previously used
these sections to develop a matching algorithm
from discharge diagnosis to ICD code descriptions
with moderate success demonstrating state-of-the-
art sensitivity (0.29) and specificity (0.33) scores.
For the 8% (n=3,828) that are missing these sec-
tions we manually inspect a handful of examples
and observe instances of patient death and admin-
istration errors. The SQL procedures used to ex-
tract the raw data from a locally built replica of the
MIMIC-III database and the extraction logic for
DDs are available open-source as part of this wider
analysis1.

Table 1 lists example extracted DDs. There is a
large variation in structure, use of abbreviations and
extensive use of clinical terms. Some DDs list the
primary diagnosis alongside secondary diagnosis,
whereas others simply list a set of conditions.

3.2 Semi-Supervised Named Entity
Recognition and Linkage Tool

We use MedCAT (Kraljevic et al., 2019), a
pre-trained named entity recognition and linking
(NER+L) model, to identify and extract the cor-
responding ICD codes in a discharge summary
note. MedCAT utilises a fast dictionary-based
algorithm for direct text matches and a shallow
neural network concept to learn fixed length dis-
tributed semantic vectors for ambiguous text spans.
The method is conceptually similar to Word2Vec

1https://tinyurl.com/t7dxn3j
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Extracted Discharge Diag-
nosis

Admission
ID

CAD now s/p CABG
HTN, DM, Osteoarthritis,
Dyslipidemia

102894

Left convexity, tento-
rial, parafalcine Subdural
hematoma

161919

Primary Diagnoses:
1. Acute ST segment Eleva-
tion Myocardial Infarction
Secondary Diagnoses:
1. Hypertension
2. Hyperlipidemia

152382

Seizures. 132065

Table 1: Example discharge diagnosis subsections ex-
tracted from MIMIC-III discharge summaries

(Mikolov et al., 2013) in that word representa-
tions are learnt by detecting correlations of context
words, and learnt vectors exhibit the semantics of
the underlying words. The tool can be trained in
a unsupervised or a supervised manner. However,
unlike Word2Vec that learns a single representa-
tion for each word, MedCAT enables the learn-
ing of ‘concept’ representations by accommodat-
ing synonymous terms, abbreviations or alternative
spellings.

We use a MedCAT model pre-loaded with the
Unified Medical Language System (Bodenreider,
2004) (UMLS). UMLS is a meta-thesaurus of med-
ical ontologies that provides rich synonym lists
that can be used for recognition and disambigua-
tion of concepts. Mappings from UMLS to the
ICD-92 taxonomy are then used to extract UMLS
concept to ICD codes. Our large pre-trained Med-
CAT UMLS model contains∼1.6 million concepts.
This model cannot be made publicly available due
to constraints on the UMLS license, but can be
trained in an an unsupervised method in ∼1 week
on MIMIC-III with standard CPU only hardware3.

In an effort to keep our analysis tractable we
limit our MedCAT model to only extract the 400
ICD-9 codes that occur most frequently in the
dataset. This equates to 76% (n=48,2379) of to-
tal assigned codes (n=634,709). We exclude the
other 6,441 codes that occur less frequently. Future
work could consider including more of these codes.

2https://bioportal.bioontology.org/ontologies/ICD9CM
3https://tinyurl.com/yadtnz3w

3.3 Code Prediction Datasets
We run our MedCAT model over each extracted
DD subsection. The model assigns each token or
sequence of tokens a UMLS code and therefore
an associated ICD code. In our comparison of the
MedCAT produced annotations with the MIMIC-
III assigned codes we have 3 distinct datasets:

1. MedCAT does not identify a concept and the
code has been assigned in MIMIC-III. Denoted
A NP for ‘Assigned, Not Predicted’.

2. MedCAT identifies a concept and this matches
with an assigned code in MIMIC-III. Denoted
P A for ‘Predicted, Assigned’.

3. MedCAT identifies a concept and this does not
match with an assigned code in MIMIC-III
dataset. Denoted P NA for ‘Predicted, Not As-
signed’.

We do not consider the case where both MedCAT
and the existing MIMIC-III assigned codes have
missed an assignable code as this would involve
manual validation of all notes, and as previously
discussed, is infeasible for a dataset of this size.

3.3.1 Producing the Silver Standard
Given the above initial datasets we produce our
final silver-standard clinical coding dataset by:

1. Sampling from the missing predictions dataset
(A NP) to manually collect annotations where
our out-of-the-box MedCAT model fails to
recognise diagnoses.

2. Fine-tuning our MedCAT model with the col-
lected annotations and re-running on the entire
DD subsection dataset producing updated A NP,
P A, P NA datasets.

3. Sampling from P NA and P A and annotating
predicted diagnoses to validate correctness of
the MedCAT predicted codes.

4. Exclusion of any codes that fail manual valida-
tion step as they are not trustworthy predictions
made by MedCAT.

We use the MedCATTrainer annotator (Searle
et al., 2019) to both collect annotations (stage 1)
and to validate predictions from MedCAT (stage
3). To collect annotations, we manually inspect 10
randomly sampled predictions for each of the 400
unique codes from A NP and add further acronyms,
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Figure 1: The distributions of manually annotated ICD-
9 codes and the assigned codes in MIMIC-III grouped
by top-level ICD-9 axis.

abbreviations, synonyms etc for diagnoses if they
are present in the DD subsection to improve the
underlying MedCAT model. To validate predic-
tions from P A and P NA, we use the MedCAT-
Trainer annotator to inspect 10 randomly sampled
predictions for each of the 179 & 182 unique codes
respectively found. We mark each prediction made
by MedCAT as correct or incorrect and report re-
sults in Section 4.1.

4 Results

The following section presents the distribution
of manually collected annotations from sampling
A NP, our validation of updated P A and P NA
post MedCAT fine-tuning, and the final distribu-
tion of codes found in our produced silver standard
dataset.

Adding annotations to selected text spans di-
rectly adds the spans to the MedCAT dictionary,
thereby ensuring further text spans of the same con-
tent are annotated by the model - if the text span
is unique. We collect 864 annotations after review-
ing 4000 randomly sampled DD notes from the
A NP (Assigned, Not Predicted) dataset. 21.6%
of DDs provide further annotations suggesting that
the majority of missed codes lie outside the DD
subsection, or are incorrectly assigned.

Figure 1 shows the distributions of manually
collected code annotations and the current MIMIC-
III set of clinical codes, grouped by their top-level
axis as specified by ICD-9-CM hierarchy.

We collect proportionally consistent annotations
for most groups, including the 390-459 chapter
(Diseases Of The Circulatory System), which is
the top occurring group in both scales. However,
for groups such as 240-279 (endocrine, nutritional

and metabolic diseases) and 460-519 (diseases of
the respiratory system) we see proportionally fewer
manually collected examples despite the high num-
ber of occurrence of codes assigned within MIMIC-
III. We explain this by the DD subsection lacking
appropriate detail to assign the specific code. For
example codes under 250.* for diabetes mellitus
and the various forms of complications are assigned
frequently but often lack the appropriate level of
detail specifying the type, control status and the
manifestation of complication.

Using the manual amendments made on the 864
new annotations, we re-run the MedCAT model
on the entire DD subsection dataset, producing
updated P NA, P A and A NP datasets. We ac-
knowledge A NP likely still includes cases of ab-
breviations, synonyms as we only subsampled 10
documents per code allowing for further improve-
ments to the model.

The MedCAT fine-tuning process was run until
convergence as measured by precision, recall and
F1 achieving scores 0.90, 0.92 and 0.91 respec-
tively on a held out a test-set with train/test splits
80/20. The fine-tuning code is made available4.
Annotations are available upon request given the
appropriate MIMIC-III licenses.

4.1 P A & P NA Validation
We use the MedCATTrainer interface to validate
our MedCAT model predictions in the ‘Predicted,
Assigned’ (P A) and ‘Predicted, Not Assigned’
(P NA) datasets. We sample (a maximum of) 10
unique predictions for each ICD-code resulting in
179 & 182 ICD-9 codes and 1588 & 1580 man-
ually validated predictions from P A and P NA
respectively. The validation of code assignment is
performed by a medical informatics PhD student
with no professional clinical coding experience and
a qualified clinical coder, marking each term as
correct or incorrect. We achieve good agreement
with a Cohen’s Kappa of 0.85 and 0.8 resulting in
95.51% and 87.91% marked correct for P A and
P NA respectively. We exclude from further exper-
iments all codes that fail this validation step as they
are not trustworthy predictions made by MedCAT.

4.2 Aggregate Assigned Codes & Codes
Silver Standard

We proportionally predict ∼10% (n=42,837) of to-
tal assigned codes (n=432,770). We predict ∼16%

4https://github.com/tomolopolis/MIMIC-III-Discharge-
Diagnosis-Analysis/blob/master/Run MedCAT.ipynb
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of total assigned codes (n=258,953) if we only con-
sider the 182 codes that resulted in at least one
matched assignment to those present in the MIMIC-
III assigned codes.

We label and gather our three datasets into a sin-
gle table, with an extra column called ‘validated’,
with values: ‘yes’ for codes that have matched with
an assigned code (P A), ‘new code’ for newly dis-
covered codes (P NA), and ‘no’ for codes that we
were not able to validate (A NP). We have made
this silver-standard dataset available alongside our
analysis code5.

4.3 Undercoding in MIMIC-III
This work aims to identify inconsistencies and vari-
ability in coding accuracy in the current MIMIC-III
dataset. Ultimately to rigorously identify undercod-
ing of clinical text full, double blind manual coding
would be performed. However, as previously dis-
cussed, this is prohibitively expensive.

Comparing the codes predicted by MedCAT to
the existing assigned codes enables the develop-
ment of an understanding of specific groups of
codes that exhibit possible undercoding. In this
section we firstly show the effectiveness of our
method in terms of DD subsection prediction cov-
erage. We then present our predicted code distri-
butions against the MIMIC-III assigned codes at
the ICD code chapter level, highlighting the most
prevalent missing codes and showing correlations
between document length and prevalence.

4.3.1 Prediction Coverage
MedCAT provides predictions at the text span level,
with only one concept prediction per span. We can
therefore calculate the breadth of coverage of our
predictions across all DD subsections. Figure 2
shows the proportion of DD subsection text that
are included in code predictions. We note the 100%
proportion (n=2105) is 75% larger than the next
largest indicating that we are often utilising the
entire DD subsection to suggest codes although the
majority of the coverage distribution is around the
40-50% range.

We find a token length distribution of DD sub-
sections with µ =14.54, σ =15.9, Med = 10 and
IQR = 14 and a code extraction distribution with
µ = 3.6 and σ = 3.1, Med = 3 and IQR = 4
suggesting the DD subsections are complex and
often list multiple conditions of which we identify,
on average, 3 to 4 conditions.

5https://tinyurl.com/u8yae8n

Figure 2: Left: Counts of admissions and the associ-
ated % of characters covered by MedCAT code predic-
tions. Right:Distribution of DD token lengths

Figure 3: Proportions of matching predictions against
total number of assigned codes per admission.

4.3.2 Predicted & Assigned

Figure 3 shows the distributions of the number
of assigned codes and the proportion of matches
grouped into buckets of 10% intervals. We see a
high proportion of matches in assigned codes in the
1-40% range, indicating that although the DD sub-
section does contribute to the assigned ICD codes,
many of the assigned codes are still missed. We
exclude the admissions that had 0 matched codes
and discuss this result further in Section 4.3.4.

If we order codes by the number of predicted
and assigned we find the three highest occurring
codes (4019, 41404, 4280) in MIMIC-III also rank
highest in our predictions. However, we note that
these three common codes only yield 25-39% of
their total assigned occurrence, which could be ex-
plained by these chronic conditions not being listed
in the DD subsection and referred elsewhere in the
note. If we normalise predictions by their preva-
lence, we are most successful in matching specific
conditions applicable to preterm newborns (7470,
7766), pulmonary embolism (41519) and liver can-
cer (1550), all of which we match between 69-55%
but rank 114-305 in total prevalence. We suggest
these diagnoses are either acute, or the primary
cause of an ICU admission so will be specified in
the DD subsection.
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Figure 4: Predicted, Assigned Codes grouped by top-
level code group vs total assigned codes

Figure 5: Predicted, Not Assigned Codes grouped by
top-level code group vs total assigned codes

We also group the predicted codes into their re-
spective top-level ICD-9 groups in Figure 4 and ob-
serve that predicted assigned codes display a simi-
lar distribution to total assigned codes. We quantify
the difference in distributions via the Wasserstein
metric or ‘Earth Movers Distance’(Ramdas et al.,
2015). This metric provides a single measure to
compare the difference in our 3 datasets distribu-
tions when compared with the current assigned
code distribution. We compute a small 2.7× 10−3

distance between both distributions, suggesting
our method proportionally identifies previously as-
signed codes from the DD subsection alone.

4.3.3 Predicted & Not Assigned

This dataset highlights codes that may have been
missed from the current assigned codes.

Figure 5 shows that the distribution of predicted
but not assigned codes is minimally different for
most codes, supporting our belief that the MIMIC-
III assigned codes are not wholly untrustworthy,
but are likely under-coded in specific areas.

From this dataset we calculate how many exam-
ples of each code that has potentially been missed,
or potentially under-coded. For the 10 most fre-
quently assigned codes we see 0-35% missing oc-
currences. We also identify the most frequent
code 4019 (Unspecified Essential Hypertension)
has 16% or 3312 potentially missing occurrences.

To understand if DD subsection length impacts
the occurrence of ‘missed’ codes we first calculate
a Pearson-Correlation coefficient of 0.17 for DD
subsection line length and counts of assigned codes
over all admissions. This suggests a weak posi-
tive correlation between admission complexity and
number of existing assigned codes.

In contrast we find a stronger positive correlation
of 0.504 for predicted and not assigned codes and
DD subsection line length. This implies that where
an episode has a greater number of diagnoses or
the complexity of an admission is greater, there is
a likelihood to result in more codes being missed
during routine collection.

We compute the Wasserstein metric between
these two distributions at 1.6× 10−2. This demon-
strates a degree of similarity between distributions
albeit is 8x further from the Predicted and Assigned
dataset distance presented in Section 4.3.2. We ex-
pect to see a larger distance here as we are detecting
codes that are indicated in the text but have been
missed during routine code assignment.

4.3.4 Assigned & Not Predicted
We observe that the distribution of assigned and
not predicted codes largely mirrors the distribu-
tion of total codes assigned in MIMIC-III with a
Wasserstein distance of 2.7× 10−3 that is similar
to the distance observed in in our Predicted and
Assigned Section 4.3.2) dataset. This suggests that
our method is proportionally consistent at not an-
notating codes that have likely been assigned from
elsewhere in the admission, but may also be incor-
rectly assigned.

5 Discussion

On aggregate, the predicted codes by our MedCAT
model suggest that the discharge diagnosis sections
listed in 92% of all discharge notifications are not
sufficient for full coding of an episode. Unsur-
prisingly, this confirms that clinicians infrequently
document all codeable diagnoses within the dis-
charge summary. Although, as previously stated,
coders are not permitted to make clinical infer-
ences. Therefore, to correctly assign a code, the
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diagnoses must be present within the documented
patient episode within the structured or unstruc-
tured data.

However, the positive correlation between doc-
ument length and number of predicted codes in-
dicates that missed codes are more prevalent in
highly complex cases with many diagnoses. From
a coding workflow perspective, coders operate un-
der strict time schedules and are required to code a
minimum number of episodes each day. Therefore,
it logically follows that the complexity of a case
directly correlates to the number of codes missed
during routine collection.

Looking at individual code groups we find 240-
279 is not predicted proportionally with assigned
codes both in P A and P NA. We explain this as
follows. Firstly, DD subsections generally convey
clinically important diagnoses for follow-up care.
Certain codes such as (250.*) describe diabetes
mellitus with specific complications, but the DD
subsection will often only describe the diagnoses
‘DMI’ or ‘DMII’. Secondly, ICU admissions are
for individuals with severe illness and therefore are
likely to have a high degree of co-morbidity. This
is implied by the majority of patients (74%) are
assigned between 4 and 16 codes.

We also observe E000-E999 and V01-V99 codes
are disproportionately not predicted. However, this
is expected given that both groups are supplemen-
tary codes that describe conditions or factors that
contribute to an admission but would likely not be
relevant for the DD subsection.

In contrast, we observe a disproportionately
large number of predictions for 001-139 (Infectious
and Parasitic Diseases). This is primarily driven
by 0389 (Unspecified septicemia). A proportion
of these predictions may be in error as the specific
form of septicemia is likely described in more de-
tail elsewhere in the note and therefore coded as
the more specific form.

5.1 Method Reproducibility & Wider Utility

Inline with the suggestions of Johnson et al. (2017),
the original authors of MIMIC-III, we have at-
tempted to provide the research community all
available materials to reproduce and build upon
our experiments and method for the development
of silver standard datasets. Specifically, we have
made the following available as open-source: the
SQL scripts to extract the raw data from a replica
of the MIMIC-III database, the script required to

parse DD subsections, an example script to build
a pre-trained MedCAT model, the script required
to run MedCAT on the DD subsections, load into
the annotator and finally re-run MedCAT and per-
form experimental analysis alongside outputting
the silver standard dataset6.

Given these materials it is possible for re-
searchers to replicate and build upon our method,
or directly use the silver standard dataset in future
work that investigates automated clinical coding us-
ing MIMIC-III. The silver standard dataset clearly
marks if each assigned code has been validated or
not, or if it is a new code according to our method.

6 Conclusions & Future Work

This work highlighted specific problems with using
MIMIC-III as a dataset for training and testing an
automated clinical coding system that would limit
model performance within a real deployment.

We identified and deterministically extracted the
discharge diagnosis (DD) subsections from dis-
charge summaries. We subsequently trained an
NER+L model (MedCAT) to extract ICD-9 codes
from the DD subsections, comparing the results
across the full set of assigned codes. We find our
method covers 47% of all tokens, considering we
only take 400 of the ∼7k unique codes and per-
form minimal data cleaning of the DD subsection.
We have shown in Section 4.3.2 and 4.3.3 that the
MedCAT predicted codes are proportionally inline
with assigned codes in MIMIC-III.

Interestingly, we found a 0.504 positive correla-
tion between DD length and the number of codes
predicted by MedCAT, but not assigned in MIMIC-
III. This result can be understood by observing that
the ICU admissions in MIMIC-III can be extremely
complex, with up to 30 clinical codes assigned to a
single episode. The DD subsections alone can con-
tain up to 50 line items indicating highly complex
cases where codes could easily be missed.

We found that the code group 390-459 (Diseases
of the Circulatory System) is both the most as-
signed group and the group of codes where there
are the most missing predictions from our model.
Furthermore, codes such as Hypertension (4019),
Sepsis and Septicemia (0389, 99591), Gastroin-
testinal hemorrhage (95789), Chronic Kidney dis-
ease (5859), anemia (2859) and Chronic obstruc-
tive asthma (49320) are all frequently assigned but

6https://github.com/tomolopolis/MIMIC-III-Discharge-
Diagnosis-Analysis
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are also the highest occurring conditions that ap-
pear in the DD diagnosis subsection but are not
assigned in the MIMIC-III dataset. This suggests
that MIMIC-III exhibits specific cases of under-
coding, especially with codes that are frequently
occurring in patients but are not likely to be the
primary diagnosis for an admission to the ICU.

As we only use the DD section, there are many
codes which likely appear elsewhere in the note
that we cannot assign. Although 92% of discharge
summaries contain DD subsections we only match
∼ 16% of assigned codes. We suggest this is due
to: our NER+L model lacking the ability to identify
more synonyms and abbreviations for conditions,
the DD subsections lacking enough detail to as-
sign codes and in some occasions, little evidence to
suggest a code assignment. Our textual span cover-
age, presented in Section 4.3.1 demonstrates that
we often cover all available discharge diagnosis,
although there is still room for improvement as the
majority of the coverage distribution is around the
50% mark.

For future work we foresee applying the same
method to either the entire discharge summary or
more specific sections such as ‘previous medical
history’ to surface chronic codeable diagnoses that
could be validated against the current assigned code
set. Researchers would however likely need to
address false positive code predictions as clinical
coding requires assigned codes to be from current
conditions associated with an admission.

In conclusion, this work has found that fre-
quently assigned codes in MIMIC-III display signs
of undercoding up to 35% for some codes. With
this finding we urge researchers to continue to
develop automated clinical coding systems using
MIMIC-III, but to also consider using our silver
standard dataset or build on our method to further
improve the dataset.
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Abstract

Text classification tasks which aim at harvest-
ing and/or organizing information from elec-
tronic health records are pivotal to support clin-
ical and translational research. However these
present specific challenges compared to other
classification tasks, notably due to the particu-
lar nature of the medical lexicon and language
used in clinical records.
Recent advances in embedding methods have
shown promising results for several clinical
tasks, yet there is no exhaustive comparison
of such approaches with other commonly used
word representations and classification mod-
els.
In this work, we analyse the impact of various
word representations, text pre-processing and
classification algorithms on the performance
of four different text classification tasks. The
results show that traditional approaches, when
tailored to the specific language and structure
of the text inherent to the classification task,
can achieve or exceed the performance of more
recent ones based on contextual embeddings
such as BERT.

1 Introduction

Clinical text classification is an important task in
natural language processing (NLP) (Yao et al.,
2019), where it is critical to harvest data from
electronic health records (EHRs) and facilitate its
use for decision support and translational research.
Thus, it is increasingly used to retrieve and orga-
nize information from the unstructured portions of
EHRs (Mujtaba et al., 2019).
Examples include tasks such as: (1) detection of
smoking status (Uzuner et al., 2008); (2) classi-
fication of medical concept mentions into family

∗These two authors contributed equally.

versus patient related (Dai, 2019); (3) obesity clas-
sification from free text (Uzuner, 2009); (4) identi-
fication of patients for clinical trials (Meystre et al.,
2019).
Most of these tasks involve mapping mentions in
narrative texts (e.g. “pneumonia”) to their corre-
sponding medical concepts (and concept ID) gen-
erally using the Unified Medical Language System
(UMLS) (Bodenreider, 2004), and then training a
classifier to identify these correctly (e.g. “pneumo-
nia positive” versus “pneumonia negative”) (Yao
et al., 2019).

Text classification performed on medical records
presents specific challenges compared to the gen-
eral domain (such as newspaper texts), including
dataset imbalance, misspellings, abbreviations or
semantic ambiguity (Mujtaba et al., 2019).
Despite recent advances in NLP, including neural-
network based word representations such as BERT
(Devlin et al., 2019), few approaches have been
extensively tested in the medical domain and rule-
based algorithms remain prevalent (Koleck et al.,
2019). Furthermore, there is no consensus on
which word representation is best suited to specific
downstream classification tasks (Si et al., 2019;
Wang et al., 2018).

The purpose of this study is to analyse the impact
of numerous word representation methods (bag-
of-word versus traditional and contextual word
embeddings) as well as classification approaches
(deep learning versus traditional machine learning
methods) on the performance of four different text
classification tasks. To our knowledge this is the
first paper to test a comprehensive range of word
representation, text pre-processing and classifica-
tion methods combinations on several medical text
tasks.
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2 Materials & Methods

2.1 Datasets and text classification tasks

In order to conduct our analysis we derived text
classification tasks from MIMIC-III (Multiparame-
ter Intelligent Monitoring in Intensive Care) (John-
son et al., 2016), and the Shared Annotated Re-
sources (ShARe)/CLEF dataset (Mowery et al.,
2014). These datasets are commonly used for chal-
lenges in medical text mining and act as bench-
marks for evaluating machine learning models (Pu-
rushotham et al., 2018).

MIMIC-III dataset MIMIC-III (Johnson et al.,
2016) is an openly available dataset developed by
the MIT Lab for Computational Physiology. It com-
prises clinical notes, demographics, vital signs, lab-
oratory tests and other data associated with 40,000
critical care patients.

We used MedCAT (Kraljevic et al., 2019) to pre-
pare the dataset and annotate a sample of clinical
notes from MIMIC-III with UMLS concepts (Bo-
denreider, 2004). We selected the concepts with the
UMLS semantic type Disease or Syndrome (corre-
sponding to T047), out of which we picked the 100
most frequent Concept Unique Identifier (CUIs,
allowing to group mentions with the same mean-
ing). For each concept we then randomly sampled
4 documents containing a mention of each concept,
resulting in 400 documents with 2367 annotations
in totals. The 100 most frequent concepts in these
documents were manually annotated (and manu-
ally corrected in case of disagreement) for two text
classification tasks:

• Status (affirmed/other, indicating if the dis-
ease is affirmed or negated/hypothetical);

• Temporality (current/other, indicating if the
disease is current or past).

Such contextual properties are often critical in the
medical domain in order to extract valuable in-
formation, as evidenced by the popularity of al-
gorithms like ConText or NegEx (Harkema et al.,
2009; Chapman et al., 2001).

Annotations were performed by two annota-
tors, achieving an overall inter-annotator agreement
above 90%. These annotations will be made pub-
licly available.

ShARe/CLEF (MIMIC-II) dataset The
ShARe/CLEF annotated dataset proposed by
Mowery et al. (2014) is based on 433 clinical
records from the MIMIC-II database (Saeed
et al., 2002). It was generated for community
distribution as part of the Shared Annotated
Resources (ShARe) project (Elhadad et al., 2013),
and contains annotations including disorder
mention spans, with several contextual attributes.
For our analysis we derived two tasks from this
dataset, focusing on two attributes, comprising
8075 annotations for each:

• Negation (yes/no, indicating if the disorder is
negated or affirmed);

• Uncertainty (yes/no, indicating if the disorder
is hypothetical or affirmed).

Text classification tasks For both annotated
datasets, we extracted from each document the por-
tions of text containing a mention of the concepts
of interest, keeping 15 words on each side of the
mention (including line breaks). Each task is then
made up of sequences comprising around 31 words,
centered on the mention of interest, with its cor-
responding meta-annotation (status, temporality,
negation, uncertainty), making up four text classifi-
cation tasks, denoted:

• MIMIC | Status;

• MIMIC | Temporality;

• ShARe | Negation;

• ShARe | Uncertainty.

Table 1 summarizes the class distribution for
each task.

Task Class 1 Class 2 Total
MIMIC | Status

(1: affirmed, 2: other)
1586 (67%) 781 (33%) 2367

MIMIC | Temporality
(1: current, 2: other)

2026 (86%) 341 (14%) 2367

ShARe | Negation
(1: yes, 2: no)

1470 (18%) 6605 (82%) 8075

ShARe | Uncertainty
(1: yes, 2: no)

729 (9%) 7346 (91%) 8075

Table 1: Class distribution
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Figure 1: Main workflow

2.2 Evaluation steps and main workflow

We used the four different text classification tasks
described in Section 2.1 in order to explore vari-
ous combinations of word representation models
(see Section 2.3), text pre-processing and tokeniz-
ing variations (Section 2.4) and classification al-
gorithms (Section 2.5). In order to evaluate the
different approaches we followed the steps detailed
in Table 2 and Figure 1 for all four classification
tasks.

Step Description Outcome
(best F1)

A

Run all bag-of-word and traditional embeddings
+ classification algorithms and select the

best combination (using baseline methods for
text pre-processing and tokenization)

A-1

B
Using A-1 as the new baseline model, test

different pre-processing methods (lowercasing,
punctuation removal, lemmatization, stemming)

B-1

C
Using B-1 as the new baseline model, compare various

tokenizers (word and subword level)
C-1

D
Test contextual embedding approaches:
BERT (base, uncased) and BioBERT

D-1

Table 2: Evaluation steps

For each step we measured the impact by evalu-
ating the best possible combination, based on the
average F1 score (weighted average score derived
from 10-fold cross validation results).

2.3 Word representation models

Word embeddings as opposed to bag-of-words
(BoW) present the advantage of capturing semantic
and syntactic meaning by representing words as
real valued vectors in a dimensional space (vectors
that are close in that space will represent similar
words). Contextual embeddings go one step fur-
ther by capturing the context surrounding the word,
whilst traditional embeddings assign a single repre-
sentation to a given word.

For our analysis we considered four off-the-shelf
embedding models, pre-trained on public domain
data, and compared them to the same embedding
models trained on biomedical corpora, as well as a
BoW representation.

For the traditional embeddings we chose three
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commonly used algorithms, namely Word2Vec
(Mikolov et al., 2013), GloVe (Pennington et al.,
2014) and FastText (Bojanowski et al., 2017).
We used publicly available models pre-trained on
Wikipedia and Google News for all three (Yamada
et al., 2018).
To obtain medical specific models we trained all
three on MIMIC-III clinical notes (covering 53,423
intensive care unit stays, including those used in
the classification tasks) (Johnson et al., 2016). The
following hyperparameters, aligned to off-the-shelf
pre-trained models, were used: dimension of 300,
window size of 10, minimum word count of 5, un-
cased, punctuation removed.

For the contextual embeddings we used BERT
base (Devlin et al., 2019), and BioBERT (Lee et al.,
2019) which are pre-trained respectively on general
domain corpora and biomedical literature (PubMed
abstracts and PMC articles).

Finally we used a BoW representation as a base-
line approach.

2.4 Text pre-processing and tokenizers
In addition to pre-training several embedding mod-
els, we tested two different text tokenization meth-
ods, using the following types of tokenizers: (1)
SciSpaCy (Neumann et al., 2019), a traditional
tokenizer based on word detection; and (2) byte-
pair-encoding (BPE) adapted to word segmentation
that works on subword level (Gage, 1994; Sennrich
et al., 2016).

For the word level tokenizer we chose SciSpaCy
as it is specifically aimed at biomedical and scien-
tific text processing. We further tested additional
text pre-processing: lowercasing, punctuation re-
moval, stopwords removal, stemming and lemmati-
zation.

For the subword BPE tokenizer we used byte
level byte-pair-encoding (BBPE) (Wang et al.,
2019; Wolf et al., 2020). In this case the only
pre-processing performed is lowercasing, whilst
everything else including line breaks and spaces is
left as is. This approach allows to limit the vocab-
ulary size and is especially useful in the medical
domain where a large number of words are very
rare. We limited the number of words to 30522, a
standard vocabulary size also used in BERT (De-
vlin et al., 2019).

2.5 Text classification algorithms
On all four classification tasks, we tested various
machine learning algorithms which are widely used

for clinical data mining tasks and achieve state-of-
the-art performance (Yao et al., 2019), namely arti-
ficial neural network (ANN), convolutional neural
network (CNN), recurrent neural network (RNN),
bi-directional long short term memory (Bi-LSTM),
and BERT (Devlin et al., 2019; Wolf et al., 2020).
We compared these with a statistics-based approach
as a baseline, using a Support Vector Machine
(SVM) classifier, a popular method used for classi-
fication tasks (Cortes and Vapnik, 1995).

For Bi-LSTM and RNN, we tested both a stan-
dard approach and one that is configured to simu-
late attention on the medical entity of interest. This
custom approach consisted in taking the represen-
tation of the network at the position of the entity
of interest, which in most cases corresponds to the
center for each sequence. We refer to this latter
approach as custom Bi-LSTM and custom RNN.

For ANN and statistics-based models, which are
limited by the size of the dataset and embeddings
(300 dimensions x 31 words x 2300 or 8000 se-
quences), we chose to represent sequences by av-
eraging the embeddings of the words composing
each sequence. This representation method is com-
monly used and has proven efficient for various
NLP applications (Kenter et al., 2016).

Furthermore, each of these models was tested
using different sets of parameters (e.g. varying the
support function, dropout, optimizer, as reported in
Table 3), the ones producing the best performance
were selected for further testing and are summa-
rized in Table 3.

SVM ANN CNN RNN
Bi-LSTM

Kernel or
activation
function

Radial basis
Linear
Poly

Sigmoid

ReLU +
sigmoid

ReLU
(with
max

pooling)

N/A

Layers N/A 2 3 2
Filters N/A N/A 128 N/A

Hidden units
dimensions N/A 100 N/A 300

Dropout N/A
0.5
0

0.5
0

0.5
0

Optimizer N/A

Adam
Stochastic
Gradient
Descent

Adam
Stochastic
Gradient
Descent

Adam
Stochastic
Gradient
Descent

Learning rate N/A 0.001 0.001 0.001

Epochs tolerance:
0.001

5000 200 50

Table 3: Classifiers and corresponding parameters eval-
uated. Parameters highlighted in bold were the ones
selected based on performance.
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3 Results

3.1 Performance comparison for all
embedding and algorithm combinations
(steps A & D)

In this section we compare the performance of the
different embeddings and classification approaches.
We report the weighted average F1/precision/recall
(weighted average value obtained from the 10-fold
cross-validation results) for selected combinations
on the four classification tasks in Tables 4 and 5
(full results in Appendix A.1).
For all word embedding methods tested (Word2Vec,
GloVe, FastText), the ones trained on biomedical
data show the best performance (see Table 4).

For classification algorithms, the best perfor-
mance is obtained when using the custom Bi-
LSTM model configured to target the biomed-
ical concept of interest (see Table 5). Both
contextual embeddings (BERT and BioBERT),
whether trained on biomedical or general cor-
pora, outperform any other combination of em-
bedding/classification algorithm tested, and give
results very close to the customized Bi-LSTM, as
shown in Table 5.

This indicates that for tasks incorporating infor-
mation about the position of the entity of interest in
the text (e.g. ShARe which reports disorder men-
tions span offsets), the custom Bi-LSTM approach
performs better than BioBERT, without necessitat-
ing any text pre-processing.
On the other hand, when looking at pure text classi-
fication, BioBERT shows better performance than
a Bi-LSTM approach, and consequently may be
preferred for tasks where the sequence of interest
is not easily centered on a specific entity.
Finally, whilst the performance of BERT and
BioBERT is relatively similar, BioBERT converges
faster across all tasks tested.

3.2 Impact of text pre-processing (step B)
In addition to exploring various embeddings, we
tested the impact of text pre-processing on classi-
fication task performance. In order to do so, we
selected the best performing word embedding ob-
tained in the previous step (Word2Vec trained on
MIMIC-III, using SciSpacy tokenizer), and com-
pared performances between all text cleaning varia-
tions (lowercasing, punctuation removal, stemming,
lemmatization).

For each variant investigated, the same pre-
processing settings were applied to prepare the an-
notated corpus as well as to the entire MIMIC-III
dataset, which was then used to re-train Word2Vec.
This ensured the same vocabulary was used across
the embedding and sequences to classify for each
experiment.
The results, summarized in Table 6, suggest that
text pre-processing has a minor impact for all clas-
sification algorithms tested. Notably, stemming
and lemmatization have a slightly negative impact
on performance.

3.3 Impact of tokenizers (step C)
We tested the impact of tokenization on the per-
formance of text classification tasks, focusing on
SciSpacy and BBPE tokenizers, as they allow us to
compare whole word versus subword unit methods.
The results for the MIMIC | Status task (and us-
ing Word2Vec trained on MIMIC-III) are shown
in Table 7, and indicate that the performances are
roughly similar when using the BBPE tokenizer
compared to SciSpacy.

Furthermore we compared both approaches in
terms of speed and vocabulary size. Tokenizing
text took on average 2.5 times longer with Scispacy
(250 seconds to tokenize 100,000 medical notes for
SciSpacy versus 99 seconds for BBPE, excluding
model loading time). For the models trained on
MIMIC-III corpus, Scispacy comprised 474,145
words, and BBPE 29,452 subword units.

3.4 Embeddings analysis: word similarities
comparison

Finally, in order to analyse the differences between
embeddings trained on general and medical cor-
pora, we compared the semantic information cap-
tured by Word2Vec (using SciSpacy tokenizer and
without any preliminary text pre-processing).

Table 8 explores word similarities by showing
the top ten similar words for medical (“cancer”)
and non-medical (“concentration” and ”attention”)
terms.
Notably, it highlights the numerous misspellings,
abbreviations and domain-specific meanings con-
tained in the medical lexicon, suggesting that gen-
eral corpora such as Wikipedia may not be appro-
priate when working on data from medical records
(and by implication, for other specific domains).
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F1-score (average from 10-fold cross validation)

Model Tokenizer Embedding MIMIC
Status

MIMIC
Temporality

ShARe
Negation

ShARe
Uncertainty

Bi-LSTM (custom) SciSpacy Wiki |Word2Vec 92.8% 97.3% 98.4% 96.7%
Bi-LSTM (custom) SciSpacy Wiki | GloVe 93.4% 97.2% 98.4% 97.2%
Bi-LSTM (custom) SciSpacy Wiki | FastText 93.6% 96.9% 98.6% 96.4%
Bi-LSTM (custom) SciSpacy MIMIC |Word2Vec 94.5% 97.9% 98.7% 97.3%
Bi-LSTM (custom) SciSpacy MIMIC | GloVe 93.9% 97.9% 98.7% 96.9%
Bi-LSTM (custom) SciSpacy MIMIC | FastText 93.7% 97.6% 98.5% 97.2%
BERT WordPiece BERTbase 91.5% 97.3% 98.2% 93.6%
BioBERT WordPiece BioBERT 93.4% 97.3% 98.5% 94.2%
SVM SciSpacy Wiki |Word2Vec 76.9% 94.8% 88.5% 85.9%
SVM SciSpacy Wiki | GloVe 78.6% 94.9% 88.8% 87.1%
SVM SciSpacy Wiki | FastText 78.1% 94.4% 88.7% 86.3%
SVM SciSpacy BoW 82.7% 96.0% 90.2% 91.7%
SVM SciSpacy MIMIC |Word2Vec 80.6% 95.1% 89.8% 90.2%
SVM SciSpacy MIMIC | GloVe 79.1% 94.1% 89.4% 87.6%
SVM SciSpacy MIMIC | FastText 79.6% 93.7% 88.9% 88.0%

Table 4: Comparison of embeddings (steps A & D)

F1-score (average from 10-fold cross validation)

Model Tokenizer Embedding MIMIC
Status

MIMIC
Temporality

ShARe
Negation

ShARe
Uncertainty

Bi-LSTM SciSpacy MIMIC |Word2Vec 88.4% 97.1% 96.2% 94.1%
Bi-LSTM (custom) SciSpacy MIMIC |Word2Vec 94.5% 97.9% 98.7% 97.3%
BERT WordPiece BERTbase 91.5% 97.3% 98.2% 93.6%
BioBERT WordPiece BioBERT 93.4% 97.3% 98.5% 94.2%
ANN SciSpacy MIMIC |Word2Vec 80.9% 96.5% 88.6% 86.7%
CNN SciSpacy MIMIC |Word2Vec 84.6% 97.3% 92.0% 87.5%
RNN SciSpacy MIMIC |Word2Vec 77% 96.8% 94.0% 87.1%
RNN (custom) SciSpacy MIMIC |Word2Vec 89.5% 96.7% 97.9% 96.5%
SVM SciSpacy MIMIC |Word2Vec 80.6% 95.1% 89.8% 90.2%
ANN SciSpacy BoW 79.8% 94.8% 89.3% 89.3%
SVM SciSpacy BoW 82.7% 96% 90.2% 91.7%

Table 5: Comparison of classification algorithms (steps A & D)

F1-score (average from 10-fold cross validation)
Task Embedding Text pre-processing SVM ANN RNN RNN (custom) CNN Bi-LSTM (custom)
MIMIC | Status MIMIC |Word2Vec Lowercase (L) 80.6% 80.9% 77.0% 89.5% 84.6% 94.5%
MIMIC | Status MIMIC |Word2Vec L + punctuation removal (LP) 80.1% 80.0% 80.2% 86.1% 84.7% 94.4%
MIMIC | Status MIMIC |Word2Vec LP + lemmatizing 80.6% 79.6% 78.0% 86.3% 83.8% 94.1%
MIMIC | Status MIMIC |Word2Vec LP + stemming 80.4% 79.7% 79.4% 86.1% 84.1% 94.1%

Table 6: Comparison of text pre-processing methods (step B)

F1-score (average from 10-fold cross validation)
Task Embedding Tokenizer SVM ANN RNN RNN (custom) CNN Bi-LSTM (custom)
MIMIC | Status MIMIC |Word2Vec Sciscpacy 80.6% 80.9% 77.0% 89.5% 84.6% 94.5%
MIMIC | Status MIMIC |Word2Vec BBPE 78.8% 80.5% 76.5% 86.0% 84.3% 94.7%

Table 7: Comparison of tokenizing methods (step C)

Term: “cancer” Term: “concentration” Term: “attention”
Word2Vec Medical Word2Vec General Word2Vec Medical Word2Vec General Word2Vec Medical Word2Vec General

ca (0.78) prostate (0.85) hmf (0.51) concentrations (0.71) paid (0.43) attentions (0.65)
carcinoma (0.78) colorectal (0.82) concentrations (0.49) arbeitsdorf (0.67) approximation (0.34) notoriety (0.63)

cancer- (0.75) melanoma (0.8) formula (0.47) vulkanwerft (0.65) followup (0.33) attracted (0.63)
caner (0.71) pancreatic (0.8) mct (0.47) sophienwalde (0.64) proximity (0.32) criticism (0.63)

adenocarcinoma (0.71) leukemia (0.79) polycose (0.47) lagerbordell (0.64) short-term (0.31) publicity (0.57)
ca- (0.64) entity/breast cancer (0.79) virtue (0.45) sterntal (0.64) mangagement (0.31) praise (0.57)

melanoma (0.64) leukaemia (0.78) corn (0.45) dürrgoy (0.62) atetntion (0.31) aroused (0.56)
cancer;dehydration (0.63) tumour (0.77) dosage (0.44) straflager (0.61) attnetion (0.3) acclaim (0.55)

cancer/sda (0.61) cancers (0.76) planimetry (0.44) maidanek (0.61) atention (0.3) interest (0.55)
rcc (0.61) ovarian (0.75) equation (0.44) szebnie (0.61) non-rotated (0.3) admiration (0.55)

Table 8: Comparison of word similarities between general and domain-specific embeddings
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4 Discussion

This study compared the impact of various embed-
ding and classification methods on four different
text classification tasks. Notably we investigated
the impact of pre-training embedding models on
clinical corpora versus off-the-shelf models trained
on general corpora.

The results suggest that using embeddings pre-
trained for the specific task (clinical corpora in our
case) leads to better performance with any classifi-
cation algorithm tested. However, pre-training such
embeddings is not necessarily feasible due to either
data or technical constraints. In this case our re-
sults highlight that using off-the-shelf embeddings
trained on large general corpora such as Wikipedia
still produce acceptable performance. In particular
BERTbase outperformed most algorithms tested,
even when these were combined with clinical em-
beddings.
Additionally, BioBERT was not pre-trained on
medical notes but on texts from a related domain
(biomedical articles and abstracts as opposed to
clinical records), and therefore excludes speci-
ficities inherent to the medical domain such as
misspellings or technical jargon. Despite this,
BioBERT’s performance is only marginally below
that of the best model (custom Bi-LSTM) com-
bined with clinical embeddings.

The various experiments conducted on text pre-
processing only lead to small variations in terms
of performance, and even negatively impact the
performance of several algorithms, for the text clas-
sification task and embedding model tested. Given
the additional constraints required to perform this
step (need to train embeddings on pre-processed
texts and to clean input data) and the mixed results
in performance, pre-processing does not appear to
be essential.

Novel tokenization methods based on subword
dictionaries, whilst not improving the performance,
eliminate several shortcomings presented by SciS-
pacy and similar methods, notably its speed and
vocabulary size.
In light of these limitations and the very small dif-
ference in performance for the task tested, BBPE
appears to be a suitable alternative to traditional
tokenizers and allows to reduce significantly com-
putational costs.

Finally, custom Bi-LSTM outperforms
BioBERT when it simulates attention on the entity
of interest. However, this configuration requires
information on the entity mention span, and then
to center each document on this span. For some
datasets, such information may either be readily
available, or can be obtained by performing an
additional named-entity extraction step. Unfortu-
nately, many text classification tasks do not usually
have this information, or may not rely on the
specific entities/keywords required (e.g. sentiment
analysis tasks). When Bi-LSTM is not customized,
then both BERT models (trained on general and
specific domains) produce the best performance,
and consequently should be preferred for texts not
easily allowing such customization.

5 Conclusion

In this article we have explored the performance
of various word representation approaches (com-
paring bag-of-words to traditional and contextual
embeddings trained on both specific and general
corpora, combined with various text pre-processing
and tokenizing methods) as well as classification al-
gorithms on four different text classification tasks,
all based on publicly available datasets.

A detailed performance comparison on these
four tasks highlighted the efficacy of contextual
embeddings when compared to traditional methods
when no customization is possible, whether these
embeddings are trained on specific or general cor-
pora.
When combined with appropriate entity extraction
tasks and specific domain embeddings, Bi-LSTM
outperforms contextual embeddings. Across all
classification algorithms, text pre-processing and
tokenization approaches showed limited impact for
the task and embedding tested, suggesting a rule
of thumb to opt for the least time and resource
intensive method.
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Abstract
This paper presents a reinforcement learning
approach to extract noise in long clinical doc-
uments for the task of readmission prediction
after kidney transplant. We face the challenges
of developing robust models on a small dataset
where each document may consist of over 10K
tokens with full of noise including tabular text
and task-irrelevant sentences. We first exper-
iment four types of encoders to empirically
decide the best document representation, and
then apply reinforcement learning to remove
noisy text from the long documents, which
models the noise extraction process as a se-
quential decision problem. Our results show
that the old bag-of-words encoder outperforms
deep learning-based encoders on this task, and
reinforcement learning is able to improve upon
baseline while pruning out 25% text segments.
Our analysis depicts that reinforcement learn-
ing is able to identify both typical noisy tokens
and task-specific noisy text.

1 Introduction

Prediction of hospital readmission has always been
recognized as an important topic in surgery. Pre-
vious studies have shown that the post-discharge
readmission takes up tremendous social resources,
while at least a half of the cases are preventable
(Basu Roy et al., 2015; Jones et al., 2016). Clini-
cal notes, as part of the patients’ Electronic Health
Records (EHRs), contain valuable information but
are often too time-consuming for medical experts
to manually evaluate. Thus, it is of significance to
develop prediction models utilizing various sources
of unstructured clinical documents.

The task addressed in this paper is to predict 30-
day hospital readmission after kidney transplant,
which we treat it as a long document classification
problem without using specific domain knowledge.
The data we use is the unstructured clinical docu-
ments of each patient up to the date of discharge.

In particular, we face three types of challenges in
this task. First, the document size can be very long;
documents associated with these patients can have
tens of thousands of tokens. Second, the dataset
is relatively small with fewer than 2,000 patients
available, as kidney transplant is a non-trivial med-
ical surgery. Third, the documents are noisy, and
there are many target-irrelevant sentences and tabu-
lar data in various text forms (Section 2).

The lengthy documents together with the small
dataset impose a great challenge on representation
learning. In this work, we experiment four types
of encoders: bag-of-words (BoW), averaged word
embedding, and two deep learning-based encoders
that are ClinicalBERT (Huang et al., 2019) and
LSTM with weight-dropped regularization (Merity
et al., 2018). To overcome the long sequence issue,
documents are split into multiple segments for both
ClinicalBERT and LSTM (Section 4).

After we observe the best performed encoders,
we further propose to combine reinforcement learn-
ing (RL) to automatically extract out task-specific
noisy text from the long documents, as we observe
that many text segments do not contain predictive
information such that removing these noise can po-
tentially improve the performance. We model the
noise extraction process as a sequential decision
problem, which also aligns with the fact that clini-
cal documents are received in time-sequential order.
At each step, a policy network with strong entropy
regularization (Mnih et al., 2016) decides whether
to prune the current segment given the context, and
the reward comes from a downstream classifier af-
ter all decisions have been made (Section 5).

Empirical results show that the best performed
encoder is BoW, and deep learning approaches suf-
fer from severe overfitting under huge feature space
in contrast of the limited training data. RL is ex-
perimented on this BoW encoder, and able to im-
prove upon baseline while pruning out around 25%
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Type P T Description
CO 1,354 4,395.3 Report for every outpatient consultation before transplantation
DS 514 1,296.7 Summary at the time of discharge from every hospital admission happened before transplant
EC 1,110 1,073.6 Results of echocardiography
HP 1,422 3,025.1 Summary of the patient’s medical history and clinical examination
OP 1,472 4,224.8 Report of surgical procedures
PG 1,415 13,723.4 Medical note during hospitalization summarizing the patient’s medical status each day
SC 2,033 1,189.2 Report from the evaluation of each transplant candidate by the selection committee
SW 1,118 1,407.6 Report from encounters with social workers

Table 1: Statistics of our dataset with respect to different types of clinical notes. P: # of patients, T: avg. # of tokens,
CO: Consultations, DS: Discharge Summary, EC: Echocardiography, HP: History and Physical, OP: Operative, PG:
Progress, SC: Selection Conference, SW: Social Worker. The report for SC is written by the committee that consists
of surgeons, nephrologists, transplant coordinators, social workers, etc. at the end of the transplant evaluation. All
8 types follow the approximately 3:7 positive-negative class distribution.

text segments (Section 6). Further analysis shows
that RL is able to identify traditional noisy tokens
with few document frequencies (DF), as well as
task-irrelevant tokens with high DF but of little
information (Section 7).

2 Data

This work is based on the Emory Kidney Transplant
Dataset (EKTD) that contains structured chart data
as well as unstructured clinical notes associated
with 2,060 patients. The structured data comprises
80 features that are lab results before the discharge
as well as the binary labels of whether each patient
is readmitted within 30 days after kidney transplant
or not where 30.7% patients are labeled as positive.

The unstructured data includes 8 types of notes
such that all patients have zero to many documents
for each note type. It is possible to develop a more
accurate prediction model by co-training the struc-
tured and unstructured data; however, this work
focuses on investigating the potentials of unstruc-
tured data only, which is more challenging.

2.1 Preprocessing
As the clinical notes are collected through various
sources of EMRs, many noisy documents exist in
EKTD such that 515 documents are HTML pages
and 303 of them are duplicates. These documents
are removed during preprocessing. Moreover, most
documents contain not only written text but also
tabular data, because some EMR systems can only
export entire documents in the table format.
While there are many tabular texts in the documents
(e.g., lab results and prescription as in Table 2), it is
impractical to write rules to filter them out, as the
exported formats are not consistent across EMRs.
Thus, any tokens containing digits or symbols, ex-
cept for one-character tokens, are removed during

Lab Fishbone (BMP, CBC, CMP, Diff) and
critical labs - Last 24 hours 03/08/2013 12:45
142(Na) 104(Cl) 70H(BUN) - 10.7L(Hgb) <
92(Glu) 6.5(WBC) 137L(Plt) 3.6(K) 26(CO2)

Table 2: An example of tabular text in EKTD.

preprocessing. Although numbers may provide use-
ful features, most quantitative measurements are
already included in the structured data so that those
features can be better extracted from the structured
data if necessary. The remaining tabular text con-
tains headers and values that do not provide much
helpful information and become another source of
noise, which we handle by training a reinforcement
learning model to identify them (Section 5).

Table 1 gives the statistics of each clinical note
type after preprocessing. The average number of
tokens is measured by counting tokens in all doc-
uments from the same note type of each patient.
Given this preprocessed dataset, our task is to take
all documents in each note type as a single input
and predict whether or not the patient associated
with those documents will be readmitted.

3 Related Work

Shin et al. (2019) presented ensemble models uti-
lizing both the structured and the unstructured data
in EKTD, where separate logistic regression (LR)
models are trained on the structured data and each
type of notes respectively, and the final prediction
of each patient is obtained by averaging predictions
from each models. Since some patients may lack
documents from certain note types, prediction on
these note types are simply ignored in the averaging
process. For the unstructured notes, concatenation
of Term Frequency-Inverse Document Frequency

96



(TF-IDF) and Latent Dirichlet Allocation (LDA)
representation is fed into LR. However, we have
found that the representation from LDA only con-
tributes marginally, while LDA takes significantly
more inferring time. Thus, we drop LDA and only
use TF-IDF as our BoW encoder (Section 4.1).

Various deep learning models regarding text clas-
sification have been proposed in recent years. Pre-
trained language models like BERT have shown
state-of-the-art performance on many NLP tasks
(Devlin et al., 2019). ClinicalBERT is also intro-
duced on the medical domain (Huang et al., 2019).
However, deep learning approaches have two draw-
backs on this particular dataset. First, deep learn-
ing requires large dataset to train, whereas most of
our unstructured note types only have fewer than
2,000 samples. Second, these approaches are not
designed for long documents, and difficult to keep
long-term dependencies over thousands of tokens.

Reinforcement learning has been explored to
combat data noise by previous work (Zhang et al.,
2018; Qin et al., 2018) on the short text setting. A
policy network makes decision left-to-right over
tokens, and is jointly trained with another classifier.
However, there is little investigation of using RL on
the long text setting, as it still requires an effective
encoder to give meaningful representation of long
documents. Therefore, in our experiments, the first
step is to select the best encoder, and then apply
RL on the long document classification.

4 Document Representation

4.1 Bag-of-Words

For the baseline model, the bag-of-words represen-
tation with TF-IDF scores, excluding stopwords
(Nothman et al., 2018), is fed into logistic regres-
sion (LR). The objective is to minimize the negative
log likelihood of the gold label yi:

− 1

m

m∑

i=1

[yi log p(gi)+(1−yi) log 1− p(gi)] (1)

where gi is the TF-IDF representation of Di. In
addition, we experiment two common techniques
in the encoder to reduce feature space: token stem-
ming, and document frequency cutoff.

4.2 Averaged Word Embedding

Word embeddings generated by fastText are used
to establish another baseline, that utilizes subwords
to better represent unseen terms (Bojanowski et al.,

2017). It is suitable for this task as unseen terms
or misspellings frequently appear in these clinical
notes. The averaged word embedding is used to
represent the input document consisting of multi-
ple notes, which gets fed into LR with the same
training objective.

4.3 ClinicalBERT

Following Huang et al. (2019), the pretrained lan-
guage BERT model (Devlin et al., 2019) is first
tuned on the MIMIC-III clinical note corpus (John-
son et al., 2016), which has shown to provide better
related word similarities in medical domains. Then,
a dense layer is added on the CLS token of the last
BERT layer. The entire parameters are fine-tuned
to optimize the binary cross entropy loss, that is the
same objective as Equation 1.

Since BERT has a limit on the input length, the
input document of each patient is split into multi-
ple subsequences. Each subsequence is within the
BERT length limit, and serves as an independent
sample with the same label of the patient. The
training data is therefore noisily inflated. The final
probability of readmission is computed as follows:

p(yi = 1|gi) =
pnimax + pnimeanni/c

1 + ni/c
(2)

where gi is the BERT representation of patient i, ni
is the corresponding number of subsequences, and
c is a hyperparameter to control the influence of ni.
pnimax and pnimean are the max and mean probability
across the subsequences, respectively.

The motivation behind balancing between the
max and mean probability is that subsequences do
not contain equal information. pnimax represents the
best potential, while longer text should give more
importance to pnimean, because pnimax is more easily af-
fected by noise as the text length grows. Although
Equation 2 seems intuitive, the use of pseudo labels
on subsequences becomes another source of noise,
especially when there are thousands of tokens; thus,
the performance is uncertain. Section 6.2 provides
detailed empirical analysis for this model.

4.4 Weight-dropped LSTM

We split documents of each patient into multiple
short segments, and feed the segment representa-
tion to long short-term memory network (LSTM)
at each time step:

hj ← LSTM(sj , hj−1; θ) (3)
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Figure 1: Overview of our reinforcement learning approach. Rewards are calculated and sent back to the policy
network after all actions a1:T have been sampled for the given episode.

where hj is the hidden state at time step j, sj is the
jth segment, and θ is the set of parameters.
Although segmentation of documents is still nec-
essary, no pseudo labels are needed. We get the
segment representation by averaging its token em-
bedding from the last layer of BERT. The final
hidden state at each step j is the concatenated hid-
den states of a single-layer Bi-directional LSTM.
After we get the hidden state for each segment, a
max-pooling operation is performed on h1:n over
the time dimension to obtain a fixed-length vector,
similar to Kim (2014); Adhikari et al. (2019). A
dense layer is immediately followed.

It is particularly important to strengthen regu-
larization on this dataset with small sample size.
Dropout (Srivastava et al., 2014) as a way of regu-
larization has been shown effective in deep learning
models, and Merity et al. (2018) has successfully
applied dropout-like technique in LSTM: the use of
DropConnect (Wan et al., 2013) is applied on the
four hidden-to-hidden matrices, preventing overfit-
ting from occurring on the recurrent weights.

5 Reinforcement Learning

Reinforcement learning is applied to the best per-
forming encoder in Section 4 to prune noisy text,
which can lead to comparable or even better per-
formance, as many text segments in these clinical
notes are found to be irrelevant to this task. Fig-
ure 1 describes the overview of our reinforcement
learning approach. The pruning process is mod-
eled as a sequential decision problem, for the fact
that these notes are received in time-order. It con-
sists of two separate components: a policy network,
and a downstream classifier. To avoid having too
many time steps, the policy is performed on the seg-
ment level instead of token level. For each patient,
documents are split into short segments g1:T =
{g1, g2, · · · , gT }, and the policy network conducts
a sequence of decisions a1:T = {a1, a2, · · · , aT }
over segments. The downstream classifier is re-

sponsible for the reward, and the REINFORCE al-
gorithm is used to train the policy (Williams, 1992).

State At each time step, the state st is the con-
catenation of two parts: the representation of previ-
ously selected text, and the current segment repre-
sentation gi. The previously selected text serves as
the context and provides a prior importance. Both
parts are represented by an effective encoder, e.g.
the best performing encoder from Section 4.

Action The action space at each step is binary:
{Keep, Prune}. If the action is Keep, the current
segment is added to the selected text; otherwise, it
is discarded. The final selected text for a patient is
the concatenated segments selected by the policy.

Reward The reward comes at the end when all
actions are sampled for the entire sequence. The
final selected text is fed to the downstream classi-
fier, and negative log-likelihood of the gold label is
used as the reward R. In addition, we also include
a reward term Rp to encourage pruning, as follows:

Rp = c · α · [2σ( l
β
)− 1] (4)

where c and β are hyperparameters to control the
scale of Rp, l is the number of segments, α is the
ratio of pruned segments |{ak = Prune}| /l, σ
is the sigmoid function. The value of the term
2σ( lβ )− 1 falls into range (0, 1). When l is small,
it downgrades the encouragement of pruning; when
l is large, it also gives an upper bound of Rp. Addi-
tionally, we apply exponential decay on the reward.
The final reward is dlR+Rp. d is the discount rate.

Policy Network The policy network maintains a
stochastic policy π(at|st; θ):

π(at|st; θ) = σ(Wst + b) (5)

where θ is the set of policy parameters W and b, at
and st are the action and state at the time step t re-
spectively. During training, an action is sampled at
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Encoder CO DS EC HP OP PG SC SW

Bag-of-Words (§4.1) 58.6 62.1 52.0 58.9 51.8 61.2 59.3 51.6
+ Cutoff 58.6 62.3 52.8 59.0 51.9 61.3 59.3 51.9
+ Stemming 58.9 61.8 53.4 59.4 51.9 61.5 59.3 51.6

Averaged Embedding (§4.2) 56.3 53.7 52.4 54.0 53.4 54.7 54.2 46.6
ClinicalBERT (§4.3) 51.9 53.3 - 52.7 - - 52.3 -
Weight-dropped LSTM (§4.4) 53.7 55.8 - 54.2 - - 54.5 -

Table 3: The Area Under the Curve (AUC) scores achieved by different encoders on the 5-fold cross-validation.
See the caption in Table 1 for the descriptions of CO, DS, EC, HP, OP, PG, SC, and SW. For deep learning encoders,
only four types are selected in experiments (Section 6.2).

each step with the probability from the policy. After
the sampling is performed over the entire sequence,
the delayed reward is computed. During evaluation,
the action is picked by argmaxaπ(a|st; θ).

The training is guided by the REINFORCE algo-
rithm (Williams, 1992), which optimizes the policy
to maximize the expected reward:

J(θ) = Ea1:T∼πRa1:T (6)

and the gradient has the following form:

∇θJ(θ) = Eτ
T∑

t=1

∇θ log π(at|st; θ)Rτ (7)

≈ 1

N

N∑

i=1

T∑

t=1

∇θ log π(ait|sit; θ)Rτi

(8)

where τ represents the sampled trajectory
{a1, a2, · · · , aT }, N is the number of sampled tra-
jectories. Rτi here equals the delayed reward from
the downstream classifier at the last step.

To encourage exploration and avoid local op-
tima, we add the entropy regularization (Mnih et al.,
2016) on the policy loss:

Jreg(θ) =
λ

N

N∑

i=1

1

Ti
∇θH(π(sit; θ)) (9)

where H is the entropy, and λ is the regularization
strength, Ti is the trajectory length.

Finally, the downstream classifier and policy net-
work are warm-started by separate training, and
then jointly trained together.

6 Experiments

Before experiments, we perform the preprocessing
described in Section 2.1, and then randomly split
patients in every note type by 5 folds to perform

cross-validation as suggested by Shin et al. (2019).
To evaluate each fold Fi, 12.5% of the training set,
that is the combined data of the other 4 folds, are
held out as the development set and the best config-
uration from this development set is used to decode
Fi. The same split is used across all experiments
for fair comparison. Following Shin et al. (2019),
the averaged Area Under the Curve (AUC) across
these 5 folds is used as the evaluation metric.

6.1 Baseline

Bag-of-Words We first conduct experiments us-
ing the bag-of-words encoder (BoW; Section 4.1)
to establish the baseline. Many experiments are per-
formed on all note types using the vanilla TF-IDF,
document frequency (DF) cutoff at 2 (removing
all tokens whose DF ≤ 2), and token stemming.
For every experiment, the class weight is assigned
inversely proportional to class frequencies, and the
inverse of regularization strength C is searched
from {0.01, 0.1, 1, 10}, where the best results are
achieved with C = 1 on the development set.

Table 3 describes the cross-validation results on
every note type. The top AUC is 62.3%, which is
within expectation given the difficulty of this task.
Some note types are not as predictive as the others,
such as Operative (OP) and Social Worker (SW),
with the AUC under 52%. Most note types have
the standard deviations in range 0.02 to 0.03.

In comparison to the previous work (Shin et al.,
2019), we achieve 0.671 AUC combining both
structured and unstructured data, despite without
the use of LDA in our encoder.

Noise Observation The DF cutoff coupled with
token stemming significantly reduce feature space
for the BoW model. As shown in Table 4, the DF
cutoff itself can achieve about 50% reduction of the
feature space. Furthermore, applying the DF cutoff
leads to slightly higher AUCs on most of the note
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types, despite almost a half of the tokens are re-
moved from the vocabulary. This implies that there
exists a large amount of noisy text that appears only
in few documents, causing the models to be over-
fitted more easily. These results further verify our
previous observation and strengthen the necessity
to extract noise from these long documents using
reinforcement learning (Section 6.3).

Averaged Word Embedding For the averaged
word embedding encoder (AWE; Section 4.2), em-
beddings generated by FastText trained on the Com-
mon Crawl and the English Wikipedia with the 300
dimension is used.1 AWE is outperformed by BoW
on every note type except Operative (OP; Table 3).
This empirical result implies that AWE over thou-
sands of tokens is not so effective in generating the
document representation so that the averaged em-
beddings are less discriminative than the sparse vec-
tors generated by BoW for such long documents.

Type Vanilla + Cutoff + Stemming
CO 28,213 15,022 (46.8) 12,243 (56.6)
DS 11,029 6,117 (44.5) 5,228 (52.6)
HP 20,245 11,276 (44.3) 9,329 (53.9)
SC 19,050 9,873 (48.2) 8,200 (57.0)

Table 4: The dimensions of the feature spaces used by
each BoW model with respect to the four note types.
The numbers in the parentheses indicate the percentage
reduction from the vanilla model, respectively.

6.2 Deep Learning-based Encoders

For deep learning encoders, the four note types with
good baseline performance (≈ 60% AUC) and rea-
sonable sequence length (< 5000) are selected to
use in the following experiments, which are Con-
sultations (CO), Discharge Summary (DS), History
and Physical (HP), and Selection Conference (SC)
(see Tables 1 and 3).

Segmentation For both ClinicalBERT and the
LSTM models, the input document is split into
segments as described in Section 4.3. For LSTM,
we set the maximum segment length to be 128 for
CO and HP, 64 for DS and SC, to balance between
segment length and sequence length. The segment
length for ClinicalBERT is set to 318 (approach-
ing 500 after BERT tokenization) to avoid noise
brought by too many pseudo labels. More statistics
about segmentation are summarized in Table 5.

1https://fasttext.cc/docs/en/crawl-vectors.html

For the ClinicalBERT, we use the PyTorch BERT
implementation with the base configuration:2 768
embedding dimensions and 12 transformer layers,
and we load the weights provided by Huang et al.
(2019) whose language model has been finetuned
on large-scale clinical notes.3 We finetune the en-
tire ClinicalBERT with batch size 4, learning rate
2× 10−5, and weight decay rate 0.01.

For the weight-dropped LSTM, we set the batch
size to 64, the learning rate to 10−3, the weight-
drop rate to 0.5, and search the hidden state dimen-
sion from {128, 256, 512} on the development set.
Early stop is used for both approaches.

Type + Model SEN SEQ INST
CO + BERT 318 14.8 11,376
CO + LSTM 128 36.8 948
DS + BERT 318 4.6 1,588
DS + LSTM 64 22.5 371
HP + BERT 318 10.1 8,364
HP + LSTM 128 27.3 987
SC + BERT 318 3.7 5,206
SC + LSTM 64 25.4 1,422

Table 5: SEN: maximum segment length (number of
tokens) allowed by the corresponding model, SEQ: av-
erage sequence length (number of segments), INST: av-
erage number of samples in the training set.

Result Analysis Table 3 shows the final results
achieved by the ClinicalBERT and LSTM models.
The AUCs of both models experience a non-trivial
drop from the baseline. After further investigation,
the issue is that both models suffer from severe
overfitting under the huge feature spaces, and strug-
gle to learn generalized decision boundaries from
this data. Figure 2 shows an example of the weak
correlation between the training loss and the AUC
scores on the development set.

As more steps are processed, the training loss grad-
ually decreases to 0. However, the model has high
variance and it does not necessarily give better per-
formance on the development set as the training
loss drops. This issue is more apparent with Clini-
calBERT on CO because there are too many pseudo
labels acting as noise, which makes it harder for
the model to distinguish useful patterns from noise.

2https://github.com/huggingface/transformers
3https://github.com/kexinhuang12345/clinicalBERT
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Figure 2: Training loss and AUC scores on the develop-
ment set during the LSTM training on the CO type. The
AUC scores depict high variance while showing weak
correlation to the training loss.

6.3 Reinforcement Learning

According to Table 3, the BoW model achieves
the best performance. Therefore, we decide to use
TF-IDF to represent the long text of each patient,
along with logistic regression as the classifier for
reinforcement learning. Document segmentation
is the same as LSTM (Table 5). During training,
segments within each note are shuffled to reduce
overfitting risks, and sequences with more than 36
segments are truncated.

The downstream classifier is warm-started by
loading weights from the logistic regression model
in the previous experiment. The policy network
is then trained for 400 episodes while freezing the
downstream classifier. After the warm start, both
models are jointly trained. We set the number of
sampling N as 10 episodes, learning rate 2× 10−4,
and fix the scaling factor β in Equations 4 as 8,
and discount rate as 0.95. Moreover, we search the
reward coefficient c in {0.02, 0.1, 0.4}, and entropy
coefficient λ in {2, 4, 6, 8}.

CO DS HP SC

Best 58.9 62.3 59.4 59.3
RL 59.8 62.4 60.6 60.2

Pruning 26% 5% 19% 23%

Table 6: The AUC scores and the pruning ratios of re-
inforcement learning (RL). Best: AUC scores from the
best performing models in Table 3.

The AUC scores and the pruning ratios (the number
of pruned segments divided by the sequence length)
are shown in Table 6. Our reinforcement learning
approach outperforms the best performing models
in Table 3, achieving around 1% higher AUC scores
on three note types, CO, HP, and SC, while pruning
out up to 26% of the input documents.

Tuning Analysis We find that two hyperparame-
ters are essential to the final success of reinforce-
ment learning (RL). The first is the reward discount
rate d. The scale of the policy gradient ∇θJ(θ) de-
pends on the sequence length T , while the delayed
reward Rτ is always on the same scale regardless
of T . Therefore, different sequence length across
episodes causes turbulence on the policy gradient,
leading to unstable training. It is important to apply
reward decay to stabilize the scale of∇θJ(θ).

The second is the entropy regularization coeffi-
cient λ, which forces the model to add bias towards
uncertainty. Without strong entropy regularization,
the training is easy to fall into local optima in early
stage, which is to keep all segments, as shown by
Figure 3(a). λ = 6 gives the model descent incen-
tive to explore aggressively, as shown by Figure
3(b), and finally leads to higher AUC.
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Figure 3: Retaining ratios on the development set of SC
while training the reinforcement learning model. En-
tropy regularization encourages more exploration.

7 Noise Analysis

To investigate the noise extracted by RL, we an-
alyze the pruned segments on the validation sets
of the Consultations type (CO), and compare the
results with other basic noise removal techniques.

Qualitative Analysis Table 7 demonstrates the
potential of the learned policy to automatically
identify noisy text from the long documents. The
original notes of shown examples are tabular text
with headers and values, mostly lab results and
medical prescription. After the data cleaning step,
the text becomes broken and does not make much
sense for humans to evaluate. The learned policy
can identify noisy segments by looking at the pres-
ence of headers such as “lab fishbone”, “lab report”,
and certain medical terms that frequently appear
in tabular reports such as “chloride”, “creatinine”,
“hemoglobin”, “methylprednisolone”, etc. We find
that many pruned segments have strong indicators
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lab fishbone ( bmp , cbc , cmp , diff ) and critical labs - last hours ( not an official lab report .
please see flowsheet ( or printed official lab reports ) for official lab results . ) ( na ) ( cl ) h ( bun ) -
( hgb ) ( glu ) ( wbc ) ( plt ) ( ) h ( cr ) ( hct ) na = not applicable a = abnormal ( ftn ) = footnote .
laboratory studies : sodium , potassium , chloride , . , bun , creatinine , glucose . total bilirubin
1 , phos of , calcium , ast 9 , alt , alk phos . parathyroid hormone level . white blood cell count ,
hemoglobin , hematocrit , platelets . inr , ptt , and pt .
methylprednisolone ivpb : mg , ivpb , give in surgery , routine , / , infuse over : minute . mycophe-
nolate mofetil : mg = 4 cap , po , capsule , once , now , / , stop date / , ml . documented medications
documented accupril : mg , po , qday , 0 refill , substitution allowed .

Table 7: Examples of pruned segments by the learned policy. Tokens that have feature importance lower than
−0.001 (towards Prune action) are marked bold.

the social worker met with this pleasant year old caucasian male on this date for kidney transplant
evaluation . the patient was alert , oriented and easily engaged in conversation with the social
worker today . he resides in atlanta with his spouse of years , who he describes as very supportive .
he reports occasional alcohol drinks per month but denies any illicit drug use . he has a grade
education . he has been married for years . he is working full - time while on peritoneal dialysis as
a business asset manager . he has medicare and an aarp prescriptions supplement . family history :
mother deceased at age with complications of obesity , high blood pressure and heart disease .

Table 8: Examples of kept segments by the learned policy. Tokens that have feature importance greater than 0.0005
(towards Keep action) are marked bold.

of headers and specific medical terms, which ap-
pear mostly in tabular text rather than written notes.

Table 8 shows examples that are kept by the pol-
icy. Tokens that contribute towards Keep action are
words related with human and social life, such as
“social worker”, “engaged”, “drinks”, “married”,
“medicare”, and terms related with health condi-
tions, such as “obesity”, “heart”, “high blood pres-
sure”. These terms indeed appear mostly in written
text rather than tabular data.

In addition, we also notice that the policy is able
to remove certain duplicate segments. Medical
professionals sometimes repeat certain description
from previous notes to a new document, causing
duplicate content. The policy learns to make use of
the already selected context, and assigns negative
coefficients to certain tokens. Duplicate segments
are only selected once if the segment contains many
tokens that have opposite feature importance in the
context and segment vectors.

Quantitative Analysis We examine tokens that
are pruned by RL and compare with document fre-
quency (DF) cutoff. We select 3000 unique tokens
in the vocabulary that have the top negative feature
importance (towards Prune action) in the segment
vector of CO. Figure 4 shows the DF distribution
of these tokens.
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Figure 4: Log scale distribution on document frequency
of tokens with top negative feature importance.

We observe that the majority of those tokens have
small DF values. It shows that the learned policy is
able to identify certain tokens with small DF values
as noise, which aligns with DF cutoff. Moreover,
the distribution also shows a non-trivial amount of
tokens with large DF values, demonstrating that
RL can also identify task-specific noisy tokens that
commonly appear in documents, which in this case
are certain tokens in noisy tabular text.

Either RL or DF cutoff achieves higher AUC
while reducing input features, proving that given
the small sample size, the extracted text is more
likely to cause overfit than being generalizable pat-
tern, which also verifies our initial hypothesis.
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8 Conclusion

In this paper, we address the task of 30-day readmis-
sion prediction after kidney transplant, and propose
to improve the performance by applying reinforce-
ment learning with noise extraction capability. To
overcome the challenge of long document represen-
tation with a small dataset, four different encoders
are experimented. Empirical results show that bag-
of-words is the most suitable encoder, surpassing
overfitted deep learning models, and reinforcement
learning is able to improve the performance, while
being able to identify both traditional noisy tokens
that appear in few documents, and task-specific
noisy text that commonly appear.
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Abstract

In this paper, we apply pre-trained language
models to the Semantic Textual Similarity
(STS) task, with a specific focus on the clini-
cal domain. In low-resource setting of clinical
STS, these large models tend to be impractical
and prone to overfitting. Building on BERT,
we study the impact of a number of model de-
sign choices, namely different fine-tuning and
pooling strategies. We observe that the impact
of domain-specific fine-tuning on clinical STS
is much less than that in the general domain,
likely due to the concept richness of the do-
main. Based on this, we propose two data aug-
mentation techniques. Experimental results on
N2C2-STS1 demonstrate substantial improve-
ments, validating the utility of the proposed
methods.

1 Introduction

Semantic Textual Similarity (STS) is a language
understanding task, involving assessing the degree
of semantic equivalence between two pieces of text
based on a graded numerical score (Corley and
Mihalcea, 2005). It has application in tasks such
as information retrieval (Hliaoutakis et al., 2006),
question answering (Hoogeveen et al., 2018), and
summarization (AL-Khassawneh et al., 2016). In
this paper, we focus on STS in the clinical domain,
in the context of a recent task within the framework
of N2C2 (the National NLP Clinical Challenges)1,
which makes use of the extended MedSTS data
set (Wang et al., 2018), referring to N2C2-STS,
with limited annotated sentences pairs (1.6K) that
are rich in domain terms.

Neural STS models typically consist of encoders
to generate text representations, and a regression
layer to measure the similarity score (He et al.,
2015; Mueller and Thyagarajan, 2016; He and Lin,

1https://portal.dbmi.hms.harvard.edu/
projects/n2c2-2019-t1/

2016; Reimers and Gurevych, 2019). These archi-
tectures require a large amount of training data, an
unrealistic requirement in low resource settings.

Recently, pre-trained language models (LMs)
such as GPT-2 (Radford et al., 2018) and
BERT (Devlin et al., 2019) have been shown to
benefit from pre-training over large corpora fol-
lowed by fine tuning over specific tasks. How-
ever, for small-scale datasets, only limited fine-
tuning can be done. For example, GPT-2 achieved
strong results across four large natural language
inference (NLI) datasets, but was less successful
over the small-scale RTE corpus (Bentivogli et al.,
2009), performing below a multi-task biLSTM
model. Similarly, while the large-scale pre-training
of BERT has led to impressive improvements on
a range of tasks, only very modest improvements
have been achieved on STS tasks such as STS-
B (Cer et al., 2017) and MRPC (Dolan and Brock-
ett, 2005) (with 5.7k and 3.6k training instances,
resp.). Compared to general-domain STS bench-
marks, labeled clinical STS data is more scarce,
which tends to cause overfitting during fine-tuning.
Moreover, further model scaling is a challenge due
to GPU/TPU memory limitations and longer train-
ing time (Lan et al., 2019). This motivates us to
search for model configurations which strike a bal-
ance between model flexibility and overfitting.

In this paper, we study the impact of a number of
model design choices. First, following Reimers and
Gurevych (2019), we study the impact of various
pooling methods on STS, and find that convolution
filters coupled with max and mean pooling out-
perform a number of alternative approaches. This
can largely be attributed to their improved model
expressiveness and ability to capture local interac-
tions (Yu et al., 2019). Next, we consider differ-
ent parameter fine-tuning strategies, with varying
degrees of flexibility, ranging from keeping all pa-
rameters frozen during training to allowing all pa-
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rameters to be updated. This allows us to identify
the optimal model flexibility without over-tuning,
thereby further improving model performance.

Finally, inspired by recent studies, including
sentence ordering prediction (Lan et al., 2019)
and data-augmented question answering (Yu et al.,
2019), we focus on data augmentation methods to
expand the modest amount of training data. We first
consider segment reordering (SR), in permuting
segments that are delimited by commas or semi-
colons. Our second method increases linguistic
diversity with back translation (BT). Extensive
experiments on N2C2-STS reveal the effective-
ness of data augmentation on clinical STS, par-
ticularly when combined with the best parameter
fine-tuning and pooling strategies identified in Sec-
tion 3, achieving an absolute gain in performance.

2 Related Work

2.1 Model Configurations

In pre-training, a spectrum of design choices have
been proposed to optimize models, such as the pre-
training objective, training corpus, and hyperpa-
rameter selection. Specific examples of objective
functions include masked language modeling in
BERT, permutation language modeling in XLNet
(Yang et al., 2019), and sentence order prediction
(SOP) in ALBERT (Lan et al., 2019). Addition-
ally, RoBERTa (Liu et al., 2019) explored benefits
from a larger mini-batch size, a dynamic masking
strategy, and increasing the size of the training cor-
pus (16G to 160G). However, all these efforts are
targeted at improving downstream tasks indirectly
by optimizing the capability and generalizability of
LMs, while adapting a single fully-connected layer
to capture task features.

Sentence-BERT (Reimers and Gurevych, 2019)
makes use of task-specific structures to optimize
STS, concentrating on computational and time effi-
ciency, and is evaluated on relatively larger datasets
in the general domain. For evaluating the impact
of number of layers transferred to the supervised
target task from the pre-trained language model,
GPT-2 has been analyzed on two datasets. How-
ever, they are both large: MultiNLI (Williams et al.,
2018) with >390k instances, and RACE (Lai et al.,
2017) with >97k instances. These tasks also both
involve reasoning-related classification, as opposed
to the nuanced regression task of STS.

2.2 Data Augmentation

Synonym replacement is one of the most com-
monly used data augmentation methods to simulate
linguistic diversity, but it introduces ambiguity if
accurate context-dependent disambiguation is not
performed. Moreover, random selection and re-
placement of a single word used in general texts is
not plausible for term-rich clinical text, resulting
in too much semantic divergence (e.g patient to af-
fected role and discharge to home to spark to home).
By contrast, replacing a complete mention of the
concept can increase error propagation due to the
prerequisite concept extraction and normalization.

Random insertion, deletion, and swapping of
words have been demonstrated to be effective on
five text classification tasks (Wei and Zou, 2019).
But those experiments targeted topic prediction, in
contrast to semantic reasoning such as STS and
MultiNLI. Intuitively, they do not change the over-
all topic of a text, but can skew the meaning of a
sentence, undermining the STS task. Swapping an
entire semantic segment may mitigate the risk of
introducing label noise to the STS task.

Compared to semantic and syntactic distortion
potentially caused by aforementioned methods,
back translation (BT) (Sennrich et al., 2016) —
translating to a target language then back to the
original language — presents fluent augmented
data and reliable improvements for tasks demand-
ing for adequate semantic understanding, such as
low-resource machine translation (Xia et al., 2019)
and question answering (Yu et al., 2019). This
motivates our application of BT on low-resource
clinical STS, to bridge linguistic variation between
two sentences. This work represents the first explo-
ration of applying BT for STS.

3 STS Model Configurations

In this section, we study the impact of a number
of model design choices on BERT for STS, using
a 12-layer base model initialized with pretrained
weights.

3.1 Hierarchical Convolution (HConv)

The resource-poor and concept-rich nature of clini-
cal STS makes it difficult to train a large model end-
to-end on sentence pairs. To address this, most re-
cent studies have made use of pre-trained language
models, such as BERT. The most straightforward
way to use BERT is the feature-based approach,
where the output of the last transformer block is
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taken as input to the task-specific classifier. Many
have proposed the use of a dummy CLS token to
generate the feature vector, where CLS is a special
symbol added in front of every sequence during
pre-training, with its final hidden state always used
as the aggregate sequence representation for clas-
sification tasks, referring to CLS pooling. Other
types of pooling, such as mean and max pooling,
are investigated by Reimers and Gurevych (2019).

However, this results in inferior performance
as shown in the first row of Table 1.2 As a con-
sequence, the best strategy for extracting feature
vectors to represent a sentence remains an open
question.

In this work, we first experiment with the feature-
based approach, coupled with convolutional filters.
This is inspired by the use of convolutional filters
in QANet (Yu et al., 2019) to capture local interac-
tions. The difference lies in where convolutional
filters are applied. With QANet, multiple conv
filters are incorporated into each transformer en-
coder block to process the input from the previous
layer. In contrast, HConv-BERT is largely based
on BERT, with the addition of a single task-specific
classifier placed on top of BERT consisting of conv
filters organised in a hierarchical fashion. This
results in a much simplified model, making HConv-
BERT less prone to overfitting.

Specifically, we run a collection of convolutional
filters with a kernel of size k ∈ [2, 4], each with
J = 768 output channels (indexed by j ∈ [1, J ]),
over the temporal axis (indexed by i ∈ [1, T ]):

ci,kj = wkj ∗ xi:i+k−1 + bkj (1)

ci,k = [ci,k1 ; . . . ; ci,kJ ] (2)

where xi:i+k−1 is the output BERT features for the
token span i to i + k − 1, ∗ is the convolution
operation, wkj and bkj are the convolution filter
and bias term for the j-th kernel of size k, and
[a;b] denotes the concatenation of a and b.

To capture interactions between distant elements,
we feed the output ci,k into another convolution
layer of kernel size 2 with M = 128 output chan-
nels (indexed by m ∈ [1,M ]):

cki,m = wm ∗ ci:i+1,k + bm (3)

cki =
[
cki,1; . . . ; c

k
i,M

]
(4)

2Due to space constrains, we limit our comparison to the
CLS pooling strategy, based on the observation of little im-
provements when using other types of pooling (mean, max)
and concatenation, or sequence processing recurrent units.

Model SICK-R STS-B N2C2-STS

Feature-based:
CLS-BERT 53.6/52.1 49.3/67.9 14.6/28.4
HConv-BERT 80.1/73.6 83.0/83.2 79.4/74.4

Fine-tuning:
CLS-BERT 88.6/82.9 90.0/89.6 86.7/81.9
HConv-BERT 88.7/83.5 90.1/89.6 87.7/80.7

Table 1: Pearson and Spearman correlation (r/ρ) be-
tween the predicted score and the gold labels for three
STS datasets using the feature-based approach (upper
half) and fine-tuning (bottom half) with CLS-BERT
and HConv-BERT. Performance is reported by conven-
tion as r/ρ× 100.

where ci:i+1,k is the output of the first convolu-
tional layer over the span i to i + 1 as defined in
Equation (2), and wm and bm are the filter and
bias term for the second convolutional layer with, a
kernel size of 2 and output dimension of M = 128.

Lastly, we extract feature vectors by max and
mean pooling over the temporal axis and then con-
catenation:

vk
max = max

(
cki

)
vk

mean = avg
(
cki

)
(5)

v =
[
v2

max;v
3
max;v

4
max;v

2
avg;v

3
avg;v

4
avg
]
. (6)

The upper half of Table 1 shows that the pro-
posed hierarchical convolutional (HConv) architec-
ture provides substantial performance gains.

3.2 Model Flexibility

We also evaluate the utility of this mechanism in the
fine-tuning setting with varying modelling flexibil-
ity. Concretely, we progressively increase the num-
ber of trainable parameters by transformer blocks.
That is, for the base BERT model with 12 layers,
we allow errors to be back-propagated through the
last l layers while keeping the rest (12− l) fixed.

The results on STS-B and N2C2-STS are shown
in Figure 1. We observe performance crossover of
HConv and CLS-pooling on both datasets as the
number of trainable transformer layers increases.
While HConv reaches peak performance before the
crossover, CLS-pooling often requires more blocks
to be trainable to achieve comparable accuracy,
rendering the model much slower. Notably, the pro-
posed mechanism peaks with much fewer trainable
blocks on N2C2-STS than STS-B. We speculate
that this is due to the size difference between the
two datasets. To verify this hypothesis, we further
look into the relationship between the number of
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Figure 1: Evaluation of CLS-BERT and HConv-BERT over datasets from the general (STS-B) and clinical (N2C2)
domains. r refers to Pearson correlation. N2C2-STS is split into 1233 and 409 instances for training and dev.
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Figure 2: Impact of number of trainable transformer
blocks based on HConv-BERT over different data size,
randomly sampled from STS-B, ranging from 500 to
full set (5, 749).

trainable transformer blocks and training data size.
In Figure 2, we observe performance degradation
as the size of training data shrinks, with the mod-
els trained on the full set achieving far superior
Pearson correlation to those trained on the smaller
subsets. Zooming into the curve representing each
subset, we find that peak performance is attained
at different points depending on data size: with
the smallest dataset (500 instances), the number of
parameter updates is also limited. Only updating
the top few layers of transformer blocks is simply
not enough to make the model fully adapt to the
task. It is therefore beneficial to allow the model
access to more trainable layers (e.g., 11) to improve
performance.

Based on this, we set the number of trainable
blocks to 6 for SICK-R (consisting of 4, 500 train-
ing instances), as presented in the bottom half of

Table 1, with HConv outperforming CLS-pooling.

4 Data Augmentation

The accuracy of an STS model unsurprisingly de-
pends on the amount of labeled data. This is re-
flected in Figure 2, where models trained with more
data outperform those with fewer training instances.
In this section, we propose two data augmenta-
tion methods, namely segment reordering (SR) and
back translation (BT), to address the data sparsity
issue in clinical STS.

Segment reordering. Clinical texts often consist
of text segments describing multiple events and pa-
tient symptoms. Each segment is often an indepen-
dent semantic unit, separated by commas or semi-
colons. Inspired by the random word swapping
of Wei and Zou (2019), we exploit this property
and propose a heuristic, named segment reordering
(SR), to generate permutations of the original se-
quence based on these segments. While we expect
this to introduce some noise to the training data, our
hypothesis is that the increase in training data size
will outweigh this. For instance, consider the text
new confusion or inability to stay alert and awake;
feeling like you are going to pass out. Flipping the
order of the two segments new confusion or inabil-
ity to stay alert and awake and feeling like you are
going to pass out will not hinder the overall under-
standing of the text. More formally, for a given
pair of sentences S1 and S2, each consisting of a
sequence of segments S1 = {s11, . . . , s1m} and
S2 = {s21, . . . , s2n}, we generate a new pair by
randomly permuting the segment order, effectively
doubling the size of the training corpus.

108



Back translation. Inspired by the work of Yu
et al. (2019), we make use of machine translation
tools to perform back translation (BT). Here, we
choose Chinese as the pivot language as it is linguis-
tically distant to English and supported by mature
commercial translation solutions. That is, we first
translate from English to Chinese and then back
to English. We use Google Translate to translate
each sentence in a sentence pair from English to
Chinese, and Baidu Translation3 to translate back
to English. For example, for the original sentence
negative for cough and stridor, the backtranslated
result is bad for coughing and wheezing. We apply
this to each sentence pair, doubling the amount of
training data.

5 Experiments

5.1 Experimental Setup
We evaluate the effectiveness of SR and
BT on N2C2-STS with four baseline mod-
els: BERTbase (Devlin et al., 2019) and
BERTclinical (Alsentzer et al., 2019), both us-
ing CLS-pooling and consisting of 12 layers;
ConvBERTbase, based on BERTbase with hierarchi-
cal convolution and fine-tuning over the last 4 lay-
ers (consistent with our findings of the best model
configuration in Section 3); and ConvBERTSTS-B,
where we take ConvBERTbase and fine-tune first
over STS-B, before N2C2-STS.

We split the training partition of N2C2-STS into
1, 233 (train) and 409 (dev) instances, and report
results on the test set (412 instances).

5.2 Results
Experimental results are presented in Table 2. We
see clear benefits of the two proposed data aug-
mentation methods, consistently boosting perfor-
mance across all categories, with BT providing
larger gains than SR. This is likely caused by the
rather naı̈ve implementation of SR, resulting in un-
natural segment sequences. A possible fix to this is
to further filter out such irregular statements with
a language model pre-trained on clinical corpora.
We leave this for future work.

It is impressive that the best-performing configu-
ration ConvBERTSTS-B + BT is capable of achiev-
ing comparable results with the state-of-the-art
IBM-N2C2, an approach heavily reliant on exter-
nal, domain-specific resources, and an ensemble of
multiple pre-trained language models.

3https://fanyi.baidu.com/

Model r ρ

IBM-N2C2 90.1 —

BERTbase 86.7 81.9
+ SR 87.1 80.8
+ BT 87.2 81.7

BERTclinical 86.1 81.4
+ SR 87.4 82.7
+ BT 88.6 82.4

Conv1dBERTbase 87.7 80.7
+ SR 88.0 81.4
+ BT 88.1 82.2

Conv1dBERTSTS-B 87.9 82.5
+ SR 88.6 83.1
+ BT 89.4 83.0

Table 2: Pearson r and Spearman ρ on N2C2-STS for
models with and without segment reordering (“SR”)
and back translation (“BT”).

We additionally conduct a cross-domain exper-
iment on BIOSSES (Soğancıoğlu et al., 2017),
a biomedical literature STS dataset comprising
100 sentence pairs derived from the Text Analysis
Conference Biomedical Summarization task with
scores ranging from 0 (complete unrelatedness) to
4 (exact equivalence). Specifically, baseline model
Pooling BERTbase and proposed ConvBERTSTS-B +
BT are both fine-tuned on N2C2-STS, and then ap-
plied with no further training to BIOSSES. Despite
the increase in task difficulty, the proposed method
demonstrates strong generalisability, outperform-
ing the baseline by an absolute gain of 2.4 and 3.9
to 85.42/82.83 (r/ρ).

6 Conclusions

In this paper, we have presented an empirical study
of the impact of a number of model design choices
on a BERT-based approach to clinical STS. We
have demonstrated that the proposed hierarchical
convolution mechanism outperforms a number of
alternative conventional pooling methods. Also, we
have investigated parameter fine-tuning strategies
with varying degrees of flexibility, and identified
the optimal number of trainable transformer blocks,
thereby preventing over-tuning. Lastly, we have
verified the utility of two data augmentation meth-
ods on clinical STS. It may be interesting to see the
impact of leveraging target languages other than
Chinese in BT, which we leave for future work.
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Abstract

We explore state-of-the-art neural models
for question answering on electronic medical
records and improve their ability to general-
ize better on previously unseen (paraphrased)
questions at test time. We enable this by learn-
ing to predict logical forms as an auxiliary
task along with the main task of answer span
detection. The predicted logical forms also
serve as a rationale for the answer. Further,
we also incorporate medical entity information
in these models via the ERNIE (Zhang et al.,
2019a) architecture. We train our models on
the large-scale emrQA dataset and observe that
our multi-task entity-enriched models general-
ize to paraphrased questions ∼ 5% better than
the baseline BERT model.

1 Introduction

The field of question answering (QA) has seen sig-
nificant progress with several resources, models
and benchmark datasets. Pre-trained neural lan-
guage encoders like BERT (Devlin et al., 2019) and
its variants (Seo et al., 2016; Zhang et al., 2019b)
have achieved near-human or even better perfor-
mance on popular open-domain QA tasks such as
SQuAD 2.0 (Rajpurkar et al., 2016). While there
has been some progress in biomedical QA on med-
ical literature (Šuster and Daelemans, 2018; Tsat-
saronis et al., 2012), existing models have not been
similarly adapted to clinical domain on electronic
medical records (EMRs).

Community-shared large-scale datasets like em-
rQA (Pampari et al., 2018) allow us to apply state-
of-the-art models, establish benchmarks, innovate
and adapt them to clinical domain-specific needs.
emrQA enables question answering from electronic
medical records (EMRs) where a question is asked
by a physician against a patient’s medical record

∗The author did this work while interning at MIT-IBM
Watson AI Lab.

Context:	The	patient	had	an	elective	termination	of	her	pregnancy	on	[DATE].	The
	work-up	for	the	extent	of	the	patient's	disease	included	mri	scan	of	the	cervical	and
	thoracic	spine	which	revealed	multiple	metastatic	lesions	in	the	vertebral	bodies;	A	T
3	lesion	extending	from	the	body	to	the	right	neural	for	amina	with	foraminal	obstruc
tion.	An	abdominal	and	pelvic	ct	scan	with	iv	contrast	revealed	bilateral	pulmo
nary	nodules	and	bilateral	pleural	effusions,	extensive	liver	metastases,	narrowing	of
	the	intra	hepatic	ivc	and	distention	of	the	azygous	system	suggestive	of	ivc	obstructi
on	by	liver	metastases.
Question:	How	was	the	patient's	extensive	liver	metastases	diagnosed?
Paraphrase:	What	diagnosis	was	used	for	the	patient's	extensive	liver	metastases?
Logical	Form:	{LabEvent	(x)	[date=x,	result=x]	OR	ProcedureEvent	(x)	[date=x,	re
sult=x]	OR	VitalEvent	(x)	[date=x,	result=x]}	reveals	ConditionEvent	(|problem|)
Answer:	An	abdominal	and	pelvic	ct	scan	with	iv	contrast

Figure 1: A synthetic example of a clinical context,
question, its logical form and the expected answer.

(clinical notes). Thus, we adapt these models for
EMR QA while focusing on model generalization
via the following. (1) learning to predict the logi-
cal form (a structured semantic representation that
captures the answering needs corresponding to a
natural language question) along with the answer
and (2) incorporating medical entity embeddings
into models for EMR QA. We now examine the
motivation behind these.

A physician interacting with a QA system on
EMRs may ask the same question in several dif-
ferent ways; a physician may frame a question as:

“Is the patient allergic to penicillin?” whereas the
other could frame it as “Does penicillin cause any
allergic reactions to the patient?”. Since paraphras-
ing is a common form of generalization in natural
language processing (NLP) (Bhagat et al., 2009),
a QA model should be able to generalize well to
such paraphrased question variants that may not be
seen during training (and avoid simply memorizing
the questions). However, current state-of-the-art
models do not consider the use of meta-information
such as the semantic parse or logical form of the
questions in unstructured QA. In order to give the
model the ability to understand the semantic infor-
mation about answering needs of a question, we
frame our problem in a multitask learning setting
where the primary task is extractive QA and the
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auxiliary task is the logical form prediction of the
question.

Fine-tuning on medical copora (MIMIC-III,
PubMed (Johnson et al., 2016; Lee et al., 2020))
helps models like BERT align their representations
according to medical vocabulary (since they are
previously trained on open-domain corpora such
as WikiText (Zhu et al., 2015)). However, another
challenge for developing EMR QA models is that
different physicians can use different medical ter-
minology to express the same entity; e.g., “heart
attack” vs. “myocardial infarction”. Mapping these
phrases to the same UMLS semantic type1 as dis-
ease or syndrome (dsyn) provides common infor-
mation between such medical terminologies. In-
corporating such entity information about tokens
in the context and question can further improve the
performance of QA models for the clinical domain.

Our contributions are as follows:

1. We establish state-of-the-art benchmarks for
EMR QA on a large clinical question answer-
ing dataset, emrQA (Pampari et al., 2018)

2. We demonstrate that incorporating an auxil-
iary task of predicting the logical form of a
question helps the proposed models generalize
well over unseen paraphrases, improving the
overall performance on emrQA by∼ 5% over
BERT (Devlin et al., 2019) and by ∼ 3.5%
over clinicalBERT (Alsentzer et al., 2019).
We support this hypothesis by running our pro-
posed model over both emrQA and another
clinical QA dataset, MADE (Jagannatha et al.,
2019).

3. The predicted logical form for unseen para-
phrases helps in understanding the model bet-
ter and provides a rationale (explanation) for
why the answer was predicted for the provided
question. This information is critical in clin-
ical domain as it provides an accompanying
answer justification for clinicians.

4. We incorporate medical entity information by
including entity embeddings via the ERNIE
(Zhang et al., 2019a) architecture (Zhang et al.,
2019a) and observe that the model accuracy
and ability to generalize goes up by ∼ 3%
over BERTbase(Devlin et al., 2019).

1https://metamap.nlm.nih.gov/
SemanticTypesAndGroups.shtml

2 Problem Formulation

We formulate the EMR QA problem as a read-
ing comprehension task. Given a natural language
question (asked by a physician) and a context,
where the context is a set of contiguous sentences
from a patient’s EMR (unstructured clinical notes),
the task is to predict the answer span from the given
context. Along with the (question, context, answer)
triplet, also available as input are clinical entities
extracted from the question and context. Also avail-
able as input is the, logical form (LF) that is a struc-
tured representation that captures answering needs
of the question through entities, attributes and rela-
tions required to be in the answer (Pampari et al.,
2018). A question may have multiple paraphrases
where all paraphrases map to the same LF (and the
same answer, fig. 1).

3 Methodology

In this section, we briefly describe BERT (Devlin
et al., 2019), ERNIE (Zhang et al., 2019a) and our
proposed model.

3.1 Bidirectional Encoder Representations
from Transformers (BERT)

BERT (Devlin et al., 2019) uses multi-layer bidi-
rectional Transformer (Vaswani et al., 2017) net-
works to encode contextualised language represen-
tations. BERT representations are learned from two
tasks: masked language modeling (Taylor, 1953)
and next sentence prediction task. We chose BERT
model as pre-trained BERT models can be fine-
tuned with just one additional inference layer and it
achieved state-of-the-art results for a wide range of
tasks such as question answering, such as SQuAD
(Rajpurkar et al., 2016, 2018), and multiple lan-
guage inference tasks, such as MultiNLI (Williams
et al., 2017). clinicalBERT (Alsentzer et al., 2019)
yielded superior performance on clinical-related
NLP tasks such as i2b2 named entity recognition
(NER) challenges (Uzuner et al., 2011). It was
created by further fine-tuning of BERTbase with
biomedical and clinical corpus (MIMIC-III) (John-
son et al., 2016).

3.2 Enhanced Language Representation with
Informative Entities (ERNIE)

We adopt the ERNIE framework (Zhang et al.,
2019a) to integrate the entity-level clinical con-
cept information into the BERT architecture, which
has not yet been explored in the previous works.
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Token: Multi-Head Attention Entity: Multi-Head Attention

[CLS]

Ques:	Has	the	patient	ever	gone	into	edema?	

Context:	Extremities	no	clubbing,	...	cyanosis	or	edema.

Has the [SEP]?edema .edemaorExtremities N/A N/A N/A N/AN/AFinding N/AFindingN/AN/A

w1 w1 wt wn e1 e1 et en

e1 e1 et en

Information Fusion Layer

Span Selection Layer Logical Form Inference Layer

Start Token End Token

Pooled Sequence Representation

Logical Form

MetaMap

ConditionEvent(|problem|)	OR	SymptomEvent(|problem|)

Figure 2: The network architecture of our multi-task learning question answering model (M-cERNIE). The ques-
tion and context are provided to a multi-head attention model (orange) and are also passed through MetaMap to
extract clinical entities which are passed through a separate multi-head attention (yellow). The token and entity
representations are then passed through an information fusion layer (blue) to extract entity-enriched token represen-
tations which are then used for answer span prediction. The pooled sequence representation from the information
fusion layer is passed through logical form inference layer to predict the logical form.

ERNIE has shown significant improvement in dif-
ferent entity typing and relation classification tasks,
as it utilises the extra entity information which is
provided from knowledge graphs. ERNIE uses
BERT for extracting contextualized token embed-
dings and a multi-head attention model to generate
entity embeddings. These two set of embeddings
are aligned and provided as an input to an infor-
mation fusion layer which provides entity-enriched
token embeddings. For a token (wj) and its aligned
entity (ek = f(wj)), the information fusion pro-
cess is as follows:

hj = σ(W
(i)
t w

(i)
j +W (i)

e e
(i)
k + b(i)) (1)

Here hj represents the entity enriched token em-
bedding, σ is the non-linear activation function,Wt

refers to an affine layer for token embeddings and
We refers to an affine layer for entity embeddings.
For the tokens without corresponding entities, the
information fusion process becomes:

hj = σ(W
(i)
t w

(i)
j + b(i)) (2)

Initially, each entity embedding is assigned ran-
domly and is fine-tuned along with token em-
beddings throughout the training procedure. The

ERNIE architecture would be applicable to the
model even if the logical forms are not available.

3.3 Multi-task Learning for Extractive QA
In order to improve the ability of a QA model to
generalize better over paraphrases, it helps to pro-
vide the model information about the logical form
that links these paraphrases. Since the answer to all
the paraphrased questions is the same (and hence,
logical form is the same), we constructed a multi-
task learning framework to incorporate the logical
form information into the model. Thus, along with
predicting the answer span, we added an auxiliary
task to also predict the corresponding logical form
of the question. Multi-task learning provides an
inductive bias to enhance the primary task’s perfor-
mance via auxiliary tasks (Weng et al., 2019). In
our setting, the primary task is span detection of the
answer and the auxiliary task is logical form pre-
diction for both emrQA and MADE (both datasets
are explained in detail in § 4). The final loss for our
model is defined as:

Lmodel = ωLlf + (1− ω)Lspan, (3)

where ω is the weightage given to the loss of aux-
illary task (Llf ), logical form prediction. Lspan
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is loss for answer span prediction and Lmodel is
the final loss for our proposed model. The multi-
task learning model can work with both BERT and
ERNIE as the base model. Figure 2 depicts the
proposed multi-task model to predict both the an-
swer and logical form given a question and ERNIE
architecture that is used to learn entity-enriched
token embeddings.

4 Datasets

We used emrQA2 and MADE3 datasets for our ex-
periments. We provide a brief summary of each
dataset and the methodology followed to split these
datasets into train and test sets.

emrQA The emrQA corpus (Pampari et al.,
2018) is the only community-shared clinical QA
dataset that consists of questions, posed by physi-
cians against electronic medical records (EMRs) of
a patient, along with their answers. The dataset was
developed by leveraging existing annotations avail-
able for other clinical natural language processing
(NLP) tasks (i2b2 challenge datasets (Uzuner et al.,
2011)). It is a credible resource for clinical QA
as logical forms that are generated by a physician
help slot fill question templates and extract corre-
sponding answers from annotated notes. Multiple
question templates can be mapped to the same logi-
cal form (LF), as shown in Table 1, and are referred
to as paraphrases of each other.

LF: MedicationEvent (|medication|) [dosage=x]

How much |medication| does the patient take per day?
What is her current dose of |medication|?
What is the current dose of the patient’s |medication|?
What is the current dose of |medication|?
What is the dosage of |medication|?
What was the dosage prescribed of |medication|?

Table 1: A logical form (LF) and its respective question
templates (paraphrases).

The emrQA corpus has over 1M+ question, log-
ical form, and answer/evidence triplets, an example
of a context, question, its logical form and a para-
phrase is shown in Fig 1. The evidences are the
sentences from the clinical note that are relevant
to a particular question. There are total 30 logical
forms in the emrQA dataset 4.

2https://github.com/panushri25/emrQA
3https://bio-nlp.org/index.php/

projects/39-nlp-challenges
4https://github.com/panushri25/emrQA/

blob/master/templates/templates-all.csv

MADE MADE 1.0 (Jagannatha et al., 2019)
dataset was hosted as an adverse drug reactions
(ADRs) and medication extraction challenge from
EMRs. This dataset was converted into a QA
dataset by following the same procedure as enu-
merated in the literature of emrQA (Pampari et al.,
2018). MADE QA dataset is smaller than emrQA,
as emrQA consists of multiple datasets taken from
i2b2 (Uzuner et al., 2011) whereas MADE only
has specific relations and entity mentions to that of
ADRs and medications. This resulted in a clinical
QA dataset which has different properties as com-
pared to emrQA. MADE also has lesser number
of logical forms (8 LFs) as compared to emrQA
because of fewer entities and relations. The 8 LFs
for MADE are provided in Appendix B.

4.1 Train/test splits
The emrQA dataset is generated using a semi-
automated process that normalizes real physician
questions to create question templates, associates
expert annotated logical forms with each tem-
plate and slot fills them using annotations for
various NLP tasks from i2b2 challenge datasets
(for e.g., fig. 1). emrQA is rich in paraphrases
as physicians often tend to express the same in-
formation need in different ways. As shown in
Table. 1, all paraphrases of a question map to
the same logical form. Thus, if a model has ob-
served some of the paraphrases it should be able
to generalize to the others effectively with the
help of their shared logical form “MedicationEvent
(|medication|) [dosage=x]”. In order to simulate
this, and test the true capability of the model to gen-
eralize to unseen paraphrased questions, we create
a splitting scheme and refer to it as paraphrase-
level split.

Paraphrase-level split
The basic idea is that some of question templates
would be observed by the model during training
and remaining would be used during validation and
testing. The steps taken for creating this split are
enumerated below:

1. First, the clinical notes are separated into train,
val and test sets. Then the question, logical
form and context triplets are generated for
each set resulting in the full dataset. Here the
context is the set of contiguous sentences from
the EMR.

2. Then for each logical form (LF), 70% of its
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corresponding question templates are chosen
for train dataset and the rest are kept for val-
idation and test dataset. Considering the LF
shown in Table 1, four of the question tem-
plates (QTtr) would be assigned for training
and two (QTv/t) of them would be assigned
for validation/testing. So any sample in train-
ing dataset whose question is generated from
the question template set Qv/t would be dis-
carded. Similarly, any sample with a question
generated from the question template set Qtr

would be discarded.

3. To compare the generalizability performance
of our model, we keep the training dataset
with both set of question templates (QTtr +
QTv/t) as well. Essentially, a baseline model
which has observed all the question templates
(QTtr+QTv/t) should be able to perform bet-
ter on the QTv/t set as compared to a model
which has only observed QTtr set. This com-
parison would help us in measuring the im-
provement in performance with the help of
logical forms even when a set of question tem-
plates are not observed by the model.

The dataset statistics for both emrQA and MADE
are shown in Table 2. The training set with both
question template sets (QTtr + QTv/t) is shown
with ‘(r)’ appended as suffix, as it is essentially
a random split, whereas the training set with the
question template (QTtr) is appended with ‘(pl)’
for paraphrase-level split.

Datasets Split Train Val. Test

emrQA # Notes 433 44 47
# Samples (pl) 133,589 21,666 19,401
# Samples (r) 198,118 21,666 19,401

MADE # Notes 788 88 213
# Samples (pl) 73,224 4,806 9,235
# Samples (r) 113,975 4,806 9,235

Table 2: Train, validation and test data splits.

5 Experiments

In this section, we briefly discuss the experimen-
tal settings, clinical entity extraction method, im-
plementation details of our proposed model and
evaluation metrics for our experiments.

5.1 Experimental Setting
As a reading comprehension style task, the model
has to identify the span of the answer given the

question-context pair. For both emrQA and MADE
dataset, the span is marked as the answer to the
question and the sentence is marked as the evidence.
Hence, we perform extractive question answering
at two levels: sentence and paragraph.

Sentence setting: For this setting, the evidence
sentence which contains the answer span is pro-
vided as the context to the question and the model
has to predict the span of the answer, given the
question.

Paragraph setting: Clinical notes are noisy and
often contain incomplete sentences, lists and em-
bedded tables making it difficult to segment para-
graphs in notes. Hence, we decided to define the
context as evidence sentence and 15−20 sentences
around it. We randomly chose the length of the
paragraph (lpara) and another number less than the
length of the paragraph (lpre < lpara). We chose
lpre contiguous sentences which exist prior to the
evidence sentence in the EMR and (lpara−lpre) sen-
tences after the evidence sentence. We adopted this
strategy because the model could have benefited
from the information that the evidence sentence is
exactly in the middle of a fixed length paragraph.
The model has to predict the span of the answer
from the lpara sentences long paragraph (context)
given the question.

The datasets are appended by ‘-p’ and ‘-s’ for
paragraph and sentence settings respectively. The
sentence setting is a relatively easier setting, for the
model, compared to the paragraph setting because
the scope of the answer is narrowed down to lesser
number of tokens and there is less noise. For both
settings, as also mentioned in § 4, we kept the train
set where all the question templates (paraphrases)
are observed by the model during training and that
is referred with ‘(r)’ prefix, suggesting ‘random’ se-
lection and no filtering based on question templates
(paraphrases). All these dataset abbreviations are
shown in the first column of Table 3.

5.2 Extracting Entity Information
MetaMap (Aronson, 2001) uses a knowledge-
intensive approach to discover different clinical
concepts referred to in the text according to unified
medical language system (UMLS) (Bodenreider,
2004). The clinical ontologies, such as SNOMED
(Spackman et al., 1997) and RxNorm (Liu et al.,
2005), embedded in MetaMap are quite useful in
extracting ∼ 127 entities across diagnosis, medica-
tion, procedure and sign/symptoms. We shortlisted
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these entities (semantic types) by mapping them
to the entities which were used for creating logical
forms of the questions as these are the main enti-
ties for which the question has been posed. The
selected entities are: acab, aggp, anab, anst, bpoc,
cgab, clnd, diap, emod, evnt, fndg, inpo, lbpr, lbtr,
phob, qnco, sbst, sosy and topp. Their descriptions
are provided in Appendix C.

These filtered entities (Table 7), extracted from
MetaMap, are provided to ERNIE. A separate em-
bedding space is defined for the entity embeddings
which are passed through a multi-head attention
layer (Vaswani et al., 2017) before interacting with
token embeddings in the information fusion layer.
The entity-enriched token embeddings are then
used to predict the span of the answer from the
context. We fine-tuned these entity embeddings
along with the token embeddings, as opposed to
using learned entities and not fine-tuning during
downstream tasks (Zhang et al., 2019a). The archi-
tecture is illustrated in Fig 2.

5.3 Implementation Details
The BERT model was released with pre-trained
weights as BERTbase and BERTlarge. BERTbase

has lesser number of parameters but achieved state-
of-the-art results on a number of open-domain
NLP tasks. We performed our experiments with
BERTbase and hence, from here onwards we re-
fer to BERTbase as BERT. A fine-tuned version of
BERTbase on clinical notes was released as clin-
icalBERT (cBERT) (Alsentzer et al., 2019). We
use cBERT as the multi-head attention model for
getting the token representations in ERNIE. We
refer to this version of ERNIE, with entities from
MetaMap, as cERNIE for clinical ERNIE. Our fi-
nal multi-task learning model, incorporated with
an auxillary task of predicting logical forms, is
referred to as M-cERNIE for multi-task clinical
ERNIE. The code for all the models is provided at
https://github.com/emrQA/bionlp_acl20.

Evaluation Metrics For our extractive question
answering task, we utilised exact match and F1-
score for evaluation as per earlier literature (Ra-
jpurkar et al., 2016).

6 Results and Discussion

In this section, we compare the results of all the
models that we introduced in § 3. With the help of
different experiments, we try to analyse whether
the induced entity and logical form information

Dataset Model F1-score Exact Match

emrQA-s (pl)

BERT 72.13 65.81
cBERT 74.75 (+2.62) 67.25 (+1.44)
cERNIE 77.39 (+5.26) 70.17 (+4.36)
M-cERNIE 79.87 (+7.74) 71.86 (+6.05)

emrQA-s (r) cBERT 82.34 74.58

emrQA-p (pl)

BERT 64.19 56.30
cBERT 65.45 (+1.26) 57.58 (+1.28)
cERNIE 66.15 (+1.96) 59.80 (+3.5)
M-cERNIE 67.21 (+3.02) 61.22 (+4.92)

emrQA-p (r) cBERT 72.51 65.14

MADE-s (pl)

BERT 68.45 60.73
cBERT 70.19 (+1.74) 62.00 (+1.27)
cERNIE 71.51 (+3.06) 65.31 (+4.58)
M-cERNIE 73.83 (+5.38) 67.53 (+6.8)

MADE-s (r) cBERT 73.70 65.54

MADE-p (pl)

BERT 63.39 57.49
cBERT 64.97 (+1.58) 58.94 (+1.45)
cERNIE 65.71 (+2.32) 60.55 (+3.06)
M-cERNIE 64.58 (+1.19) 59.39 (+1.9)

MADE-p (r) cBERT 66.89 61.27

Table 3: F1-score and exact match values for Models
on emrQA and MADE. The ‘-s’ suffix refers to the sen-
tence setting and ‘-p’ refers to the paragraph setting
for the context provided in our reading comprehension
style QA task. The ‘(pl)’ refers to the paraphrase-level
and ‘(r)’ refers to the random split as explained in § 4.
BERT refers to BERTbase, cBERT refers to clinical-
BERT, cERNIE refers to clinicalERNIE and M-cERNIE
refers to the multi-task learning clinicalERNIE model.

help the model in achieving better performance or
not. We also analyse the logical form predictions
to understand whether it provides a rationale for
the answer predicted by our proposed model. The
compiled results for all the models are shown in
Table 3. The hyper-parameter values for the best
performing models are provided in Appendix A.

Does clinical entity information improve mod-
els’ performance? Across all settings, the F1-
score of cERNIE improves by∼ 2−5% over BERT
and ∼ 0.75 − 3% over cBERT. The exact match
performance improved by ∼ 3 − 4.5 over BERT
and 1.5 − 3.25% over cBERT. Also, as expected,
the performance in sentence setting (-s) improved
relatively more than it did in paragraph-setting.
The entity-enriched tokens help in identifying the
tokens which are required by the question. For
example, in Fig. 3, the token ‘infiltrative’ in the
question as well as the context get highlighted with
the help of the identified entity ‘topp’ (therapeutic
or preventive procedure) and then relevant tokens
in the context, chest x ray, get highlighted with the
relevant entity ‘diap’ (diagnostic procedure). This
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information aids the model in narrowing down its
focus to highlighted diagnostic procedures in the
context for answer extraction.

Question:	How	was	diffuse	infiltrativetopp	diagnosedfndg?
Context:	Earlier	that	day,	pt	had	a	chest	x	raydiap	which	showed
	diffuse	infiltrativetopp	process	concerning	for	ARDS.

Answer:	chest	x	ray

Figure 3: An example of a question, context, their ex-
tracted entities and expected answer.

Does logical form information help the model
generalize better? In order to answer this ques-
tion, we compared the performance of our M-
cERNIE model to cERNIE model and observed
an improvement of 1.1− 2.5% in F1-score and an
improvement of 1.4− 1.8% in exact match perfor-
mance. Here as well, the performance improve-
ment is more for sentence setting (-s) as compared
to the paragraph setting (-p). This helps the model
in understanding the information need expressed
in the question and helps in narrowing down its
focus to certain tokens as the candidate answer. As
seen in example 3, the logical form helps in un-
derstanding that the ‘dose’ of ‘medication’ needs
to be extracted from the context where ‘dose’ was
already highlighted with the help of the entity em-
bedding of ‘qnco’.

Overall, the performance of our proposed model
improves the F1-score by 1.2 − 7.7% and exact-
match by 3.1− 6.8% over BERT model. Thus, em-
bedding clinical entity information with the help
of further fine-tuning, entity-enriching and logical
form prediction help the model in performing better
over the unseen paraphrases by a significant mar-
gin. For emrQA, the performance of M-cERNIE
is still below the upper bound performance of the
cBERT model which is achieved when all the ques-
tion templates are observed (emrQA-s/p (r)) by the
model but for MADE, in sentence setting (-s), the
performance of M-cERNIE is even better than the
upper bound model performance. For MADE-p
dataset the performance dropped a little when the
LF prediction information is added to the model
which might be because MADE-p only has 8 log-
ical forms (Appendix B) in total, resulting in low
variety between the questions. Thus, the auxiliary
task did not add much value to the learning of the
base model (cERNIE) at paragraph level.

Does the model provide a supporting rationale
via logical form (LF) prediction? We analyzed

the performance of M-cERNIE on MADE-s and
emrQA-s datasets for logical form prediction, as
we saw most improvement in sentence setting (-s).
We calculated macro-weighted precision, recall and
F1-score for logical form classification. The model
achieved a F1-score of ∼ 0.45 − 0.59 for both
datasets, as shown in Table 4, exact match setting.
We analysed the confusion matrix of predicted LF
and observed that the model mainly gets confused
between the logical forms which convey similar
semantic information as shown in Fig. 4.

Q1:	What	were	the	results	of	the	abnormal	BMI	on	2094-12-02?
Logical	Form:	LabEvent	(|test|)	[abnormalResultFlag=Y,	date=|date|,
	result=x]	OR	ProcedureEvent	(|test|)	[abnormalResultFlag=Y,	date=|d
ate|,	result=x]	OR	VitalEvent	(|test|)	[date=|date|,	(result=x)>vital.ref
high]	OR	VitalEvent	 (|test|)	 [date=|date|,	 (result=x)<vital.reflow]	OR
	[{LabEvent	(|test|)	[date=|date|,	abnormalResultFlag=Y]	OR	Procedur
eEvent	(|test|)	[date=|date|,	abnormalResultFlag=Y]	OR	VitalEvent	(|t
est|)	 [date=|date|]}	 reveals	 {ConditionEvent	 (x)	 OR	 SymptomEvent
	(x)}]

Q2:	What	were	the	abnormal	results	of	BMI?
Logical	Form:	LabEvent	(|test|)	[date=x,	(result=x)<lab.reflow]	OR	L
abEvent	(|test|)	[date=x,	(result=x)>lab.refhigh]	OR	VitalEvent	(|test|)	
[date=x,	(result=x)<vital.reflow]	OR	VitalEvent	(|test|)	[date=x,	(result
=x)>vital.refhigh]

Figure 4: Two similar questions with different logical
forms (LFs) but overlapping answer conditions.

As we can see in Fig. 4 that both logical forms re-
fer to quite similar information, hence, we decided
to obtain performance metrics (precision, recall
and F1-score) in relaxed setting. We designed this
relaxed setting to create a more realistic setting,
where the tokens of predicted and actual logical
forms are matched rather than the whole logical
form. An example of logical form tokenization is
shown in Fig. 5.

LF:	MedicationEvent	(x)	given	{ConditionEvent	(|problem|)	OR
	SymptomEvent	(|problem|)}
Tokenized:	['MedicationEvent	(x)',	'given',	'ConditionEvent	(|pr
oblem|)',	'OR',	'SymptomEvent	(|problem|)']

Figure 5: Tokenized logical form (LF).

The model achieves a F1-score of 0.92 for
emrQA-s and 0.84 for MADE-s in relaxed setting
(Table 4). This suggests that the model can ef-
ficiently identify important semantic information
from the question, which is critical for efficient QA.
During inference, the M-cERNIE models yield a
rationale regarding a new test question (unseen
paraphrase) by predicting the logical form of the
question as an auxiliary task. For ex, the LF in
Fig. 1 provides a rationale that any lab or proce-
dure event related to the condition event needs to
be extracted from the EMR for diagnosis.
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Setting Dataset Precision Recall F1-score

Exact emrQA 0.65 0.61 0.59
MADE 0.47 0.52 0.45

Relaxed emrQA 0.93 0.91 0.92
MADE 0.83 0.85 0.84

Table 4: Precision, Recall and F1-score for logical form
prediction.

Can logical form information be induced in
multi-class QA tasks as well? To answer this
question, we performed another experiment where
the model has to classify the evidence sentences
from the non-evidence sentences making it a two-
class classification task. The model would be pro-
vided a tuple of question and a sentence and it has
to predict whether the sentence is evidence or not?
The final loss of the model (Lmodel) changes to:

Lmodel = ωLlf + (1− ω)Levidence (4)

where ω is the weightage given to the loss of auxil-
lary task (Llf ), logical form prediction. Levidence
is loss for evidence classification and Lmodel is the
final loss for our proposed model. We conducted
our experiments on emrQA dataset as evidence sen-
tences were provided in it. In the multi-class set-
ting, the [CLS] token representation would be
used for evidence classification as well as logical
form prediction.

Dataset Model Precision Recall F1-score

emrQA
cBERT 0.67 0.99 0.76
cERNIE 0.69 0.98 0.78 (+0.02)
M-cERNIE 0.73 0.99 0.82 (+0.06)

Table 5: Macro-weighted precision, recall and F1-score
of Proposed Models on Test Dataset (Multi-choice QA).
For the model names, c: clinical; M: multitask.

The multi-task entity enriched model (M-
cERNIE) achieved an absolute improvement of 6%
over cBERT and 4% over cERNIE. This suggests
that the inductive bias introduced via LF prediction
does help in improving the overall performance of
the model for multi-class QA as well.

7 Related Work

In the general domain, BERT-based models are
on the top of different leader boards across var-
ious tasks, including QA tasks (Rajpurkar et al.,
2018, 2016). The authors of (Nogueira and Cho,
2019) applied BERT to the MS-MARCO passage
retrieval QA task and observed improvement over
state of the art results. (Nogueira et al., 2019) fur-
ther extended the work by combining BERT with

re-ranking of predictions for queries that will be
issued for each document. However, BERT-based
models have not been adapted to answering physi-
cian questions on EMRs.

In case of domain-specific QA, logical forms
or semantic parse are typically used to integrate
the domain knowledge associated with a KB-based
(knowledge base) structured QA datasets, where
a model is learnt for mapping a natural language
question to a LF. GeoQuery (Zelle and Mooney,
1996), and ATIS (Dahl et al., 1994), are the old-
est known manually generated question-LF annota-
tions on closed-domain databases. QALD (Lopez
et al., 2013), FREE 917 (Cai and Yates, 2013),
SIMPLEQuestions (Bordes et al., 2015) contain
hundreds of hand-crafted questions and their cor-
responding database queries. Prior work has also
used LFs as a way to generate questions via crowd-
sourcing (Wang et al., 2015). WEBQuestions (Be-
rant et al., 2013) contains thousands of questions
from Google search where the LFs are learned as
latent representations in helping answer questions
from Freebase. Prior work has not investigated
the utility of logical forms in unstructured QA, es-
pecially as a means to generalize the QA model
across different paraphrases of a question.

There have been efforts on using multi-task
learning for efficient question answering, such as
the authors of (McCann et al., 2018) tried to learn
multiple tasks together resulting in an overall boost
in the performance of the model on SQuAD (Ra-
jpurkar et al., 2016). Similarly, the authors of (Lu
et al., 2019) also utilised the information across dif-
ferent tasks which lie at the intersection of vision
and natural language processing to improve the
performance of their model across all tasks. The
authors of (Rawat et al., 2019) utilised weak super-
vision to the model while predicting the answer but
not much work has been done to incorporate the
logical form of the question for unstructured ques-
tion answering in a multi-task setting. Hence, we
decided to explore this direction and incorporate
the structured semantic information of the ques-
tions for extractive question answering.

8 Conclusion

The proposed entity-enriched QA models trained
with an auxiliary task improve over the state-of-the-
art models by about 3− 6% across the large-scale
clinical QA dataset, emrQA (Pampari et al., 2018)
(as well as MADE (Jagannatha et al., 2019)). We
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also show that multitask learning for logical forms
along with the answer results in better generalizing
over unseen paraphrases for EMR QA. The pre-
dicted logical forms also serve as an accompanying
justification to the answer and help in adding credi-
bility to the predicted answer for the physician.
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Simon Šuster and Walter Daelemans. 2018. Clicr: a
dataset of clinical case reports for machine reading
comprehension. arXiv preprint arXiv:1803.09720.

Wilson L Taylor. 1953. “cloze procedure”: A new
tool for measuring readability. Journalism Bulletin,
30(4):415–433.

George Tsatsaronis, Michael Schroeder, Georgios
Paliouras, Yannis Almirantis, Ion Androutsopoulos,
Eric Gaussier, Patrick Gallinari, Thierry Artieres,
Michael R Alvers, Matthias Zschunke, et al. 2012.
Bioasq: A challenge on large-scale biomedical se-
mantic indexing and question answering. In 2012
AAAI Fall Symposium Series.
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A Model Hyper-parameters

Most of the hyper-parameters across our models
remained same: learning rate: 2e − 5, weight de-
cay: 1e− 5, warm-up proportion: 10% and hidden
dropout probability: 0.1. The parameters that var-
ied across models for different datasets are enumer-
ated in the Table 6. The hyper-parametsrs provided
in Table 6 are for all models in a particular dataset.
This also suggests that even after adding an auxil-
iary task, the proposed model doesn’t need a lot of
hyper-parameter tuning.

Dataset Entity Embedding
Dim

Auxiliary Task
Wt.

emrQA-rel 100 0.3
BoolQ 90 0.3
emrQA 100 0.3
MADE 80 0.2

Table 6: Hyper-parameter values across different
datasets.

B Logical forms (LFs) for MADE dataset

1. MedicationEvent (|medication|) [sig=x]
2. MedicationEvent (|medication|) causes Condi-
tionEvent (x) OR SymptomEvent (x)
3. MedicationEvent (|medication|) given Condi-
tionEvent (x) OR SymptomEvent (x)
4. [ProcedureEvent (|treatment|) given/conducted
ConditionEvent (x) OR SymptomEvent (x)] OR
[MedicationEvent (|treatment|) given Condition-
Event (x) OR SymptomEvent (x)]
5. MedicationEvent (x) CheckIfNull ([enddate])
OR MedicationEvent (x) [enddate>currentDate]
OR ProcedureEvent (x) [date=x] given Condition-
Event (|problem|) OR SymptomEvent (|problem|)
6. MedicationEvent (x) CheckIfNull ([enddate])
OR MedicationEvent (x) [enddate>currentDate]
given ConditionEvent (|problem|) OR Symp-
tomEvent (|problem|)
7. MedicationEvent (|treatment|) OR Proce-
dureEvent (|treatment|) given ConditionEvent (x)
OR SymptomEvent (x)
8. MedicationEvent (|treatment|) OR Proce-
dureEvent (|treatment|) improves/worsens/causes
ConditionEvent (x) OR SymptomEvent (x)

C Selected entities from MetaMap

The list of selected semantic types in the form of
entities and their brief descriptors are provided in
Table 7.

Semantic Type Description

acab Acquired Abnormality
aggp Age Group
anab Anatomical Abnormality
anst Anatomical Structure
bpoc Body Part, Organ, or Organ Component
cgab Congenital Abnormality
clnd Clinical Drug
diap Diagnostic Procedure
emod Experimental Model of Disease
evnt Event
fndg Finding
inpo Injury or Poisoning
lbpr Laboratory Procedure
lbtr Laboratory or Test Result
phob Physical Object
qnco Quantitative Concept
sbst Substance
sosy Sign or Symptom
topp Therapeutic or Preventive Procedure

Table 7: Selected semantic types as per MetaMap and
their brief descriptions.
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Abstract

How do we most effectively treat a disease
or condition? Ideally, we could consult a
database of evidence gleaned from clinical tri-
als to answer such questions. Unfortunately,
no such database exists; clinical trial results
are instead disseminated primarily via lengthy
natural language articles. Perusing all such ar-
ticles would be prohibitively time-consuming
for healthcare practitioners; they instead tend
to depend on manually compiled systematic re-
views of medical literature to inform care.

NLP may speed this process up, and eventu-
ally facilitate immediate consult of published
evidence. The Evidence Inference dataset
(Lehman et al., 2019) was recently released
to facilitate research toward this end. This
task entails inferring the comparative perfor-
mance of two treatments, with respect to a
given outcome, from a particular article (de-
scribing a clinical trial) and identifying sup-
porting evidence. For instance: Does this ar-
ticle report that chemotherapy performed bet-
ter than surgery for five-year survival rates of
operable cancers? In this paper, we collect
additional annotations to expand the Evidence
Inference dataset by 25%, provide stronger
baseline models, systematically inspect the er-
rors that these make, and probe dataset qual-
ity. We also release an abstract only (as op-
posed to full-texts) version of the task for
rapid model prototyping. The updated cor-
pus, documentation, and code for new base-
lines and evaluations are available at http:
//evidence-inference.ebm-nlp.com/.

1 Introduction
As reports of clinical trials continue to amass at
rapid pace, staying on top of all current literature to
inform evidence-based practice is next to impossi-
ble. As of 2010, about seventy clinical trial reports
were published daily, on average (Bastian et al.,
2010). This has risen to over one hundred thirty

trials per day.1 Motivated by the rapid growth in
clinical trial publications, there now exist a plethora
of tools to partially automate the systematic review
task (Marshall and Wallace, 2019). However, ef-
forts at fully integrating the PICO framework into
this process have been limited (Eriksen and Frand-
sen, 2018). What if we could build a database
of Participants,2 Interventions, Comparisons, and
Outcomes studied in these trials, and the findings
reported concerning these? If done accurately, this
would provide direct access to which treatments
the evidence supports. In the near-term, such tech-
nologies may mitigate the tedious work necessary
for manual synthesis.

Recent efforts in this direction include the EBM-
NLP project (Nye et al., 2018), and Evidence Infer-
ence (Lehman et al., 2019), both of which comprise
annotations collected on reports of Randomized
Control Trials (RCTs) from PubMed.3 Here we
build upon the latter, which tasks systems with in-
ferring findings in full-text reports of RCTs with
respect to particular interventions and outcomes,
and extracting evidence snippets supporting these.

We expand the Evidence Inference dataset and
evaluate transformer-based models (Vaswani et al.,
2017; Devlin et al., 2018) on the task. Concretely,
our contributions are:

• We describe the collection of an additional
2,503 unique ‘prompts’ (see Section 2) with
matched full-text articles; this is a 25% expan-
sion of the original evidence inference dataset
that we will release. We additionally have col-
lected an abstract-only subset of data intended
to facilitate rapid iterative design of models,

1See https://ijmarshall.github.io/sote/.
2We omit Participants in this work as we focus on the

document level task of inferring study result directionality,
and the Participants are inherent to the study, i.e., studies do
not typically consider multiple patient populations.

3https://pubmed.ncbi.nlm.nih.gov/
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as working over full-texts can be prohibitively
time-consuming.

• We introduce and evaluate new models,
achieving SOTA performance for this task.

• We ablate components of these models and
characterize the types of errors that they tend
to still make, pointing to potential directions
for further improving models.

2 Annotation
In the Evidence Inference task (Lehman et al.,
2019), a model is provided with a full-text arti-
cle describing a randomized controlled trial (RCT)
and a ‘prompt’ that specifies an Intervention (e.g.,
aspirin), a Comparator (e.g., placebo), and an Out-
come (e.g., duration of headache). We refer to these
as ICO prompts. The task then is to infer whether
a given article reports that the Intervention resulted
in a significant increase, significant decrease, or
produced no significant difference in the Outcome,
as compared to the Comparator.

Our annotation process largely follows that out-
lined in Lehman et al. (2019); we summarize this
briefly here. Data collection comprises three steps:
(1) prompt generation; (2) prompt and article anno-
tation; and (3) verification. All steps are performed
by Medical Doctors (MDs) hired through Upwork.4

Annotators were divided into mutually exclusive
groups performing these tasks, described below.

Combining this new data with the dataset intro-
duced in Lehman et al. (2019) yields in total 12,616
unique prompts stemming from 3,346 unique arti-
cles, increasing the original dataset by 25%.5 To
acquire the new annotations, we hired 11 doctors:
1 for prompt generation, 6 for prompt annotation,
and 4 for verification.

2.1 Prompt Generation

In this collection phase, a single doctor is asked to
read an article and identify triplets of interventions,
comparators, and outcomes; we refer to these as
ICO prompts. Each doctor is assigned a unique ar-
ticle, so as to not overlap with one another. Doctors
were asked to find a maximum of 5 prompts per
article as a practical trade-off between the expense
of exhaustive annotation and acquiring annotations

4http://upwork.com.
5We use the first release of the data by Lehman et al., which

included 10,137 prompts. A subsequent release contained
10,113 prompts, as the authors removed prompts where the
answer and rationale were produced by different doctors.

over a variety of articles. This resulted in our col-
lecting 3.77 prompts per article, on average. We
asked doctors to derive at least 1 prompt from the
body (rather than the abstract) of the article. A
large difficulty of the task stems from the wide va-
riety of treatments and outcomes used in the trials:
35.8% of interventions, 24.0% of comparators, and
81.6% of outcomes are unique to one another.

In addition to these ICO prompts, doctors were
asked to report the relationship between the inter-
vention and comparator with respect to the out-
come, and cite what span from the article supports
their reasoning. We find that 48.4% of the collected
prompts can be answered using only the abstract.
However, 63.0% of the evidence spans supporting
judgments (provided by both the prompt generator
and prompt annotator), are from outside of the ab-
stract. Additionally, 13.6% of evidence spans cover
more than one sentence in length.

2.2 Prompt Annotation

Following the guidelines presented in Lehman et al.
(2019), each prompt was assigned to a single doc-
tor. They were asked to report the difference be-
tween the specified intervention and comparator,
with respect to the given outcome. In particular,
options for this relationship were: “increase”, “de-
crease”, “no difference” or “invalid prompt.” An-
notators were also asked to mark a span of text
supporting their answers: a rationale. However,
unlike Lehman et al. (2019), here, annotators were
not restricted via the annotation platform to only
look at the abstract at first. They were free to search
the article as necessary.

Because trials tend to investigate multiple in-
terventions and measure more than one outcome,
articles will usually correspond to multiple — po-
tentially many — valid ICO prompts (with cor-
respondingly different findings). In the data we
collected, 62.9% of articles comprise at least two
ICO prompts with different associated labels (for
the same article).

2.3 Verification

Given both the answers and rationales of the
prompt generator and prompt annotator, a third
doctor — the verifier — was asked to determine
the validity of both of the previous stages.6 We esti-
mate the accuracy of each task with respect to these
verification labels. For prompt generation, answers

6The verifier can also discard low-quality or incorrect
prompts.
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Figure 1: BERT to BERT pipeline. Evidence identification and classification stages are trained separately. The
identifier is trained via negative samples against the positive instances, the classifier via only those same positive
evidence spans. Decoding assigns a score to every sentence in the document, and the sentence with the highest
evidence score is passed to the classifier.

were 94.0% accurate, and rationales were 96.1%
accurate. For prompt annotation, the answers were
90.0% accurate, and accuracy of the rationales was
88.8%. The drop in accuracy between prompt gen-
eration answers and prompt annotation answers is
likely due to confusion with respect to the scope of
the intervention, comparator, and outcome.

We additionally calculated agreement statistics
amongst the doctors across all stages, yielding a
Krippendorf’s α of α = 0.854. In contrast, the
agreement between prompt generator and annotator
(excluding verifier) had a α = 0.784.

2.4 Abstract Only Subset

We subset the articles and their content, yielding
9,680 of 24,686 annotations, or approximately 40%.
This leaves 6375 prompts, 50.5% of the total.

3 Models
We consider a simple BERT-based (Devlin et al.,
2018) pipeline comprising two independent mod-
els, as depicted in Figure 1. The first identifies
evidence bearing sentences within an article for a
given ICO. The second model then classifies the
reported findings for an ICO prompt using the ev-
idence extracted by this first model. These mod-
els place a dense layer on top of representations
yielded from (Gururangan et al., 2020), 7 a vari-
ant of RoBERTa (Liu et al., 2019) pre-trained over

7An earlier version of this work used SciBERT (Beltagy
et al., 2019); we preserve these results in Appendix C.

scientific corpora,8 followed by a Softmax.
Specifically, we first perform sentence segmenta-

tion over full-text articles using ScispaCy (Neu-
mann et al., 2019). We use this segmentation to
recover evidence bearing sentences. We train an
evidence identifier by learning to discriminate be-
tween evidence bearing sentences and randomly
sampled non-evidence sentences.9 We then train an
evidence classifier over the evidence bearing sen-
tences to characterize the trial’s finding as report-
ing that the Intervention significantly decreased,
did not significantly change, or significantly in-
creased the Outcome compared to the Compara-
tor in an ICO. When making a prediction for an
(ICO, document) pair we use the highest scoring
evidence sentence from the identifier, feeding this
to the evidence classifier for a final result. Note
that the evidence classifier is conditioned on the
ICO frame; we prepend the ICO embedding (from
Biomed RoBERTa) to the embedding of the identi-
fied evidence snippet. Reassuringly, removing this
signal degrades performance (Table 1).

For all models we fine-tuned the underlying
BERT parameters. We trained all models using
the Adam optimizer (Kingma and Ba, 2014) with
a BERT learning rate 2e-5. We train these mod-
els for 10 epochs, keeping the best performing
version on a nested held-out set with respect to

8We use the [CLS] representations.
9We train this via negative sampling because the vast ma-

jority of sentences are not evidence-bearing.
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macro-averaged f-scores. When training the evi-
dence identifier, we experiment with different num-
bers of random samples per positive instance. We
used Scikit-Learn (Pedregosa et al., 2011) for
evaluation and diagnostics, and implemented all
models in PyTorch (Paszke et al., 2019). We ad-
ditionally reproduce the end-to-end system from
Lehman et al. (2019): a gated recurrent unit (Cho
et al., 2014) to encode the document, attention
(Bahdanau et al., 2015) conditioned on the ICO,
with the resultant vector (plus the ICO) fed into an
MLP for a final significance decision.

4 Experiments and Results
Our main results are reported in Table 1. We make a
few key observations. First, the gains over the prior
state-of-the-art model — which was not BERT
based — are substantial: 20+ absolute points in
F-score, even beyond what one might expect to see
shifting to large pre-trained models.10 Second, con-
ditioning on the ICO prompt is key; failing to do so
results in substantial performance drops. Finally,
we seem to have reached a plateau in terms of the
performance of the BERT pipeline model; adding
the newly collected training data does not budge
performance (evaluated on the augmented test set).
This suggests that to realize stronger performance
here, we perhaps need a less naive architecture that
better models the domain. We next probe specific
aspects of our design and training decisions.

Impact of Negative Sampling As negative sam-
pling is a crucial part of the pipeline, we vary the
number of samples and evaluate performance. We
provide detailed results in Appendix A, but to sum-
marize briefly: we find that two to four negative
samples (per positive) performs the best for the
end-to-end task, with little change in both AUROC
and accuracy of the best fit evidence sentence. This
is likely because the model needs only to maximize
discriminative capability, rather than calibration.

Distribution Shift In addition to comparable
Krippendorf-α values computed above, we mea-
sure the impact of the new data on pipeline perfor-
mance. We compare performance of the pipeline
with all data “Biomed RoBERTa (BR) Pipeline”
vs. just the old data “Biomed RoBERTA (BR)
BERT Pipeline 1.0” in Table 1. As performance
stays relatively constant, we believe the new data

10To verify the impact of architecture changes, we exper-
iment with randomly initialized and fine-tuned BERTs. We
find that these perform worse than the original models in all
instances and elide more detailed results.

Model Cond? P R F
BR Pipeline X .784 .777 .780
BR Pipeline 7 .513 .510 .510
BR Pipeline abs. X .776 .777 .776
Baseline X .526 .516 .514
Diagnostics:
BR Pipeline 1.0 X .762 .764 .763
Baseline 1.0 X .531 .519 .520
BR ICO Only .522 .515 .511
BR Oracle Spans X .851 .853 .851
BR Oracle Sentence X .845 .843 .843
BR Oracle Spans 7 .806 .812 .808
BR Oracle Sentence 7 .802 .795 .797
BR Oracle Spans abs. X .830 .823 .824
Baseline Oracle 1.0 X .740 .739 .739
Baseline Oracle X .760 .761 .759

Table 1: Classification Scores. BR Pipeline: Biomed
RoBERTa BERT Pipeline. abs: Abstracts only. Base-
line: model from Lehman et al. (2019). Diagnostic
models: Baseline scores Lehman et al. (2019), BR
Pipeline when trained using the Evidence Inference 1.0
data, BR classifier when presented with only the ICO
element, an entire human selected evidence span, or
a human selected evidence sentence. Full document
BR models are trained with four negative samples; ab-
stracts are trained with sixteen; Baseline oracle span re-
sults from Lehman et al. (2019). In all cases: ‘Cond?’
indicates whether or not the model had access to the
ICO elements; P/R/F scores are macro-averaged.

to be well-aligned with the existing release. This
also suggests that the performance of the current
simple pipeline model may have plateaued; bet-
ter performance perhaps requires inductive biases
via domain knowledge or improved strategies for
evidence identification.

Oracle Evidence We report two types of Ora-
cle evidence experiments - one using ground truth
evidence spans “Oracle spans”, the other using sen-
tences for classification. In the former experiment,
we choose an arbitrary evidence span11 for each
prompt for decoding. For the latter, we arbitrarily
choose a sentence contained within a span. Both
experiments are trained to use a matching classifier.
We find that using a span versus a sentence causes
a marginal change in score. Both diagnostics pro-
vide an upper bound on this model type, improve
over the original Oracle baseline by approximately
10 points. Using Oracle evidence as opposed to
a trained evidence identifier leaves an end-to-end
performance gap of approximately 0.08 F1 score.

11Evidence classification operates on a single sentence,
but an annotator’s selection is span based. Furthermore, the
prompt annotation stage may produce different evidence spans
than prompt generation.
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Predicted Class
Ev. Cls ID Acc. Sig 	 Sig ∼ Sig ⊕
Sig 	 .667 .684 .153 .163
Sig ∼ .674 .060 .840 .099
Sig ⊕ .652 .085 .107 .808

Table 2: Breakdown of the conditioned Biomed
RoBERTa pipeline model mistakes and performance by
evidence class. ID Acc. is the ”identification accuracy”,
or percentage of . To the right is a confusion matrix for
end-to-end predictions. ‘Sig 	’ indicates significantly
decreased, ‘Sig ∼’ indicates no significant difference,
‘Sig ⊕’ indicates significantly increased.

Conditioning As the pipeline can optionally
condition on the ICO, we ablate over both the ICO
and the actual document text. We find that using
the ICO alone performs about as effectively as an
unconditioned end-to-end pipeline, 0.51 F1 score
(Table 1). However, when fed Oracle sentences, the
unconditioned pipeline performance jumps to 0.80
F1. As shown in Table 3 (Appendix A), this large
decrease in score can be attributed to the model
losing the ability to identify the correct evidence
sentence.

Mistake Breakdown We further perform an
analysis of model mistakes in Table 2. We find that
the BERT-to-BERT model is somewhat better at
identifying significantly decreased spans than it is
at identifying spans for the significantly increased
or no significant difference evidence classes. Spans
for the no significant difference tend to be classified
correctly, and spans for the significantly increased
category tend to be confused in a similar pattern to
the significantly decreased class. End-to-end mis-
takes are relatively balanced between all possible
confusion classes.

Abstract Only Results We report a full suite of
experiments over the abstracts-only subset in Ap-
pendix B. We find that the pipeline models perform
similarly on the abstract-only subset; differing in
score by less than .01F1. Somewhat surprisingly,
we find that the abstracts oracle model falls behind
the full document oracle model, perhaps due to a
difference in language reporting general results vs.
more detailed conclusions.

5 Conclusions and Future Work
We have introduced an expanded version of the
Evidence Inference dataset. We have proposed
and evaluated BERT-based models for the evidence
inference task (which entails identifying snippets
of evidence for particular ICO prompts in long
documents and then classifying the reported finding

on the basis of these), achieving state of the art
results on this task.

With this expanded dataset, we hope to support
further development of NLP for assisting Evidence
Based Medicine. Our results demonstrate promise
for the task of automatically inferring results from
Randomized Control Trials, but still leave room
for improvement. In our future work, we intend to
jointly automate the identification of ICO triplets
and inference concerning these. We are also keen
to investigate whether pre-training on related scien-
tific ‘fact verification’ tasks might improve perfor-
mance (Wadden et al., 2020).
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Appendix

A Negative Sampling Results
We report negative sampling results for Biomed
RoBERTa pipelines in Table 3 and Figure 2.

Figure 2: End to end pipeline scores for different nega-
tive sampling strategies with Biomed RoBERTa.

Neg, samples Cond? AUROC Top1 Acc
1 X 0.973 0.682
2 X 0.972 0.700
4 X 0.972 0.671
8 X 0.961 0.492

16 X 0.590 0.027
1 7 0.915 0.236
2 7 0.921 0.226
4 7 0.925 0.251
8 7 0.899 0.165

16 7 0.508 0.015

Table 3: Evidence Inference v2.0 evidence identifica-
tion validation scores varying across negative sampling
strategies using Biomed RoBERTa in the pipeline.

B Abstract Only Results
We repeat the experiments described in Section
4. Our primary findings are that the abstract-only
task is easier and sixteen negative samples perform
better than four. Otherwise results follow a similar
trend to the full-document task. We document these
in Table 4, 5, 6 and Figure 3.

C SciBERT Results
We report original SciBERT results in Tables 7, 8,
9 and Figures 4, 5. Table 7 contains the Biomed
RoBERTa numbers for comparison. Note that orig-
inal SciBERT experiments use the evidence infer-
ence v1.0 dataset as v2.0 collection was incomplete

Model Cond? P R F
BR Pipeline X .776 .777 .776
BR Pipeline 7 .513 .510 .510
Diagnostics:
ICO Only .545 .543 .537
Oracle Spans X .830 .823 .824
Oracle Sentence X .845 .843 .843
Oracle Spans 7 .814 .809 .809
Oracle Sentence 7 .802 .795 .797

Table 4: Classification Scores. Biomed RoBERTa Ab-
stract only version of Table 1. All evidence identifica-
tion models trained with sixteen negative samples.

Neg. Samples Cond? AUROC Top1 Acc
1 X 0.983 0.647
2 X 0.982 0.664
4 X 0.981 0.680
8 X 0.978 0.656
16 X 0.980 0.673
1 7 0.944 0.351
2 7 0.953 0.373
4 7 0.947 0.334
8 7 0.938 0.273
16 7 0.947 0.308

Table 5: Abstract only (v2.0) evidence identification
validation scores varying across negative sampling
strategies using Biomed RoBERTa.

at the time experiment configurations were deter-
mined. Biomed RoBERTa experiments use the v2.0
set for calibration. We find that Biomed RoBERTa
generally performs better, with a notable excep-
tion in performance on abstracts-only Oracle span
classification.

C.1 Negative Sampling Results

We report SciBERT negative sampling results in
Table 9 and Figure 4.

C.2 Abstract Only Results

We repeat the experiments described in Section 4
and report results in Tables 10, 11, 12 and Figure 5.
Our primary findings are that the abstract-only task
is easier and eight negative samples perform better
than four. Otherwise results follow a similar trend
to the full-document task.
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Figure 3: End to end pipeline scores on the abstract-
only subset for different negative sampling strategies
with Biomed RoBERTa.

Conf. Cls
Ev. Cls ID Acc. Sig 	 Sig ∼ Sig ⊕
Sig 	 .728 .761 .067 .172
Sig ∼ .691 .130 .802 .068
Sig ⊕ .573 .123 .109 .768

Table 6: Breakdown of the abstract-only conditioned
Biomed RoBERTa pipeline model mistakes and perfor-
mance by evidence class. ID Acc. is breakdown by
final evidence truth. To the right is a confusion matrix
for end-to-end predictions.

Figure 4: End to end pipeline scores for different nega-
tive sampling strategies for SciBERT.

Model Cond? P R F
BR Pipeline X .784 .777 .780
SB Pipeline X .750 .750 .749
BR Pipeline 7 .513 .510 .510
SB Pipeline 7 .489 .486 .486
BR Pipeline abs. X .776 .777 .776
SB Pipeline abs. X .803 .798 .799
Baseline X .526 .516 .514
Diagnostics:
BR Pipeline 1.0 X .762 .764 .763
SB Pipeline 1.0 X .749 .761 .753
Baseline 1.0 X .531 .519 .520
BR ICO Only .522 .515 .511
SB ICO Only .494 .501 .494
BR Oracle Spans X .851 .853 .851
SB Oracle Spans X .840 .840 .838
BR Oracle Sentence X .845 .843 .843
SB Oracle Sentence X .829 .830 .829
BR Oracle Spans 7 .806 .812 .808
SB Oracle Spans 7 .786 .789 .787
BR Oracle Sentence 7 .802 .795 .797
SB Oracle Sentence 7 .780 .770 .773
BR Oracle Spans abs. X .830 .823 .824
SB Oracle Spans abs. X .866 .862 .863
Baseline Oracle 1.0 X .740 .739 .739
Baseline Oracle X .760 .761 .759

Table 7: Replica of Table 1 with both SciBERT
and Biomed RoBERTa results. Classification Scores.
BR Pipeline: Biomed RoBERTa BERT Pipeline, SB
Pipeline: SciBERT Pipeline. abs: Abstracts only. Base-
line: model from Lehman et al. (2019). Diagnostic
models: Baseline scores Lehman et al. (2019), BR
Pipeline when trained using the Evidence Inference 1.0
data, BR classifier when presented with only the ICO
element, an entire human selected evidence span, or
a human selected evidence sentence. Full document
BR models are trained with four negative samples; ab-
stracts are trained with sixteen; Baseline oracle span re-
sults from Lehman et al. (2019). In all cases: ‘Cond?’
indicates whether or not the model had access to the
ICO elements; P/R/F scores are macro-averaged over
classes.

Predicted Class
Ev. Cls ID Acc. Sig 	 Sig ∼ Sig ⊕
Sig 	 .711 .697 .143 .160
Sig ∼ .643 .076 .838 .086
Sig ⊕ .635 .146 .141 .713

Table 8: Replica of Table 2 for SciBERT. Breakdown
of the conditioned BERT pipeline model mistakes and
performance by evidence class. ID Acc. is the ”iden-
tification accuracy”, or percentage of . To the right is
a confusion matrix for end-to-end predictions. ‘Sig 	’
indicates significantly decreased, ‘Sig ∼’ indicates no
significant difference, ‘Sig⊕’ indicates significantly in-
creased.
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Neg. Samples Cond? AUROC Top1 Acc
1 X .969 .663
2 X .959 .673
4 X .968 .659
8 X .961 .627

16 X .967 .593
1 7 .894 .094
2 7 .890 .181
4 7 .843 .083
8 7 .862 .170

16 7 .403 .014

Table 9: Evidence Inference v1.0 evidence identifica-
tion validation scores varying across negative sampling
strategies for SciBERT.

Model Cond? P R F
BERT Pipeline X .803 .798 .799
BERT Pipeline 7 .528 .513 .510
Diagnostics:
ICO Only .480 .480 .479
Oracle Spans X .866 .862 .863
Oracle Sentence X .848 .842 .844
Oracle Spans 7 .804 .802 .801
Oracle Sentence 7 .817 .776 .783

Table 10: Classification Scores. SciBERT/Abstract
only version of Table 1. All evidence identification
models trained with eight negative samples.

Neg. Samples Cond? AUROC Top1 Acc
1 X 0.980 0.573
2 X 0.978 0.596
4 X 0.977 0.623
8 X 0.950 0.609

16 X 0.975 0.615
1 7 0.946 0.340
2 7 0.939 0.342
4 7 0.912 0.286
8 7 0.938 0.313

16 7 0.940 0.282

Table 11: Abstract only (v1.0) evidence identifica-
tion validation scores varying across negative sampling
strategies for SciBERT.

Conf. Cls
Ev. Cls ID Acc. Sig 	 Sig ∼ Sig ⊕
Sig 	 .767 .750 .044 .206
Sig ∼ .686 .092 .816 .092
Sig ⊕ .591 .109 .064 .827

Table 12: Breakdown of the abstract-only conditioned
SciBERT pipeline model mistakes and performance by
evidence class. ID Acc. is breakdown by final evidence
truth. To the right is a confusion matrix for end-to-end
predictions.

Figure 5: End to end pipeline scores on the abstract-
only subset for different negative sampling strategies
for SciBERT.
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Train Dev Test Total
Number of prompts 10150 1238 1228 12616
Number of articles 2672 340 334 3346
Label counts (-1 / 0 / 1) 2465 / 4563 / 3122 299 / 544 / 395 295 / 516 / 417 3059 / 5623 / 3934

Table 13: Corpus statistics. Labels -1, 0, 1 indicate significantly decreased, no significant difference and signifi-
cantly increased, respectively.
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Abstract

Alzheimer’s disease (AD)-related global
healthcare cost is estimated to be $1 trillion
by 2050. Currently, there is no cure for this
disease; however, clinical studies show that
early diagnosis and intervention helps to
extend the quality of life and inform tech-
nologies for personalized mental healthcare.
Clinical research indicates that the onset and
progression of Alzheimer’s disease lead to
dementia and other mental health issues. As
a result, the language capabilities of patient
start to decline.

In this paper, we show that machine learning-
based unsupervised clustering of and anomaly
detection with linguistic biomarkers are
promising approaches for intuitive visualiza-
tion and personalized early stage detection
of Alzheimer’s disease. We demonstrate
this approach on 10 year’s (1980 to 1989)
of President Ronald Reagan’s speech data
set. Key linguistic biomarkers that indicate
early-stage AD are identified. Experimental
results show that Reagan had early onset of
Alzheimer’s sometime between 1983 and
1987. This finding is corroborated by prior
work that analyzed his interviews using a
statistical technique. The proposed technique
also identifies the exact speeches that reflect
linguistic biomarkers for early stage AD.

1 Introduction

Alzheimer’s disease is a serious mental health issue
faced by the global population. About 44 million
people worldwide are diagnosed with AD. The U.S.
alone has 5.5 million AD patients. According to
the Alzheimer’s association the total cost of care
for AD is estimated to be $1 trillion by 2050. There
is no cure for AD yet; however, studies have shown
that early diagnosis and intervention can delay the
onset.

Regular mental health assessment is a key chal-
lenge faced by the medical community. This is

due to a variety of reasons including social, eco-
nomic, and cultural factors. Therefore, Internet
based technologies that unobtrusively and continu-
ally collect, store, and analyze mental health data
are critical. For example, a home smart speaker de-
vice can record a subject’s speech periodically, au-
tomatically extract AD related speech or linguistic
features, and present easy to understand machine
learning based analysis and visualization. Such a
technology will be highly valuable for personal-
ized medicine and early intervention. This may
also encourage people to sign-up for such a low
cost and home-based AD diagnostic technology.
Data and results of such a technology will also in-
stantly provide invaluable information to mental
health professionals.

Several studies show that subtle linguistic
changes are observed even at the early stages of
AD. In (Forbes-McKay and Venneri, 2005), more
than 70% of AD patients scored low in a picture
description task. Therefore, a critical research ques-
tion is: can spontaneous temporal language impair-
ments caused by AD be detected at an early stage
of the disease? Relation between AD, language
functions and language domain are summarized in
(Szatloczki et al., 2015). In (Venneri et al., 2008), a
significant correlation between the lexical attributes
characterising residual linguistic production and
the integrity of regions of the medial temporal
lobes in early AD patients is observed. Specific
lexical and semantic deficiencies of AD patients at
early to moderate stages are also detected in verbal
communication task in (Boyé et al., 2014). There-
fore, in this paper, we explore a machine-learning
based clustering and data visualization technique
to identify linguistic changes in a subject over a
time period. The proposed methodology is also
highly personalized since it observes and analyzes
the linguistic patterns of each individual separately
using only his/her own linguistic biomarkers over
a period of time.

133



First, we explore a machine learning algorithm
called t-distributed stochastic neighbor embedding
(t-SNE) (Maaten and Hinton, 2008). t-SNE is
useful in dimensionality reduction suitable for vi-
sualization of high-dimensional datasets. It cal-
culates the probability that two points in a high-
dimensional space are similar, computes the corre-
sponding probability in a low-dimensional space,
and minimizes the difference between these two
probabilities for mapping or visualization. Dur-
ing this process, the sum of Kullback-Leibler di-
vergences (Liu and Shum, 2003) over all the data
points is minimized. Our hypothesis is that high-
dimensional AD-related linguistic features when
visualized in a low-dimensional space may quickly
and intuitively reveal useful information for early
diagnosis. Such a visualization will also help in-
dividuals and general medical practitioners (who
are first points of contact) to assess the situation
for further tests. Second, we investigate two un-
supervised machine learning techniques, one class
support vector machine (SVM) and isolation forest,
for temporal detection of linguistic abnormalities
indicative of early-stage AD. These proposed ap-
proaches are tested on President Reagan’s speech
dataset and corroborated with results from other
research in the literature.

This paper is organized as follows. Back-
ground research is discussed in Section 2, Sec-
tion 3 presents the Reagan speech data set used
in this paper, data pre-processing techniques that
were applied and AD-related linguistic feature se-
lection rationale and methodology, Section 4 con-
tains the clustering and visualization of the hand-
crafted linguistic features and anomaly detection to
infer the onset of AD and to detect the time period
of changes in the linguistic statistical characteris-
tics, and experimental results to demonstrate the
proposed method. In Section 5, we describe the ma-
chine learning algorithms for detecting anomalies
from personalized linguistic biomarkers collected
over a period of time to identify early-stage AD.
Concluding remarks are given in Section 6.

2 Background

The “picture description” task has been widely stud-
ied to differentiate between AD and non-AD or
control subjects. In this task, a picture (the “cookie
theft picture”) is shown and the subject is asked
to describe it. It has been observed that subjects
with AD usually convey sparse information about

the picture ignoring expected facts and inferences
(Giles et al., 1996). AD patients have difficulty
in naming things and replace target words with
simpler semantically neighboring words. Under-
standing metaphors and sarcasm also deteriorate in
people diagnosed with AD (Rapp and Wild, 2011).

Machine learning based classifier design to dif-
ferentiate between AD and non-AD subjects is an
active area of research. A significant correlation
between dementia severity and linguistic measures
such as confrontation naming, articulation, word-
finding ability, and semantic fluency exists. Some
studies have reported a 84.8 percent accuracy in
distinguishing AD patients from healthy controls
using temporal and acoustic features ((Rentoumi
et al., 2014); (Fraser et al., 2016)).

Our study differs from the prior work in sev-
eral ways. Prior work attempt to identify linguistic
features and machine learning classifiers for differ-
entiating between AD and non-AD subjects from a
corpus (e.g., Dementia Bank (MacWhinney, 2007))
containing text transcripts of interviews with pa-
tients and healthy control. In this paper, we first
analyze the speech transcripts (over several years)
of a single person (President Ronald Reagan) and
visualize time-dependent linguistic information us-
ing t-SNE. The goal is to identify visual clues for
linguistic changes that may indicate the onset of
AD. Note that such an easy to understand visual
representation depicting differences in linguistic
patterns will be useful to both a common person
and a general practitioner (who is the first point
of contact for majority of patients). Since most
general practitioners are not trained mental health
professionals the impact of such a visualization
tool will be high, especially at the early stages of
AD. Sigificant AD-related linguistic biomarkers
derived from t-SNE analysis are then used in two
unsupervised clustering algorithms for detecting
AD-related temporal linguistic anomalies. This
provides an estimate for the time when early-stage
AD symptoms are beginning to be observed.

3 Reagan Speeches: Data Collection,
Pre-processing, and Feature Selection

We describe the data collection, pre-processing,
and feature engineering methodologies in this sec-
tion. Ronald Reagan was the 40th president (served
from 1981 to 1989) of the United States of Amer-
ica. He was an extraordinary orator, a radio an-
nouncer, actor, and the host for a show called “Gen-

134



eral Electric Theatre.” Clearly, for being successful
in these professional domains one needs to have
good memory, consciousness, intuition, command
over the language, and ease of communicating with
a large audience. Reagan officially announced that
he had been diagnosed with AD on November
5, 1994. But it was speculated that his cognitive
abilities where on the decline even while in office
(Gottschalk et al., 1988). Therefore, analyzing his
speech transcripts for early signs of AD may reveal
interesting patterns, if any.

The Reagan Library is the repository of presiden-
tial records for President Reagan’s administration.
We download his 98 speeches from 1980 to 1989 as
shown in Table 1. We removed special characters,
tags, and numbers and kept only the words from
each speech transcript. The resulting data was then
lemmatized and tokenized.

Table 1: President Reagan’s speech dataset

Year No. of speeches
1980 6
1981 8
1982 11
1983 12
1984 14
1985 13
1986 14
1987 10
1988 9
1989 1

Part-of-speech (POS) features: People diag-
nosed with AD use more pronouns than nouns.
Therefore, POS features such as the number of
pronouns and the pronouns-to-nouns ratio are im-
portant. We identified adverbs, nouns, verbs, and
pronouns for each speech transcript with natural
language processing (NLP) tools. POS tags having
at least 10 occurrences were selected to compute
their percentage ratios. Similarly, words that have
at least a frequency of 10 were selected and their
occurrence percentages were computed.

The full set of POS features we used were: (1)
number of pronouns, (2) pronoun-noun ratio, (3)
number of adverbs, (4) number of nouns, (5) num-
ber of verbs, (6) pro-noun frequency rate, (7) noun
frequency rate, (8) verb frequency rate, (9) adverb
frequency rate, (10) word frequency rate, and (11)
word frequency rate without excluding stop words.

Vocabulary Richness: AD patients show a de-
cline in their vocabulary range. Therefore, vocab-
ulary richness metrics: Honore’s Statistic (HS),
Sichel Measure (SICH), and Brunet’s Measure
(BM) were calculated for each speech. Higher
values of Honore’s and Sichel measures indicate
greater vocabulary richness. But a higher value
corresponds to low vocabulary richness for the
Brunet’s measure.

Readability Measures: We computed two read-
ability measures, namely, Automated Readability
Index (ARI) and Flesch-Kincaid readability (FKR)
score. A higher ARI indicates complex speech
with rich vocabulary whereas lower Flesch-Kincaid
score indicates rich vocabulary.

Figure 1: Correlation matrix of the linguistic features.

Figure 1 shows the correlation matrix of the cho-
sen linguistic features computed for the Reagan
speech dataset. Note that some of the features are
highly correlated, therefore, we pruned the feature
set to the following 9 features:

1. pronoun-noun ratio

2. word frequency rate

3. verb frequency rate

4. pronoun frequency rate

5. adverb frequency rate

6. Honore’s measure

7. Brunet’s measure

8. Sichel measure

9. Automated Readability Index

Any further analysis in this paper uses the above 9
selected linguistic features.
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4 Clustering and Visualization of
Linguistic Features

We selected the t-SNE machine learning technique
for clustering and visulaization of linguistic fea-
tures extracted from Reagan’s speeches. t-SNE is
better at creating a single map for revealing struc-
tures at many different scales important for high-
dimensional data that lie on several different, but
related, low-dimensional manifolds. This implies
that it can capture much of the local structure of the
high-dimensional data very well, while also reveal-
ing global structure such as the presence of clusters
at several scales (van der Maaten and Hinton 2008).
If there are AD-related linguistic patterns then t-
SNE may reveal them as clusters.

In t-SNE, the high-dimensional Euclidean dis-
tances between datapoints are converted into con-
ditional probabilities representing similarities be-
tween them. For example, the similarity of data
point xj with xi is the conditional probability pj|i
that xi would pick xj as its neighbor. Neighbors
are picked in proportion to their probability density
under Student t-distribution centered at xi in the
low-dimensional space. Then the Kullback-Leibler
divergence between a joint probability distribution,
P, in the high-dimensional space and a joint proba-
bility distribution, Q, in the low-dimensional space
is then minimized:

minKL(P ||Q) =
∑

i

∑

j

pij log
pij
qij

(1)

t-SNE has two tunable hyperparameters: per-
plexity and learning rate. Perplexity allows us to
balance the weighting between local and global
relationships of the data. It gives a sense of the
number of close neighbors for each point. A per-
plexity value between 5 and 50 is recommended.
The learning rate for t-SNE is usually in the inter-
val [10, 1000]. For a high learning rate, each point
will approximately be equidistant from its nearest
neighbours. For a low rate, there will be few out-
liers and therefore the points may look compressed
into a dense cloud. Since t-SNE’s cost function
is not convex different initializations can produce
different results. After tuning t-SNE’s hyperpa-
rameters for the dataset, we chose perplexity value
equal to 4 and learning rate equal to 100.

Pronoun-to-noun ratio: Figure 2 shows t-SNE
based clustering of the speech transcripts, speeches
sharing similar patterns are clustered together. Be-
sides, the radius of each circle is proportional to

the pronoun-to-noun ratio. Notice that the clus-
ter on the left side of the graph contains speeches
(from 1983 to 1987) have higher values of the ra-
tio. Recall that higher pronoun-to-noun ratio is an
indicator of early stage AD.

Figure 2: 2-dimensional visualization of speech tran-
scripts where size of each circle in the map is propor-
tional to the pronoun-to-noun ratio.

Pronoun frequency: Fig. 3 indicates clustering
and low-dimensional visualization results when the
size of each circle is proportional to the pronoun
frequency. We again see that the cluster on the
left side of the map contains speeches with higher
pronoun frequency, another indicator of early stage
AD.

Figure 3: 2-dimensional visualization of speech tran-
scripts where size of each circle in the map is propor-
tional to the pronoun frequency.

Readability score: From Fig. 4 we observe that
the speeches from 1983-1987 have lower readabil-
ity scores.

Word repetition frequency: The word repe-
tition frequency map in Fig. 5 shows that three
speeches standout. These three speeches have a
higher repetition of high frequency words. Inter-
estingly, two of these speeches have word lengths
smaller than the mean length of all the speeches.
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Figure 4: 2-dimensional visualization of speech tran-
scripts where size of each circle in the map is propor-
tional to the readability score.

Figure 5: 2-dimensional visualization of speech tran-
scripts where size of each circle in the map is propor-
tional to the word repetition frequency.

From these clustering results the speeches iden-
tified as showing early signs of AD are:

• 03-23-1983: Address to the Nation on Na-
tional Security (“Star Wars” SDI Speech)

• 05-28-1984: Remarks honoring the Vietnam
War’s Unknown

• 02-06-1985: State of the Union Address,
(American Revolution II)

• 04-24-1985: Address to the Nation on the
Federal Budget and Deficit Reduction

• 05-05-1985: Speech at Bergen-Belsen Con-
centration Camp Memorial

• 05-05-1985: Speech at Bitburg Air Base

• 04-14-1986: Address to the Nation on the Air
Strike Against Libya

• 06-24-1986: Address to the Nation on Aid to
the Contras

• 08-12-1987: Address to the Nation on the
Iran-ContraAffair

• 08-12-1987: Address to the Nation on the
Iran-ContraAffair

• 09-21-1987: Address to the General Assem-
bly of the United Nations, (INF Agreement
and Iran)

Therefore, t-SNE based clustering and low-
dimensional visualization of President Reagan’s
speeches from 1964 to 1989 reveals the following:

• he started showing signs of early AD well
before the official announcement in 1994

• it is highly likely that he developed AD some-
time between 1983 and 1987

• over time, President Reagan’s showed a signif-
icant reduction the number of unique words
but a significant increase in conversational
fillers and non-specific nouns

• the proposed method identifies specific
speeches that exhibit linguistic markers for
AD

Some of these findings are corroborated by prior
research that analyzed his interviews and com-
pared them with President Bursh’s public speeches,
(Berisha et al., 2015).

5 Linguistic Anomaly Detector for AD

t-SNE-clustering-based approach provides visual-
ization of speeches that are statistically different
(“anomalies”). But we need an automated method
to identify these anomalies for early signs of AD.
Therefore, we investigate a one-class support vec-
tor machine (SVM) anomaly detector (Erfani et al.,
2016). This method is useful in practice when ma-
jority of a subject’s speeches over several years
would be (statistically) typical of a healthy control
(“normal”) until he/she begins to exhibit early signs
of AD. Our hypothesis is that early stage AD will
begin to reveal itself as statistical anomalies in lin-
guistic feature space. In this section we investigate
this hypothesis.

We designed a one class SVM with the following
hyperparameter values (the choices of these values
are not discussed for the sake of clarity and focus),
ν = 0.5 (an upper bound on the fraction of training
errors and a lower bound of the fraction of sup-
port vectors), kernel=rbf (radial basis function) and

137



γ = 1
(number of features×variance of features) (kernel

coefficient). Figure 6 shows that the one class SVM

Figure 6: Speeches from 1984 to 1986 are detected as
abnormal or anomalies.

detector identified several speeches from 1984 to
1986 as anomalous. That is, President Reagan’s
speeches in these years are different from the previ-
ous years in the linguistic feature space. Therefore,
it is likely that:

• he started showing signs of early AD well
before the official announcement in 1994

• the onset of AD start from 1984 and became
more pronounced in 1985 and 1986, which is
corroborated by prior research (e.g., (Berisha
et al., 2015)) that analyzed his interviews.

One class SVM learns the profile of non-AD
speeches as “normal” over a period of time and
detects anomalies to signal the onset of AD. But
in many practical instances long historical data
may not be available for a subject. In this case,
we must identify anomalies explicitly instead of
learning what is normal. Isolation forest (Ding and
Fei, 2013) is an unsupervised machine learning
algorithm that is applicable for this purpose.

We applied the isolation forest algorithm on the
speech dataset and tuned its hyperparameters. Fig-
ure 7 and Figure 8 show the results. Figure 7 shows
the ten speeches that were isolated as anomalies.
The corresponding dates of these speeches are seen
in Figure 8. We observe that a few speeches be-
tween 1984 and 1988 as linguistic anomalies. This
time period overlaps significantly with the results
of once class SVM and t-SNE clustering.

Figure 7: Isolation forest algorithm for AD detection.

Figure 8: Year-wise speeches identified as anomalous.

6 Conclusions

A set of nine linguistic biomarkers for AD was
identified. Two complementary unsupervised ma-
chine learning methods were applied on the linguis-
tic features extracted from President Reagan’s 98
speeches given between 1980 to 1989. The first
method, t-SNE, identified and visualized speeches
indicating early onset of AD. A higher pronoun
usage frequency, lower readability scores, higher
repetition of high frequency words were revealed
to be the key characteristics of potential AD-related
speeches. A subset speeches from 1983 to 1987
were detected to possess these characteristics.

The second machine learning method, one class
SVM, learned what is “normal” (i.e., non-AD
speech) to detect anomalies in speeches over a
period of time. This approach detected several
speeches between 1984 and 1986 as potential AD-
related. Since normal speech may not be avail-
able historically we applied the isolation forest al-
gorithm that explicitly detects anomalies without
learning what is normal. This detected 10 speeches
from 1983 to 1987 as AD-related.

From the experimental analysis our conclusion
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is that President Reagan had signs of AD sometime
between 1983 and 1988. This conclusion corrob-
orates results from other studies in the literature.
Note that that President Reagan had AD was pub-
licly disclosed only in November 1994.
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Abstract

We introduce BIOMRC, a large-scale cloze-
style biomedical MRC dataset. Care was taken
to reduce noise, compared to the previous
BIOREAD dataset of Pappas et al. (2018). Ex-
periments show that simple heuristics do not
perform well on the new dataset, and that two
neural MRC models that had been tested on
BIOREAD perform much better on BIOMRC,
indicating that the new dataset is indeed less
noisy or at least that its task is more feasible.
Non-expert human performance is also higher
on the new dataset compared to BIOREAD, and
biomedical experts perform even better. We
also introduce a new BERT-based MRC model,
the best version of which substantially outper-
forms all other methods tested, reaching or sur-
passing the accuracy of biomedical experts in
some experiments. We make the new dataset
available in three different sizes, also releasing
our code, and providing a leaderboard.

1 Introduction

Creating large corpora with human annotations is a
demanding process in both time and resources. Re-
search teams often turn to distantly supervised or
unsupervised methods to extract training examples
from textual data. In machine reading compre-
hension (MRC) (Hermann et al., 2015), a training
instance can be automatically constructed by taking
an unlabeled passage of multiple sentences, along
with another smaller part of text, also unlabeled,
usually the next sentence. Then a named entity of
the smaller text is replaced by a placeholder. In this
setting, MRC systems are trained (and evaluated for
their ability) to read the passage and the smaller
text, and guess the named entity that was replaced
by the placeholder, which is typically one of the
named entities of the passage. This kind of ques-
tion answering (QA) is also known as cloze-type
questions (Taylor, 1953). Several datasets have

been created following this approach either using
books (Hill et al., 2016; Bajgar et al., 2016) or
news articles (Hermann et al., 2015). Datasets of
this kind are noisier than MRC datasets containing
human-authored questions and manually annotated
passage spans that answer them (Rajpurkar et al.,
2016, 2018; Nguyen et al., 2016). They require
no human annotations, however, which is particu-
larly important in biomedical question answering,
where employing annotators with appropriate ex-
pertise is costly. For example, the BIOASQ QA

dataset (Tsatsaronis et al., 2015) currently contains
approximately 3k questions, much fewer than the
100k questions of a SQUAD (Rajpurkar et al., 2016),
exactly because it relies on expert annotators.

To bypass the need for expert annotators and
produce a biomedical MRC dataset large enough
to train (or pre-train) deep learning models, Pap-
pas et al. (2018) adopted the cloze-style questions
approach. They used the full text of unlabeled
biomedical articles from PUBMED CENTRAL,1 and
METAMAP (Aronson and Lang, 2010) to annotate
the biomedical entities of the articles. They ex-
tracted sequences of 21 sentences from the arti-
cles. The first 20 sentences were used as a passage
and the last sentence as a cloze-style question. A
biomedical entity of the ‘question’ was replaced
by a placeholder, and systems have to guess which
biomedical entity of the passage can best fill the
placeholder. This allowed Pappas et al. to produce
a dataset, called BIOREAD, of approximately 16.4
million questions. As the same authors reported,
however, the mean accuracy of three humans on a
sample of 30 questions from BIOREAD was only
68%. Although this low score may be due to the
fact that the three subjects were not biomedical ex-
perts, it is easy to see, by examining samples of
BIOREAD, that many examples of the dataset do

1https://www.ncbi.nlm.nih.gov/pmc/
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‘question’ originating from caption:
“figure 4 htert @entity6 and @entity4 XXXX cell invasion.”

‘question’ originating from reference:
“2004 , 17 , 250 257 .14967013 c samuni y. ; samuni u. ;
goldstein s. the use of cyclic XXXX as hno scavengers .”

‘passage’ containing captions:
“figure 2: distal UNK showing high insertion of rectum

into common channel. figure 3: illustration of the cloacal
malformation. figure 4: @entity5 showing UNK”

Table 1: Examples of noisy BIOREAD data. XXXX is
the placeholder, and UNK is the ‘unknown’ token.

not make sense. Many instances contain passages
or questions crossing article sections, or originat-
ing from the references sections of articles, or they
include captions and footnotes (Table 1). Another
source of noise is METAMAP, which often misses
or mistakenly identifies biomedical entities (e.g., it
often annotates ‘to’ as the country Togo).

In this paper, we introduce BIOMRC, a new
dataset for biomedical MRC that can be viewed
as an improved version of BIOREAD. To avoid
crossing sections, extracting text from references,
captions, tables etc., we use abstracts and titles of
biomedical articles as passages and questions, re-
spectively, which are clearly marked up in PUBMED

data, instead of using the full text of the articles.
Using titles and abstracts is a decision that favors
precision over recall. Titles are likely to be re-
lated to their abstracts, which reduces the noise-to-
signal ratio significantly and makes it less likely to
generate irrelevant questions for a passage. We
replace a biomedical entity in each title with a
placeholder, and we require systems to guess the
hidden entity by considering the entities of the
abstract as candidate answers. Unlike BIOREAD,
we use PUBTATOR (Wei et al., 2012), a repository
that provides approximately 25 million abstracts
and their corresponding titles from PUBMED, with
multiple annotations.2 We use DNORM’s biomed-
ical entity annotations, which are more accurate
than METAMAP’s (Leaman et al., 2013). We also
perform several checks, discussed below, to dis-
card passage-question instances that are too easy,
and we show that the accuracy of experts and non-
expert humans reaches 85% and 82%, respectively,
on a sample of 30 instances for each annotator type,
which is an indication that the new dataset is indeed
less noisy, or at least that the task is more feasible
for humans. Following Pappas et al. (2018), we
release two versions of BIOMRC, LARGE and LITE,
containing 812k and 100k instances respectively,

2Like PUBMED, PUBTATOR is supported by NCBI. Consult:
www.ncbi.nlm.nih.gov/research/pubtator/

for researchers with more or fewer resources, along
with the 60 instances (TINY) humans answered.
Random samples from BIOMRC LARGE where se-
lected to create LITE and TINY. BIOMRC TINY

is used only as a test set; it has no training and
validation subsets.

We tested on BIOMRC LITE the two deep learn-
ing MRC models that Pappas et al. (2018) had tested
on BIOREAD LITE, namely Attention Sum Reader
(AS-READER) (Kadlec et al., 2016) and Attention
Over Attention Reader (AOA-READER) (Cui et al.,
2017). Experimental results show that AS-READER

and AOA-READER perform better on BIOMRC, with
the accuracy of AOA-READER reaching 70% com-
pared to the corresponding 52% accuracy of Pappas
et al. (2018), which is a further indication that the
new dataset is less noisy or that at least its task
is more feasible. We also developed a new BERT-
based (Devlin et al., 2019) MRC model, the best ver-
sion of which (SCIBERT-MAX-READER) performs
even better, with its accuracy reaching 80%. We
encourage further research on biomedical MRC by
making our code and data publicly available, and
by creating an on-line leaderboard for BIOMRC.3

2 Dataset Construction

Using PUBTATOR, we gathered approx. 25 million
abstracts and their titles. We discarded articles
with titles shorter than 15 characters or longer than
60 tokens, articles without abstracts, or with ab-
stracts shorter than 100 characters, or fewer than
10 sentences. We also removed articles with ab-
stracts containing fewer than 5 entity annotations,
or fewer than 2 or more than 20 distinct biomedi-
cal entity identifiers. (PUBTATOR assigns the same
identifier to all the synonyms of a biomedical en-
tity; e.g., ‘hemorrhagic stroke’ and ‘stroke’ have
the same identifier ‘MESH:D020521’.) We also
discarded articles containing entities not linked to
any of the ontologies used by PUBTATOR,4 or en-
tities linked to multiple ontologies (entities with
multiple ids), or entities whose spans overlapped
with those of other entities. We also removed ar-
ticles with no entities in their titles, and articles
with no entities shared by the title and abstract.5

3Our code, data, and information about the leader-
board will be available at http://nlp.cs.aueb.gr/
publications.html.

4PUBTATOR uses the Open Biological and Biomedical On-
tology (OBO) Foundry, which comprises over 60 ontologies.

5A further reason for using the title as the question is that
the entities of the titles are typically mentioned in the abstract.
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Passage

BACKGROUND: Most brain metastases arise from @entity0 . Few studies compare the brain regions they involve, their
numbers and intrinsic attributes. METHODS: Records of all @entity1 referred to Radiation Oncology for treatment of
symptomatic brain metastases were obtained. Computed tomography (n = 56) or magnetic resonance imaging (n = 72)
brain scans were reviewed. RESULTS: Data from 68 breast and 62 @entity2 @entity1 were compared. Brain metastases
presented earlier in the course of the lung than of the @entity0 @entity1 (p = 0.001). There were more metastases in the
cerebral hemispheres of the breast than of the @entity2 @entity1 (p = 0.014). More @entity0 @entity1 had cerebellar
metastases (p = 0.001). The number of cerebral hemisphere metastases and presence of cerebellar metastases were
positively correlated (p = 0.001). The prevalence of at least one @entity3 surrounded with > 2 cm of @entity4 was greater
for the lung than for the breast @entity1 (p = 0.019). The @entity5 type, rather than the scanning method, correlated with
differences between these variables. CONCLUSIONS: Brain metastases from lung occur earlier, are more @entity4 , but
fewer in number than those from @entity0 . Cerebellar brain metastases are more frequent in @entity0 .

Candidates @entity0 : [‘breast and lung cancer’] ; @entity1 : [‘patients’] ; @entity2 : [‘lung cancer’] ;
@entity3 : [‘metastasis’] ; @entity4 : [‘edematous’, ‘edema’] ; @entity5 : [‘primary tumor’]

Question Attributes of brain metastases from XXXX .
Answer @entity0 : [‘breast and lung cancer’]

Figure 1: Example passage-question instance of BIOMRC. The passage is the abstract of an article, with biomedical
entities replaced by @entityN pseudo-identifiers. The original entity names are shown in square brackets. Both
‘edematous’ and ‘edema’ are replaced by ‘@entity4’, because PUBTATOR considers them synonyms. The question
is the title of the article, with a biomedical entity replaced by XXXX. @entity0 is the correct answer.

BIOMRC LARGE BIOMRC LITE BIOMRC TINY
Training Development Test Total Training Development Test Total Setting A Setting B Total

Instances 700,000 50,000 62,707 812,707 87,500 6,250 6,250 100,000 30 30 60
Avg candidates 6.73 6.68 6.68 6.72 6.72 6.68 6.65 6.71 6.60 6.57 6.58
Max candidates 20 20 20 20 20 20 20 20 13 11 13
Min candidates 2 2 2 2 2 2 2 2 2 3 2

Avg abstract len. 253.79 257.41 253.70 254.01 253.78 257.32 255.56 254.11 248.13 264.37 256.25
Max abstract len. 543 516 511 543 519 500 510 519 371 386 386
Min abstract len. 57 89 77 57 60 109 103 60 147 154 147

Avg title len. 13.93 14.28 13.99 13.96 13.89 14.22 14.09 13.92 14.17 14.70 14.43
Max title len. 51 46 43 51 49 40 42 49 21 35 35
Min title len. 3 3 3 3 3 3 3 3 6 4 4

Table 2: Statistics of BIOMRC LARGE, LITE, TINY. The questions of the TINY version were answered by humans.
All lengths are measured in tokens using a whitespace tokenizer.

Finally, to avoid making the dataset too easy for
a system that would always select the entity with
the most occurrences in the abstract, we removed
a passage-question instance if the most frequent
entity of its passage (abstract) was also the answer
to the cloze-style question (title with placeholder);
if multiple entities had the same top frequency in
the passage, the instance was retained. We ended
up with approx. 812k passage-question instances,
which form BIOMRC LARGE, split into training, de-
velopment, and test subsets (Table 2). The LITE and
TINY versions of BIOMRC are subsets of LARGE.

In all versions of BIOMRC (LARGE, LITE, TINY),
the entity identifiers of PUBTATOR are replaced by
pseudo-identifiers of the form @entityN (Fig. 1),
as in the CNN and Daily Mail datasets (Hermann
et al., 2015). We provide all BIOMRC versions
in two forms, corresponding to what Pappas et al.
(2018) call Settings A and B in BIOREAD.6 In Set-
ting A, each pseudo-identifier has a global scope,
meaning that each biomedical entity has a unique

6Pappas et al. (2018) actually call ‘option a’ and ‘option b’
our Setting B and A, respectively.

pseudo-identifier in the whole dataset. This allows
a system to learn information about the entity rep-
resented by a pseudo-identifier from all the occur-
rences of the pseudo-identifier in the training set.
For example after seeing the same pseudo-identifier
multiple times a model may learn that it stands for
a drug, or that a particular pseudo-identifier tends
to neighbor with specific words. Then, much like a
language model, a system may guess the pseudo-
identifier that should fill in the placeholder even
without the passage, or at least it may infer a prior
probability for each candidate answer. In contrast,
Setting B uses a local scope, i.e., it restarts the
numbering of the pseudo-identifiers (from @en-
tity0) anew in each passage-question instance. This
forces the models to rely only on information about
the entities that can be inferred from the particular
passage and question. This corresponds to a non-
expert answering the question, who does not have
any prior knowledge of the biomedical entities.

Table 2 provides statistics on BIOMRC. In TINY,
we use 30 different passage-question instances in
Settings A and B, because in both settings we asked
the same humans to answer the questions, and we
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Figure 2: Illustration of our SCIBERT-based models.
Each sentence of the passage is concatenated with the
question and fed to SCIBERT. The top-level embed-
ding produced by SCIBERT for the first sub-token of
each candidate answer is concatenated with the top-
level embedding of [MASK] (which replaces the place-
holder XXXX) of the question, and they are fed to an
MLP, which produces the score of the candidate answer.
In SCIBERT-SUM-READER, the scores of multiple oc-
currences of the same candidate are summed, whereas
SCIBERT-MAX-READER takes their maximum.

did not want them to remember instances from
one setting to the other. In LARGE and LITE, the
instances are the same across the two settings, apart
from the numbering of the entity identifiers.

3 Experiments and Results

We experimented only on BIOMRC LITE and TINY,
since we did not have the computational resources
to train the neural models we considered on the
LARGE version of BIOREAD. Pappas et al. (2018)
also reported experimental results only on a LITE

version of their BIOREAD dataset. We hope that oth-
ers may be able to experiment on BIOMRC LARGE,
and we make our code available, as already noted.

3.1 Methods

We experimented with the four basic baselines
(BASE1–4) that Pappas et al. (2018) used in
BIOREAD, the two neural MRC models used by the
same authors, AS-READER (Kadlec et al., 2016)
and AOA-READER (Cui et al., 2017), and a BERT-
based (Devlin et al., 2019) model we developed.

Basic baselines: BASE1, 2, 3 return the first, last,
and the entity that occurs most frequently in the
passage (or randomly one of the entities with the
same highest frequency, if multiple exist), respec-
tively. Since in BIOREAD the correct answer is
never (by construction) the most frequent entity
of the passage, unless there are multiple entities
with the same highest frequency, BASE3 performs
poorly. Hence, we also include a variant, BASE3+,
which randomly selects one of the entities of the

passage with the same highest frequency, if mul-
tiple exist, otherwise it selects the entity with the
second highest frequency. BASE4 extracts all the
token n-grams from the passage that include an en-
tity identifier (@entityN ), and all the n-grams from
the question that include the placeholder (XXXX).7

Then for each candidate answer (entity identifier),
it counts the tokens shared between the n-grams
that include the candidate and the n-grams that in-
clude the placeholder. The candidate with the most
shared tokens is selected. These baselines are used
to check that the questions cannot be answered by
simplistic heuristics (Chen et al., 2016).

Neural baselines: We use the same implementa-
tions of AS-READER (Kadlec et al., 2016) and AOA-
READER (Cui et al., 2017) as Pappas et al. (2018),
who also provide short descriptions of these neu-
ral models, not provided here to save space. The
hyper-parameters of both methods were tuned on
the development set of BIOMRC LITE.

BERT-based model: We use SCIBERT (Beltagy
et al., 2019), a pre-trained BERT (Devlin et al.,
2019) model for scientific text. SCIBERT is pre-
trained on 1.14 million articles from Semantic
Scholar,8 of which 82% (935k) are biomedical
and the rest come from computer science. For
each passage-question instance, we split the pas-
sage into sentences using NLTK (Bird et al., 2009).
For each sentence, we concatenate it (using BERT’s
[SEP] token) with the question, after replacing the
XXXX with BERT’s [MASK] token, and we feed
the concatenation to SCIBERT (Fig. 2). We col-
lect SCIBERT’s top-level vector representations of
the entity identifiers (@entityN ) of the sentence
and [MASK].9 For each entity of the sentence, we
concatenate its top-level representation with that
of [MASK], and we feed them to a Multi-Layer
Perceptron (MLP) to obtain a score for the partic-
ular entity (candidate answer). We thus obtain a
score for all the entities of the passage. If an entity
occurs multiple times in the passage, we take the
sum or the maximum of the scores of its occur-
rences. In both cases, a softmax is then applied to
the scores of all the entities, and the entity with the
maximum score is selected as the answer. We call

7We tried n = 2, . . . , 6 and use n = 3, which gave the
best accuracy on the development set of BIOMRC LARGE.

8https://www.semanticscholar.org/
9BERT’s tokenizer splits the entity identifiers into sub-

tokens (Devlin et al., 2019). We use the first one. The top-level
token representations of BERT are context-aware, and it is com-
mon to use the first or last sub-token of each named-entity.
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BIOMRC Lite – Setting A BIOMRC Lite – Setting B
Train Dev Test Train All Word Entity Train Dev Test Train All Word Entity

Method Acc Acc Acc Time Params Embeds Embeds Acc Acc Acc Time Params Embeds Embeds
BASE1 37.58 36.38 37.63 0 0 0 0 37.58 36.38 37.63 0 0 0 0
BASE2 22.50 23.10 21.73 0 0 0 0 22.50 23.10 21.73 0 0 0 0
BASE3 10.03 10.02 10.53 0 0 0 0 10.03 10.02 10.53 0 0 0 0

BASE3+ 44.05 43.28 44.29 0 0 0 0 44.05 43.28 44.29 0 0 0 0
BASE4 56.48 57.36 56.50 0 0 0 0 56.48 57.36 56.50 0 0 0 0

AS-READER 84.63 62.29 62.38 18 x 0.92 hr 12.87M 12.69M 1.59M 79.64 66.19 66.19 18 x 0.65 hr 6.82M 6.66M 0.60k
AOA-READER 82.51 70.00 69.87 29 x 2.10 hr 12.87M 12.69M 1.59M 84.62 71.63 71.57 36 x 1.82 hr 6.82M 6.66M 0.60k

SCIBERT-SUM-READER 71.74 71.73 71.28 11 x 4.38 hr 154k 0 0 68.92 68.64 68.24 6 x 4.38 hr 154k 0 0
SCIBERT-MAX-READER 81.38 80.06 79.97 19 x 4.38 hr 154k 0 0 81.43 80.21 79.10 15 x 4.38 hr 154k 0 0

Table 3: Training, development, test accuracy (%) on BIOMRC LITE in Settings A (global scope of entity identifiers)
and B (local scope), training times (epochs × time per epoch), and number of trainable parameters (total, word
embedding parameters, entity identifier embedding parameters). In the lower zone (neural methods), the difference
from each accuracy score to the next best is statistically significant (p < 0.02). We used singe-tailed Approximate
Randomization (Dror et al., 2018), randomly swapping the answers to 50% of the questions for 10k iterations.

this model SCIBERT-SUM-READER or SCIBERT-
MAX-READER, depending on how it aggregates the
scores of multiple occurrences of the same entity.

SCIBERT-SUM-READER is closer to AS-READER

and AOA-READER, which also sum the scores of
multiple occurrences of the same entity. This sum-
ming aggregation, however, favors entities with sev-
eral occurrences in the passage, even if the scores
of all the occurrences are low. Our experiments
indicate that SCIBERT-MAX-READER performs bet-
ter. In all cases, we only update the parameters of
the MLP during training, keeping the parameters of
SCIBERT frozen to their pre-trained values to speed
up training. With more computing resources, it may
be possible to improve the scores of SCIBERT-MAX-
READER (and SCIBERT-SUM-READER) further by
fine-tuning SCIBERT on BIOMRC training data.

3.2 Results on BIOMRC LITE

Table 3 reports the accuracy of all methods on
BIOMRC LITE for Settings A and B. In both settings,
all the neural models clearly outperform all the ba-
sic baselines, with BASE3 (most frequent entity of
the passage) performing worst and BASE3+ per-
forming much better, as expected. In both settings,
SCIBERT-MAX-READER clearly outperforms all the
other methods on both the development and test
sets. The performance of SCIBERT-SUM-READER

is approximately ten percentage points worse than
SCIBERT-MAX-READER’s on the development and
test sets of both settings, indicating that the superior
results of SCIBERT-MAX-READER are to a large ex-
tent due to the different aggregation function (max
instead of sum) it uses to combine the scores of
multiple occurrences of a candidate answer, not
to the extensive pre-training of SCIBERT. AOA-
READER, which does not employ any pre-training,
is competitive to SCIBERT-SUM-READER in Set-
ting A, and performs better than SCIBERT-SUM-

READER in Setting B, which again casts doubts
on the value of SCIBERT’s extensive pre-training.
We expect, however, that the performance of the
SCIBERT-based models, could be improved further
by fine-tuning SCIBERT’s parameters.

The performance of SCIBERT-SUM-READER is
slightly better in Setting A than in Setting B, which
might suggest that the model manages to capture
global properties of the entity pseudo-identifiers
from the entire training set. However, the perfor-
mance of SCIBERT-MAX-READER is almost the
same across the two settings, which contradicts
the previous hypothesis. Furthermore, the devel-
opment and test performance of AS-READER and
AOA-READER is higher in Setting B than A, indi-
cating that these two models do not capture global
properties of entities well, performing better when
forced to consider only the information of the par-
ticular passage-question instance. Overall, we see
no strong evidence that the models we considered
are able to learn global properties of the entities.

In both Settings A and B, AOA-READER per-
forms better than AS-READER, which was expected
since it uses a more elaborate attention mechanism,
at the expense of taking longer to train (Table 3).10

The two SCIBERT-based models are also compet-
itive in terms of training time, because we only
train the MLP (154k parameters) on top of SCIB-
ERT, keeping the parameters of SCIBERT frozen.

The trainable parameters of AS-READER and
AOA-READER are almost double in Setting A com-
pared to Setting B. To some extent, this difference
is due to the fact that for both models we learn
a word embedding for each @entityN pseudo-
identifier, and in Setting A the numbering of the
identifiers is not reset for each passage-question

10We trained all models for a maximum of 40 epochs, using
early stopping on the dev. set, with patience of 3 epochs.
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Figure 3: More detailed statistics and results on the development subset of BIOMRC LITE. Number of passage-
question instances with 2, 3, . . . , 20 candidate answers (top left). Accuracy (%) of the basic baselines (top right).
Accuracy (%) of the neural models in Settings A (bottom left) and B (bottom right).

instance, leading to many more pseudo-identifiers
(31.77k pseudo-identifiers in the vocabulary of Set-
ting A vs. only 20 in Setting B); this accounts for
a difference of 1.59M parameters.11 The rest of
the difference in total parameters (from Setting A
to B) is due to the fact that we tuned the hyper-
parameters of each model separately for each set-
ting (A, B), on the corresponding development set.
Hyper-parameter tuning was performed separately
for each model in each setting, but led to the same
numbers of trainable parameters for AS-READER

and AOA-READER, because the trainable parame-
ters are dominated by the parameters of the word
embeddings. Note that the hyper-parameters of the
two SCIBERT-based models (of their MLPs) were
very minimally tuned, hence these models may per-
form even better with more extensive tuning.

AOA-READER was also better than AS-READER

in the experiments of Pappas et al. (2018) on a
LITE version of their BIOREAD dataset, but the
development and test accuracy of AOA-READER

in Setting A of BIOREAD was reported to be only
52.41% and 51.19%, respectively (cf. Table 3); in
Setting B, it was 50.44% and 49.94%, respectively.
The much higher scores of AOA-READER (and AS-
READER) on BIOMRC LITE are an indication that
the new dataset is less noisy, or that the task is at

11Hyper-parameter tuning led to 50- and 30-dimensional
word embeddings in Settings A, B, respectively. AS-READER
and AOA-READER learn word embeddings from the training
set, without using pre-trained embeddings.

least more feasible for machines. The results of
Pappas et al. (2018) were slightly higher in Setting
A than in Setting B, suggesting that AOA-READER

was able to benefit from the global scope of entity
identifiers, unlike our findings in BIOMRC.12

Figure 3 shows how many passage-question in-
stances of the development subset of BIOMRC LITE

have 2, 3, . . . , 20 candidate answers (top left),
and the corresponding accuracy of the basic base-
lines (top right), and the neural models (bottom).
BASE3+ is the best basic baseline for 2 and 3 can-
didates, and for 2 candidates it is competitive to the
neural models. Overall, however, BASE4 is clearly
the best basic baseline, but it is outperformed by
all neural models in almost all cases, as in Table 3.
SCIBERT-MAX-READER is again the best system
in both settings, almost always outperforming the
other systems. AS-READER is the worst neural
model in almost all cases. AOA-READER is compet-
itive to SCIBERT-SUM-READER in Setting A, and
slightly better overall than SCIBERT-SUM-READER

in Setting B, as can be seen in Table 3.

3.3 Results on BIOMRC TINY

Pappas et al. (2018) asked humans (non-experts) to
answer 30 questions from BIOREAD in Setting A,
and 30 other questions in Setting B. We mirrored
their experiment by providing 30 questions (from

12For AS-READER, Pappas et al. (2018) report results only
for Setting B: 37.90% development and 42.01% test accuracy
on BIOREAD LITE. They did not consider BERT-based models.
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Passage

The study enrolled 53 @entity1 (29 males, 24 females) with @entity1576 aged 15-88 years. Most
of them were 59 years of age and younger. In 1/3 of the @entity1 the diseases started with symptoms
of @entity1729, in 2/3 of them–with pulmonary affection. @entity55 was diagnosed in 50 @entity1
(94.3%), acute @entity3617 –in 3 @entity1. ECG changes were registered in about half of the
examinees who had no cardiac complaints. 25 of them had alterations in the end part of the
ventricular ECG complex; rhythm and conduction disturbances occurred rarely. Mycoplasmosis
@entity1 suffering from @entity741 ( @entity741 ) had stable ECG changes while in those free
of @entity741 the changes were short. @entity296 foci were absent. @entity299 comparison in
@entity1 with @entity1576 and in other @entity1729 has found that cardiovascular system suffers
less in acute mycoplasmosis. These data are useful in differential diagnosis of @entity296 .

Candidates

@entity1 : [‘patients’] ; @entity1576 : [‘respiratory mycoplasmosis’] ; @entity1729 : [‘acute
respiratory infections’, ‘acute respiratory viral infection’] ; @entity55 : [‘Pneumonia’] ; @entity3617
: [‘bronchitis’] ; @entity741 : [‘IHD’, ‘ischemic heart disease’] ; @entity296 : [‘myocardial
infections’, ‘Myocardial necrosis’] ; @entity299 : [‘Cardiac damage’] .

Question Cardio-vascular system condition in XXXX .
Expert Human Answers annotator1: @entity1576; annotator2: @entity1576.

Non-expert Human Answers annotator1: @entity296; annotator2: @entity296; annotator3: @entity1576.
Systems’ Answers AS-READER: @entity1729; AOA-READER: @entity296; SCIBERT-SUM-READER: @entity1576.

Figure 4: Example from BIOMRC TINY. In Setting A, humans see both the pseudo-identifiers (@entityN ) and the
original names of the biomedical entities (shown in square brackets). Systems see only the pseudo-identifiers, but
the pseudo-identifiers have global scope over all instances, which allows the systems, at least in principle, to learn
entity properties from the entire training set. In Setting B, humans no longer see the original names of the entities,
and systems see only the pseudo-identifiers with local scope (numbering reset per passage-question instance).

BIOMRC LITE) to three non-experts (graduate CS

students) in Setting A, and 30 other questions in
Setting B. We also showed the same questions of
each setting to two biomedical experts. As in the
experiment of Pappas et al. (2018), in Setting A
both the experts and non-experts were also pro-
vided with the original names of the biomedical
entities (entity names before replacing them with
@entityN pseudo-identifiers) to allow them to use
prior knowledge; see the top three zones of Fig. 4
for an example. By contrast, in Setting B the origi-
nal names of the entities were hidden.

Table 4 reports the human and system accuracy
scores on BIOMRC TINY. Both experts and non-
experts perform better in Setting A, where they can
use prior knowledge about the biomedical entities.
The gap between experts and non-experts is three
points larger in Setting B than in Setting A, presum-
ably because experts can better deduce properties
of the entities from the local context. Turning to the
system scores, SCIBERT-MAX-READER is again the
best system, but again much of its performance is
due to the max-aggregation of the scores of multi-
ple occurrences of entities. With sum-aggregation,
SCIBERT-SUM-READER obtains exactly the same
scores as AOA-READER, which again performs bet-
ter than AS-READER. (AOA-READER and SCIBERT-
SUM-READER make different mistakes, but their
scores just happen to be identical because of the
small size of TINY.) Unlike our results on BIOMRC

LITE, we now see all systems performing better in
Setting A compared to Setting B, which suggests

they do benefit from the global scope of entity iden-
tifiers. Also, SCIBERT-MAX-READER performs bet-
ter than both experts and non-experts in Setting A,
and better than non-experts in Setting B. However,
BIOMRC TINY contains only 30 instances in each
setting, and hence the results of Table 4 are less
reliable than those from BIOMRC LITE (Table 3).

In the corresponding experiments of Pappas et al.
(2018), which were conducted in Setting B only,
the average accuracy of the (non-expert) humans
was 68.01%, but the humans were also allowed not
to answer (when clueless), and unanswered ques-
tions were excluded from accuracy. On average,
they did not answer 21.11% of the questions, hence
their accuracy drops to 46.90% if unanswered ques-
tions are counted as errors. In our experiment, the
humans were also allowed not to answer (when
clueless), but we counted unanswered questions
as errors, which we believe better reflects human
performance. Non-experts answered all questions
in Setting A, and did not answer 13.33% (4/30) of
the questions on average in Setting B. The decrease
in the questions non-experts did not answer (from
21.11% to 13.33%) in Setting B (the only one con-
sidered in BIOREAD) again suggests that the new
dataset is less noisy, or at least that the task is more
feasible for humans, even when the names of the
entities are hidden. Experts did not answer 2.5%
(0.75/30) and 1.67% (0.5/30) of the questions on
average in Settings A and B, respectively.

Inter-annotator agreement was also higher for
experts than non-experts in our experiment, in both
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Method Setting A Setting B
Experts (Avg) 85.00 61.67

Non-Experts (Avg) 81.67 55.56
AS-READER 66.67 46.67

AOA-READER 70.00 56.67
SCIBERT-SUM-READER 70.00 56.67
SCIBERT-MAX-READER 90.00 60.00

Table 4: Accuracy (%) on BIOMRC TINY. Best human
and system scores shown in bold.

Settings A and B (Table 5). In Setting B, the agree-
ment of non-experts was particularly low (47.22%),
possibly because without entity names they had to
rely more on the text of the passage and question,
which they had trouble understanding. By contrast,
the agreement of experts was slightly higher in Set-
ting B than Setting A, possibly because without
prior knowledge about the entities, which may dif-
fer across experts, they had to rely to a larger extent
on the particular text of the passage and question.

4 Related work

Several biomedical MRC datasets exist, but have
orders of magnitude fewer questions than BIOMRC

(Ben Abacha and Demner-Fushman, 2019) or are
not suitable for a cloze-style MRC task (Pampari
et al., 2018; Ben Abacha et al., 2019; Zhang et al.,
2018). The closest dataset to ours is CLICR (Šuster
and Daelemans, 2018), a biomedical MRC dataset
with cloze-type questions created using full-text
articles from BMJ case reports.13 CLICR contains
100k passage-question instances, the same num-
ber as BIOMRC LITE, but much fewer than the
812.7k instances of BIOMRC LARGE. Šuster et
al. used CLAMP (Soysal et al., 2017) to detect
biomedical entities and link them to concepts of
the UMLS Metathesaurus (Lindberg et al., 1993).
Cloze-style questions were created from the ‘learn-
ing points’ (summaries of important information)
of the reports, by replacing biomedical entities with
placeholders. Šuster et al. experimented with the
Stanford Reader (Chen et al., 2017) and the Gated-
Attention Reader (Dhingra et al., 2017), which per-
form worse than AOA-READER (Cui et al., 2017).

The QA dataset of BIOASQ (Tsatsaronis et al.,
2015) contains questions written by biomedical ex-
perts. The gold answers comprise multiple relevant
documents per question, relevant snippets from the
documents, exact answers in the form of entities,
as well as reference summaries, written by the ex-

13https://casereports.bmj.com/

Annotators (Setting) Kappa
Experts (A) 70.23

Non Experts (A) 65.61
Experts (B) 72.30

Non Experts (B) 47.22

Table 5: Human agreement (Cohen’s Kappa, %) on
BIOMRC TINY. Avg. pairwise scores for non-experts.

perts. Creating data of this kind, however, requires
significant expertise and time. In the eight years
of BIOASQ, only 3,243 questions and gold answers
have been created. It would be particularly inter-
esting to explore if larger automatically generated
datasets like BIOMRC and CLICR could be used to
pre-train models, which could then be fine-tuned
for human-generated QA or MRC datasets.

Outside the biomedical domain, several cloze-
style open-domain MRC datasets have been created
automatically (Hill et al., 2016; Hermann et al.,
2015; Dunn et al., 2017; Bajgar et al., 2016), but
have been criticized of containing questions that
can be answered by simple heuristics like our ba-
sic baselines (Chen et al., 2016). There are also
several large open-domain MRC datasets annotated
by humans (Kwiatkowski et al., 2019; Rajpurkar
et al., 2016, 2018; Trischler et al., 2017; Nguyen
et al., 2016; Lai et al., 2017). To our knowledge the
biggest human annotated corpus is Google’s Nat-
ural Questions dataset (Kwiatkowski et al., 2019),
with approximately 300k human annotated exam-
ples. Datasets of this kind require extensive an-
notation effort, which for open-domain datasets
is usually crowd-sourced. Crowd-sourcing, how-
ever, is much more difficult for biomedical datasets,
because of the required expertise of the annotators.

5 Conclusions and Future Work

We introduced BIOMRC, a large-scale cloze-style
biomedical MRC dataset. Care was taken to reduce
noise, compared to the previous BIOREAD dataset
of Pappas et al. (2018). Experiments showed that
BIOMRC’s questions cannot be answered well by
simple heuristics, and that two neural MRC models
that had been tested on BIOREAD perform much
better on BIOMRC, indicating that the new dataset
is indeed less noisy or at least that its task is more
feasible. Human performance was also higher on a
sample of BIOMRC compared to BIOREAD, and
biomedical experts performed even better. We
also developed a new BERT-based model, the best
version of which outperformed all other meth-
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ods tested, reaching or surpassing the accuracy of
biomedical experts in some experiments. We make
BIOMRC available in three different sizes, also re-
leasing our code, and providing a leaderboard.

We plan to tune more extensively the BERT-
based model to further improve its efficiency, and
to investigate if some of its techniques (mostly its
max-aggregation, but also using sub-tokens) can
also benefit the other neural models we considered.
We also plan to experiment with other MRC models
that recently performed particularly well on open-
domain MRC datasets (Zhang et al., 2020). Finally,
we aim to explore if pre-training neural models on
BIOREAD is beneficial in human-generated biomed-
ical datasets (Tsatsaronis et al., 2015).

Acknowledgments

We are most grateful to I. Almirantis, S. Kotitsas,
V. Kougia, A. Nentidis, S. Xenouleas, who partici-
pated in the human evaluation with BIOMRC TINY.

References
Alan R Aronson and François-Michel Lang. 2010. An

overview of MetaMap: historical perspective and re-
cent advances. Journal of the American Medical In-
formatics Association, 17(3):229–236.

Ondrej Bajgar, Rudolf Kadlec, and Jan Kleindienst.
2016. Embracing data abundance: BookTest
Dataset for Reading Comprehension. CoRR.

Iz Beltagy, Kyle Lo, and Arman Cohan. 2019. SciB-
ERT: Pretrained Language Model for Scientific Text.
In EMNLP.

Asma Ben Abacha and Dina Demner-Fushman. 2019.
A question-entailment approach to question answer-
ing. BMC Bioinformatics, 20:511.

Asma Ben Abacha, Chaitanya Shivade, and Dina
Demner-Fushman. 2019. Overview of the MEDIQA
2019 Shared Task on Textual Inference, Question
Entailment and Question Answering. In Proceed-
ings of the 18th BioNLP Workshop and Shared Task,
pages 370–379, Florence, Italy.

Steven Bird, Loper Edward, and Ewan Klein.
2009. Natural Language Processing with Python.
O’Reilly Media Inc.

Danqi Chen, Jason Bolton, and Christopher D. Man-
ning. 2016. A Thorough Examination of the
CNN/Daily Mail Reading Comprehension Task. In
Proceedings of the 54th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 2358–2367, Berlin, Germany.

Danqi Chen, Adam Fisch, Jason Weston, and Antoine
Bordes. 2017. Reading Wikipedia to Answer Open-
Domain Questions. In Proceedings of the 55th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1870–
1879, Vancouver, Canada.

Yiming Cui, Zhipeng Chen, Si Wei, Shijin Wang,
Ting Liu, and Guoping Hu. 2017. Attention-over-
Attention Neural Networks for Reading Comprehen-
sion. In Proceedings of the 55th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 593–602, Vancouver,
Canada.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
Deep Bidirectional Transformers for Language Un-
derstanding. In NAACL-HLT.

Bhuwan Dhingra, Hanxiao Liu, Zhilin Yang, William
Cohen, and Ruslan Salakhutdinov. 2017. Gated-
Attention Readers for Text Comprehension. In Pro-
ceedings of the 55th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), pages 1832–1846, Vancouver, Canada.

Rotem Dror, Gili Baumer, Segev Shlomov, and Roi Re-
ichart. 2018. The Hitchhiker’s Guide to Testing Sta-
tistical Significance in Natural Language Processing.
In Proceedings of the 56th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 1383–1392, Melbourne, Aus-
tralia.

Matthew Dunn, Levent Sagun, Mike Higgins, V. Ugur
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Abstract

Research on analyzing reading patterns of
dyslectic children has mainly been driven by
classifying dyslexia types offline. We contend
that a framework to remedy reading errors in-
line is more far-reaching and will help to fur-
ther advance our understanding of this impair-
ment. In this paper, we propose a simple and
intuitive neural model to reinstate migrating
words that transpire in letter position dyslexia,
a visual analysis deficit to the encoding of
character order within a word. Introduced by
the anagram matrix representation of an input
verse, the novelty of our work lies in the ex-
pansion from one to a two dimensional con-
text window for training. This warrants words
that only differ in the disposition of letters to
remain interpreted semantically similar in the
embedding space. Subject to the apparent con-
straints of the self-attention transformer archi-
tecture, our model achieved a unigram BLEU
score of 40.6 on our reconstructed dataset of
the Shakespeare sonnets.

1 Introduction

Dyslexia is a reading disorder that is perhaps the
most studied of learning disabilities, with an esti-
mated prevalence rate of 5 to 17 percentage points
of school-age children in the US (Shaywitz and
Shaywitz, 2005; Made by Dyslexia, 2019). Counter
to popular belief, dyslexia is not only tied to the vi-
sual analysis system of the brain, but also presents
a linguistic problem and hence its relevance to natu-
ral language processing (NLP). Dyslexia manifests
itself in several forms as this work centers on Letter
Position Dyslexia (LPD), a selective deficit to en-
coding the position of a letter within a word while
sustaining both letter identification and character
binding to words (Friedmann and Gvion, 2001).

A growing body of research advocates hetero-
geneity of dyslexia causes to poor non-word and
irregular-word reading (McArthur et al., 2013).

Along the same lines Kezilas et al. (2014) suggest
that character transposition effects in LPD are most
likely caused by a deficit specific to coding the
letter position and is evidenced by an interaction
between the orthographic and visual analysis stages
of reading. To this end, more recently Marcet et al.
(2019) managed to significantly reduce migration
errors by either altering letter contrast or presenting
letters to the young adult sequentially.

To dyslectic children not all letter positions are
equally impaired as medial letters in a word are by
far more vulnerable to reading errors compared to
the first and last characters of the word (Friedmann
and Gvion, 2001). Children with LPD have high
migration errors where the transposition of letters
in the middle of the word leads to another word,
for example, slime–smile or cloud–could. On the
other hand, not all reading errors in cases of se-
lective LPD are migratable and are evidenced by
words read without a lexical sense e.g., slime–silme.
Intriguingly, increasing the word length does not
elevate the error rate, and moreover, shorter words
that have lexical anagrams are prone to a larger
proportion of migration errors compared to longer
words that possess no-anagram words. A key ob-
servation for LPD is that although words read may
share all letters in most of the positions, they still
remain semantically unrelated.

Machine learning tools to classify dyslexia use
a large corpus of reading errors for training and
mainly aim to automate and substitute diagnostic
procedures expensively managed by human experts.
Lakretz et al. (2015) used both LDA and Naive
Bayes models and showed an area under curve
(AUC) performance of about 0.8 that exceeded the
quality of clinician-rendered labels. In their study,
Rello and Ballesteros (2015) proposed a statisti-
cal model that predicts dyslectic readers using eye
tracking measures. Employing an SVM-based bi-
nary classifier, they achieved about 80% accuracy.
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Instead, our approach applies deep learning to
the task of restoring LPD inline that we further for-
mulate as a sequence transduction problem. Thus,
given an input verse that contains shuffled-letter
words identified as transpositional errors, the objec-
tive of our neural model is to predict the originat-
ing unshuffled words. We use language similarity
between predicted verses and ground-truth target
text-sequences to quantitatively evaluate our model.
Our main contribution is a concise representation
of the input verse that scales up to moderate an
exhaustive set of LPD permutable data.

2 Anagram Matrix

Using a colon notation, we denote an input verse to
our model as a text sequence w1:n = (w1, . . . , wn)
of n words interchangeably with n collections of
letters l1:n = (l

(1)
1:|w1|, . . . , l

(n)
1:|wn|). We generate mi-

grated word patterns synthetically by anchoring
the first and last character of each word and ran-
domly permuting the position of the inner letters
(l
(1)
2:|w1|−1, . . . , l

(n)
2:|wn|−1). Thus given a word with

a character length |l(i)|, the number of possible
unique transpositions for each word follows t1:n =
(|l(1)|!, . . . , |l(n)|!). Next, we extract a migration
amplification factor k = argmaxni=1 ti that we ap-
ply to each word in an input verse independently
and form the sequence m1:k = (m1, . . . ,mk).
Word length commonly used in experiments of pre-
vious LPD studies averages five letters and ranges
from four to seven letters long, hence migrating
to feasible 2, 6, 24, and 120 letter substitutions,
respectively. We note that words with 1, 2, or 3
letters are held intact and are not migratable.

when forty winters shall besiege thy brow

wehn fotry wenitrs sahll bseeige thy borw
when froty winrtes slhal begseie thy borw
wehn fotry wrenits slahl begisee thy borw
when forty wtenirs shall begeise thy brow
when froty wtneirs shall bigeese thy brow
when ftory weinrts sahll bgiesee thy borw
wehn frtoy wirtens slhal bisgeee thy borw
wehn froty wterins slahl beeisge thy brow
when froty wtiners shlal beesgie thy borw
wehn frtoy wnetris shall beisege thy borw

Table 1: A snapshot of letter-position migration pat-
terns in the form of an anagram matrix. The unedited
version of the text sequence is highlighted on top.

To address the inherent semantic unrelatedness
between transpositioned words, we define a two-
dimensional migration-verse array in the form of an

anagram matrix A = [m
(1)
1:k; , . . . , ;m

(n)
1:k ] ∈ Rk×n,

where m(i) are column vectors, [·; ·] is column-
bound matrix concatenation, and k and n are the
transposition and input verse dimensions, respec-
tively. In Table 1, we render a subset of an anagram
matrix drawn from a target verse with a maximal
word length of seven letters. The anagram matrix
founds an effective context structure for a two-pass
embedding training, and our training dataset thus
reconstructs on the basis of a collection of anagram
matrices with varying dimensions.

3 LPD Embeddings

Models for learning word vectors train locally on a
one-dimensional context window by scanning the
entire corpus (Mikolov et al., 2013). Through eval-
uation on a word analogy task, these models cap-
ture linguistic regularities as linear relationships be-
tween word embeddings. Mikolov et al. (2013) pro-
posed the skip-gram and continuous-bag-of-words
(CBOW) neural architectures with the objective to
predict the context of the target word and the target
word given its context, respectively. Notably LPD
migrating words tend mostly outside the English
vocabulary and thus pretrained word embeddings
on large corpora are of limited use in our system. 1
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Figure 1: A two-dimensional context window of size
two drawn from outside context cells of an anagram ma-
trix. The center words are shown in gray for both the
normal by-row {wt,t−2, . . . , wt,t+2} and transposed
column-wise {wt−2,t, . . . , wt+2,t} forms of feeding
our neural network.

While the essence of our task is formalized as
verse simplification, mending LPD relies on robust
discovery of word similarities along both the mi-
gration and verse axes of the anagram matrix. To
this extent, we reshape the context window to train
word embeddings from one to a two-dimensional
array. In Figure 1, we show a bi-dimensional con-

1https://nlp.stanford.edu/projects/glove/
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text window of size two that is a visible subset
drawn from outside context cells of an anagram ma-
trix. Learning word vectors for LPD is a two-pass
process in our model. First, the context window
W feeds our neural network row-by-row for each
transpositioned verse, and then follows by iterating
migration vectors m(i) in W T as inputs.

4 Model

Our task is inspired by recent advances in neural
machine translation (NMT). NMT architectures
have shown state-of-the-art results in both the form
of a powerful sequence model (Sutskever et al.,
2014; Cho et al., 2014; Bahdanau et al., 2015) and
more recently, the cross-attention ConvS2S (El-
bayad et al., 2018) and the self-attention based
transformer (Vaswani et al., 2017) networks. Given
an unintelligible diction of shuffled-letter words,
our model aims to output a verse that preserves the
semantics of the input, and uses the transformer
that outperforms both recurrent and convolutional
configurations on many language translation tasks.

ଶଵ  ଶଵ 

word embeddings

feed-forward network

shared self-attention

softmax

ଶଵ 

Figure 2: Transformer architecture overview (encoder
path shown in blue, decoder in brown).

Stacked with several network layers, the trans-
former architecture only relies on attention mech-
anisms and entirely dispensing with recurrence
(Hochreiter and Schmidhuber, 1997; Chung et al.,
2014). In Figure 2, we show a synoptic rendition
of the transformer. Its inputs consist of a source
verse with potentially letter-transpositioned words
xi, and a ground-truth target verse of words with
unshuffled letters yi. The transformer encoder and
decoder modules largely operate in parallel and
provide for a source-to-target attention communi-
cation, and a softmax layer operates on the decoder
hidden-state outputs to produce predicted words ŷi.
In LPD, source and target verses are consistently of
the same word count n, however, copying tokens
from the source over to predictions is inconsequen-

tial to the quality of repairing reading errors due to
extensive out-of-vocabulary non-migrating words.

5 Setup

To quantitatively evaluate our LPD transduction ap-
proach, we chose to mainly report n-gram BLEU
precision (Papineni et al., 2002) that defines the lan-
guage similarity between a predicted text sequence
and the ground-truth reference verse. In the BLEU
metric, higher scores indicate better performance.

5.1 Corpus

Rather than clinical reading tests, we used the Son-
nets by William Shakespeare (Shakespeare, 1997).
This is motivated by the apostrophe-rich data that
forces left-out letters. The raw dataset comprises
2,154 verses that range from four to fifteen word
sequences. In Figure 3, we show the distribution
of word length across the dataset, as 18,858 unique
tokens are of up to seven-letter long inclusive and
take about 62 percentage points of the entire corpus
words. To conform to preceding LPD research, we
conducted a cleanup step that removes all words of
eight letters or more from the dataset. We hypoth-
esize that evaluating LPD on a single word basis
lets us perform this step without loss of generality.

0

2000
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8000

1 2 3 4 5 6 7 8 9 1011121314151617
Word Letter Count

Figure 3: Distribution of word letter count across
unique tokens of the Shakespeare Sonnets dataset.

We then transform each verse of the Sonnets to
an anagram matrix representation A. The verse
word with the maximal letters has a set of distinct
traspositions while words of lesser letters are shuf-
fled with repetition (Table 1). In Figure 4, we show
the distribution of anagram matrices across the en-
tire Shakespeare Sonnets dataset, with a migration
amplification factor k ∈ {1, 2, 6, 24, 120} and a
cleaned up verse that spans two to thirteen words.
Evidently most prominent tiles are of words with
seven letters and consist of verse sizes between
seven to nine words. Concatenating the rows of all
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the anagram matrices presents a sixtyfold extended
shape of our LPD training dataset that has 130,021
text sequences, along with source and target vocab-
ularies of 173,575 and 3,147 tokens, respectively.
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Figure 4: Distribution of anagram matrices across the
verse collection of the Shakespeare Sonnets dataset.

5.2 Training

We used PyTorch (Paszke et al., 2017) version 1.0
as our deep learning platform for training and in-
ference. PyTorch supports the building of effective
neural architectures for NLP task development.
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Figure 5: Aided by using our anagram matrix approach,
migrated and non-migrated embeddings shown to pre-
serve unedited input similarity. Presented in seven clus-
ters produced by k-means (R Core Team, 2013).

We incorporated in our framework the annotated
PyTorch implementation of the transformer (Rush,
2018) and modified it to accommodate our LPD
dataset. Multi-head attention was configured with
h = 8 layers and a model size dmodel = 512, and
the query, key, and value vectors were set uniformly
to dmodel/h = 64. The inner layer of the encoder
and the decoder had dimensionality dff = 2, 048.
In Figure 5, we show permuted embeddings retain-
ing input semantics by using our anagram matrix

concept. The presence of replicated words in vector
space owes to the transformer built-in learned po-
sitions of input embeddings. We chose the Adam
optimizer (Kingma and Ba, 2014) with a varied
learning rate and a fixed model dropout of 0.1, us-
ing cross-entropy loss and label smoothing for regu-
larization. Figure 6 reviews epoch-loss progression
in training and validating our model.
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Figure 6: Epoch-loss progression in training and vali-
dation. Loss descent subsides near the seventh epoch.

6 Results

We ran our model inference on a split test set that
comprises randomly selected rows sampled from
the entire collection of anagram matrices and fur-
ther excluded from the train set. We postulate that
the use of matrix columns along the migration axis
are only beneficial for embedding training.

Context Window BLEU-1 BLEU-2 BLEU-3 BLEU-4

one-dimensional 36.8 20.9 13.0 8.3
two-dimensional 40.6 23.7 14.7 8.9

Table 2: Model performance using n-gram BLEU mea-
sures at a corpus level on our augmented Sonnets test-
set for repairing letter transpositions. Scores shown are
contrasted between the use of one and two dimensional
context window for training word embeddings.

In Table 2, we report corpus-level n-gram BLEU
scores of our transformer-based model for inline
transduction of LPD reading patterns. Uniformly a
two-dimensional context window for training em-
beddings boosts our performance by about ten per-
centage points on average compared to the one-
dimensional window. As expected, BLEU scores
decline exponentially when we increase n-gram,
from 40.6 for BLEU-1 down to 8.9 for BLEU-4.

While BLEU scores the output by counting n-
gram matches with the reference, we also evaluated
our model using SARI (Xu et al., 2016), a novel

153



metric that correlates with human judgments and
designed to specifically analyze text simplification
models. SARI principally compares system output
against both the reference and input verse and re-
turns an arithmetic average of n-gram precisions
and recalls of addition, copy, and delete rewrite
operations. 2 Table 3 summarizes SARI and aver-
age BLEU measures of our model. Scores appear
fairly correlated with a slight edge in favor of SARI
that correctly rewards models like ours which make
changes that simplify input verses.

Context Window SARI BLEU

one-dimensional 21.2 19.8
two-dimensional 23.7 22.0

Table 3: Model performance using automatic evalua-
tion measures of SARI and BLEU at a corpus level on
our augmented Sonnets test-set. Scores are contrasted
between the use of one and two dimensional context
window for training word embeddings.

The transformer is known to be bound by a fixed-
length context and thus tends to split a long context
to segments that often ignore semantic boundaries.
This led to the conjecture that context fragmenta-
tion may impact our model performance adversely.
The novel transformer-xl network (Dai et al., 2019)
that learns dependencies across subsequences using
recurrence, might be the more effective architecture
to perform our task.

7 Discussion

To conduct a baseline evaluation of our model, we
hand curated a corpus made of LPD screening tests.
Targeted screeners are brief performance measures
intended to classify at-risk individuals. To the ex-
tent of our knowledge, Lakretz et al. (2015) used
for their experiments the largest known screener
dataset to date that consisted of 196 loose target
words in Hebrew. Correspondingly, we assembled
a screening corpus of 196 English words that are
prone to erroneous reading. In our system, these
words are recast into a set of anagram matrices,
each however reduced to a vector ∈ Rk×1. Further
downstream, we represented context-less words as
one-hot vectors. As expected, on the task of rein-
stating screener data our sequence model achieved
a fairly low 1-gram BLEU score of 9.2. Counter to
nearly 4.4X improvement on the Sonnets dataset,
when trained using a 2D context window.

2https://github.com/cocoxu/simplification

Compared to almost two orders of magnitude
larger Sonnets dataset, the screening corpus was
too small and thus overfitting our transformer-
based neural model. In addition, to effectively ex-
ploit our proposed anagram matrix representation,
rather than disjoint words we require to train our
sequence model on a dataset comprised of verses or
sentences that provides essential context for learn-
ing embeddings.

In a practical application framework, our pro-
posed model is rated on successful recovery from
LPD reading errors that transpire in a text sequence.
We envision our model already pretrained on mul-
tiple corpora, each extended to a collection of ana-
gram matrices. Every editing instance follows with
a dyslectic individual who reads and utters a verse
at a time from a text document. Fed to the network,
the verse is then inferred by our model that returns
an amended text sequence the user can compare
side-by-side on his display. It is key for the system
we presented to perform responsively.

8 Conclusions

In this paper, we presented word-level neural sen-
tence simplification to aid letter-position dyslectic
children. We modeled the task after a monolingual
machine translation and showed the representation
effectiveness of a two-dimensional context window
to boost our model performance. Future avenues
of research include using our model in real-world
restoration scenarios of LPD, and exploring the ef-
ficacy of the transformer-xl architecture to a non
language modeling task like ours. We look forward
to leverage the exceptional ability of transformer-xl
to perform character-level language modeling and
improve mending LPD.
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Abstract
Identifying the reasons for antibiotic adminis-
tration in veterinary records is a critical compo-
nent of understanding antimicrobial usage pat-
terns. This informs antimicrobial stewardship
programs designed to fight antimicrobial resis-
tance, a major health crisis affecting both hu-
mans and animals in which veterinarians have
an important role to play. We propose a docu-
ment classification approach to determine the
reason for administration of a given drug, with
particular focus on domain adaptation from
one drug to another, and instance selection to
minimize annotation effort.

1 Introduction

Microorganisms — such as bacteria, fungi, and
viruses — were a major cause of death until the
discovery of antibiotics (Demain and Sanchez,
2009). However, antimicrobial resistance (“AMR”)
to these drugs has been detected since their intro-
duction to clinical practice (Rollo et al., 1952), and
risen dramatically over the last decade to be con-
sidered an emergent global phenomenon and major
public health problem (Roca et al., 2015). Com-
panion animals are capable of acquiring and ex-
changing multidrug-resistant pathogens with hu-
mans, and may serve as a reservoir of AMR (Lloyd,
2007; Guardabassi et al., 2004; Allen et al., 2010;
Graveland et al., 2010). In addition, AMR is asso-
ciated with worse animal health and welfare out-
comes in veterinary medicine (Duff et al.; Johnston
and Lumsden). “Antimicrobial Stewardship” is
broadly used to refer to the implementation of a
program for responsible antimicrobial usage, and
has been demonstrated to be an effective means
of reducing AMR in hospital settings (Arda et al.,
2007; Pulcini et al., 2014; Baur et al., 2017; Cis-
neros et al., 2014). A key part of antimicrobial
stewardship is having the ability to monitor antimi-
crobial usage patterns, including which antibiotic

History: Examination: Still extremely
pruritic. There is no frank blood
visible. And does not appear to be
overt inflammation of skin inside EAC.
Laboratory: Assessment: Much im-
proved but still concnered there might
be some residual pain/infection. This
may be exac by persistent oilinesss
from PMP over the last week. Treat-
ment: Cefovecin 1mg/kg sc Owner
will also use advocate; Advised needs
to lose weight. To be 7kg Plan: Owner
may return to recheck in ten days at
completion of cefo duration.

Figure 1: Sample clinical note, in which the indication
of use for cefovecin would be EAR DISORDER

is given and the reason — or “indication” — for
its use. This data is generally captured within free
text clinical records created at the time of consult.
The primary objective of this paper is to develop
text categorization methods to automatically label
clinical records with the indication for antibiotic
use.

We perform this research over the VetCompass
Australia corpus, a large dataset of veterinary clini-
cal records from over 180 of the 3,222 clinical prac-
tices in Australia which contains over 15 million
clinical records and 1.3 billion tokens (McGreevy
et al., 2017). An example of a typical clinical note
is shown in Figure 1. We aim to map the indication
for an antimicrobial into a standardized format such
as Veterinary Nomenclature (VeNom) (Brodbelt,
2019), and in doing so, facilitate population-scale
quantification of antimicrobial usage patterns.

As illustrated in Figure 1, the data is domain
specific, and expert annotators are required to la-
bel the training data. This motivates the use of
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approaches to minimize the amount of annotation
effort required, with specific interest in adapting
models developed for one drug to a novel drug.

Previous analysis of this dataset has focused on
labeling the antibiotic associated with each clini-
cal note (Hur et al., 2020). In that study, it was
found that cefovecin along with amoxycillin clavu-
lanate and cephalexin were the top 3 antibiotics
used. As cefovecin was the most commonly used
antimicrobial with the most critical significance for
the development of AMR, it was targeted for addi-
tional studies to understand the specific indications
of use. The indication of use was manually labeled
in 5,008 records. However, there were still over
79,000 clinical records with instances of cefovecin
administration that did not have labels, in addition
to over 1.1 million other clinical records involving
other antimicrobial drug administrations missing
labels.

Having only a single type of antimicrobial agent
labeled causes challenges for training a model to
classify the indication of use for other antimicro-
bials, as antimicrobials vary in how and why they
are used, with the form of drug administration
(oral, injected, etc.) and different indications of
use creating distinct contexts that can be seen as
sub-domains. Therefore, models that allow for the
transfer of knowledge between the sub-domains
of the various antimicrobials are required to effec-
tively label the indication of use.

To explore the interaction between learning
methods and the resource constraints on labeling,
we develop models using the complete set of labels
we had available, but also models derived using
only labels that can be created within two hours,
following the paradigm of Garrette and Baldridge
(2013).

Specifically, our work explores methods to im-
prove the performance of classifying the indica-
tion for an antibiotic administration in veterinary
records of dogs and cats. In addition to classi-
fying the indication of use, we explore how data
selection can be used to improve the transfer of
knowledge derived from labeled data of a single
antimicrobial agent to the context of other agents.
We also release our code, and select pre-trained
models used in this study at: https://github.

com/havocy28/VetBERT.

2 Related Work

Clinical coding of medical documents has been
previously done with a variety of methods (Kir-
itchenko and Cherry, 2011; Goldstein et al., 2007;
Li et al., 2018a). Additionally, classifying dis-
eases and medications in clinical text has been ad-
dressed in shared tasks for human texts (Uzuner
et al., 2010). Previous methods have also been ex-
plored for extracting the antimicrobials used, out
of veterinary prescription labels, associated with
the clinical records (Hur et al., 2019), and labeling
of diseases in veterinary clinical records (Zhang
et al., 2019; Nie et al., 2018) as well exploring
methods for negation of diseases for addressing
false positives (Cheng et al., 2017; Kennedy et al.,
2019). Our work expands on this work by link-
ing the indication of use to an antimicrobial being
administered for that diagnosis.

Contextualized language models have recently
gained much popularity due to their ability to
greatly improve the representation of texts with
fewer training instances, thereby transferring more
efficiently between domains (Devlin et al., 2018;
Howard and Ruder, 2018). Pre-training these lan-
guage models on large amounts of text data spe-
cific to a given domain, such as clinical records
or biomedical literature, has also been shown to
further improve the performance in biomedical do-
mains with unique vocabularies (Alsentzer et al.,
2019; Lee et al., 2019). These models can also
accomplish many tasks in an unsupervised man-
ner. For example, Radford et al. (2019) showed
that free text questions could be fed through a lan-
guage model and generate the correct answer in
many cases. In our experiments, we demonstrate
the usefulness of contextualized language models
by pre-training BERT on a large set of veterinary
clinical records, and further explore its usefulness
for domain adaptation through instance selection.

Domain adaptation is a task which has a long
history in NLP (Blitzer et al., 2006; Jiang and Zhai,
2007; Agirre and De Lacalle, 2008; Daumé III,
2007). There has been further work demonstrat-
ing the usefulness of reducing the covariance be-
tween domains through adversarial learning (Li
et al., 2018b). More recently, it has been shown
that domain adversarial training can be effectively
done using contextualized models, such as BERT,
through using a two-step domain-discriminative
data selection (Ma et al., 2019). We adapt these
methods to our task to create a more generalizable
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Figure 2: Distribution of labels from the SOURCE and TARGET domains (log scale). The Top-3 labels are noted
below each chart.

model that can adapt between domains more effec-
tively.

Previous experiments have used active learning
to improve clinical concept extraction with weak
supervision (Kholghi et al., 2016). Our work ex-
pands on this work through combining approaches
to domain adaptation and the effective use of a
small number of labels through the development of
additional instance selection methods.

3 Dataset

3.1 Creating a set of terms

Standardized terminologies such as VeNom and
SNOMED (NIH, 2019) have been created for med-
ical diagnosis codes. While SNOMED has a vet-
erinary extension, VeNom was created specifically
for veterinary clinical text and can be mapped back
to SNOMED, and is also part of the Unified Medi-
cal Language System (UMLS) (Bodenreider, 2004)
used widely within human medicine. Therefore,
VeNom codes are used here to create labels for the
indication of drug administration (Brodbelt, 2019).

The VeNom codes we adopt are not fully com-
prehensive; they are a subset of the codes used by
(O’Neill et al., 2019) which map specific VeNom
codes to more generalized codes. These codes
were provided by the Royal College of Veterinary
Medicine for this study. In this subset of terms,
specific labels such as EXTRACTION OF UPPER

LEFT PREMOLAR 4 are simply mapped to DENTAL

DISORDER. There were a total of 52 of these terms,

of which 38 actually occur in our target dataset.

3.2 Data sub-domains
We consider the individual antibiotic agents in our
dataset to be sub-domains, as they are adminis-
tered differently (e.g. orally vs. injectable), and
in response to different indications. In our experi-
ments, we target cefovecin (injectable), amoxycillin
clavulanate (oral or injectable), and cephalexin
(oral). In addition, cefovecin and amoxycillin clavu-
lanate are used broadly for many indications, while
cephalexin is primarily used for skin infections.

3.3 Extracting and labeling the data
A corpus of 5,008 clinical records, where patients
had been given cefovecin, were sourced from Vet-
Compass Australia using methods previously de-
scribed in Hur et al. (2019). The indication of use
for cefovecin was then labeled by a veterinarian.

A subset of 100 of these annotations were la-
beled by another veterinarian and used to calculate
agreement, which was measured as Cohen’s Kappa
= 0.78, with raw agreement of 0.80. An additional
105 and 104 records were randomly selected for
each of cephalexin and amoxycillin clavulanate,
respectively, and annotated by the same two veteri-
narians.

The variance between the distribution of indi-
cations for cefovecin, cephalexin, and amoxycillin
clavulanate is presented in Figure 2.

An additional set of 3000 unannotated clinical
notes was sampled, comprising 1000 clinical notes
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for each of the three antibiotics of interest. We
use these to train a domain classification filter (to
identify which antimicrobial is administered), and
for data selection. Any notes with fewer than 5
tokens were removed from the corpus.

3.4 Training and development sets
The training of the indication-of-use classifier was
performed using the dataset pertaining to cefovecin,
based on a 90:10 split of train and development
data. In evaluation, we will refer to the develop-
ment set as “SOURCE”.

The labeled datasets for amoxycillin clavulanate
and cephalexin are used to test cross-domain ac-
curacy, and are referred to as “TARGET Y” for
cephalexin and “TARGET Z” for amoxycillin clavu-
lanate. The test data used for “TARGET Y” and
“TARGET Z” were fixed in all tests and strictly dis-
joint from any training.

The estimated number of records that could be
annotated within two hours was 250, based on the
annotation of the three datasets. To assess the set-
ting of having only two hours of annotation time, a
subset of 250 records was sampled and annotated
for for training and taken only from the “SOURCE”
data according to one of the various instance selec-
tion methods described in the Approach section.

4 Approach

In this section we detail our approach, as illustrated
in Figure 3.

Pretraining
In order to fine-tune our model to veterinary clini-
cal notes, we took ClinicalBERT (Alsentzer et al.,
2019) and repeated the pretraining steps as de-
scribed by Devlin et al. (2018) using the entire cor-
pus of 15 million clinical notes from VetCompass
Australia. We refer to this model as “VetBERT”.

Training classifiers
A baseline classifier for indication of antibiotic ad-
ministration was trained using an LSTM (“LSTM”:
Gers et al. (1999)) with a 100 dimension embed-
ding layer with 0.3 dropout, implemented in keras
(Chollet et al., 2015). We also use a baseline BERT
model using BERT-Base (“BERT”), in addition to
a model based on VetBERT. Both the BERT and
VetBERT classifiers were trained using an Adam
optimizer, maximum of 512 word pieces, batch
size of 32, softmax loss, and Learning Rate of 2e-
5. Models trained on the full training set were
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Figure 3: Outline of the proposed approach.

trained for 3 epochs, while models based on lim-
ited training data (see Section 4.3) were trained for
60 epochs. All models were tested with 5 different
random seeds, and results averaged across them.

Table 1 shows the performance of VetBERT
and the two baseline methods both in-domain
(“SOURCE”), and for the two out-of-domain an-
timicrobials using the training data from SOURCE.

While the performance of VetBERT exceeded
the interannotator agreement of 78% in-domain,
the out-of-domain performance over TARGET Z in
particular was substantially less, at 65.4% accuracy.
To improve cross-domain performance, we add in-
stance selection and dataset manipulation methods,
as described below.

4.1 Instance selection
We hypothesize that filtering out training data that
is dissimilar to the target domain will improve per-
formance, despite the lower volume of training data.
To this end, we experiment with domain-based in-
stance selection.

We model domain similarity using a domain clas-
sification model, trained on the domain (i.e. ad-
ministered antimicrobial) associated with a given
medical record. Note that this is directly avail-
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SOURCE TARGET Y TARGET Z

LSTM 51.5±3.5 47.4±3.4 29.2±5.0
BERT 73.4±1.1 71.0±1.3 58.1±1.4
VetBERT 80.1±0.7 81.5±2.1 65.4±1.5
VetBERT+A 80.9±0.6 83.4±1.5 68.1±2.1
VetBERT+M 80.5±0.6 80.2±1.3 65.8±2.6
VetBERT+M+A 81.2±0.6 82.1±1.8 66.5±1.7
VetBERT+D 78.3±0.7 79.1±2.6 66.7±1.5
VetBERT+D+A 80.5±0.5 83.1±1.4 68.5±2.2
VetBERT+D+M 78.5±0.8 78.3±3.5 66.7±0.9
VetBERT+D+M+A 80.3±0.4 82.7±2.1 67.5±2.2

Table 1: Predictive accuracy (%) of reason for antimicrobial administration in the SOURCE and TARGET domains,
trained on all available source-domain training data. Notation: +D = domain-based instance selection, +M =
mention boundary tagging, +A = data augmentation

able as an artefact of the dataset construction, and
doesn’t require any manual annotation. Specifi-
cally, we identify instances of source domain X
(cefovecin) for which we have labeled data, which
are most similar to instances from target domains Y
and Z, i.e., records in which cephalexin or amoxy-
cillin clavulanate, respectively, were administered.
Determination of similarity is based on the proba-
bilistic output of a domain classifier over the three
domains. In Figure 3, we label this subset of the
training data “X′

YZ”, reflecting the fact that it is a
subset of X similar to Y and Z. This subset of X is
then used to train a second classifier focused on the
primary task, namely the reason for administering
an antibiotic.

To build the domain classification model, we
follow the procedure of Ma et al. (2019), first train-
ing a domain classifier for 1 epoch, based on the
datasets of 1000 instances each of the three do-
mains. We used the same model architecture as
the VetBERT model, with a softmax classification
layer. This model was then applied to the 5,008
training instances for cefovecin, which were sorted
in increasing score over domain X (i.e. in decreas-
ing order of similarity to the target domains), the
Top-1000, 2000, 3000, or 4000 records were se-
lected, and the VetBERT model was trained over
that subset of the training data. The best results
were found to occur for 3000 samples. Models
with domain-based instance selection are indicated
with “+D” in Table 1.

The domain classifier filtering method results in
an improvement for TARGET Z (66.7%), but drop
in accuracy for TARGET Y (79.1%).

4.2 Automated dataset manipulation
We also explore the use of dataset manipulation, in
two forms: (1) mention boundary tagging; and (2)
data augmentation.

4.2.1 Mention Boundary Tagging
To sensitize the model to the specific drug of inter-
est, we add special learnable embedding vectors to
the start and end of each antibiotic mention, based
on the findings of Logeswaran et al. (2019) and
Wu et al. (2019). Similar to Wu et al. (2019), we
used special tokens to mark the boundaries of the
tokens that contained a partial string match for the
antibiotic of interest. This allows for the model
to attend to these tokens at every layer of the net-
work while training the classifier, and ideally bet-
ter generalize across antimicrobials. The partial
string matches were created by identifying strings
that contained the prefixes clav or amoxyclav for
amoxycillin clavulanate, ceph, rilex or kflex for
cephalexin, and conv or cefov for cefovecin. These
prefixes were sourced from a previous study explor-
ing mention detection of antimicrobials (Hur et al.,
2019). We signal the use of mention boundary
embeddings with “+M” in the results tables.

4.2.2 Data augmentation
Synonym-based data augmentation has been suc-
cessfully applied to contexts including word sense
disambiguation (Leacock and Chodorow, 1998),
sentiment analysis (Li et al., 2017), text classifica-
tion (Wei and Zou, 2019), and argument analysis
(Joshi et al., 2018).

We perform data augmentation on clinical notes
by replacing synonyms using WordNet (Fellbaum,
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SOURCE TARGET Y TARGET Z

VetBERT+rank[linear] 74.3±0.2 76.6±3.0 66.9±2.2
VetBERT+rank[linear]+A 75.8±1.3 81.0±2.6 63.7±1.4
VetBERT+rank[linear]+M 73.4±0.9 77.1±1.9 65.9±2.4
VetBERT+rank[linear]+M+A 75.7±0.8 81.0±2.8 63.8±3.5
VetBERT+rank[exp] 68.3±2.1 66.5±2.1 58.1±1.5
VetBERT+rank[exp]+A 76.6±0.3 76.7±2.4 65.4±1.0
VetBERT+rank[exp]+M 68.9±2.0 66.7±1.5 57.9±2.1
VetBERT+rank[exp]+M+A 76.9±0.2 77.3±2.3 64.4±1.5
VetBERT+rank[rand] 73.5±1.8 75.4±2.3 61.9±2.8
VetBERT+rank[rand]+A 74.8±1.3 78.9±3.1 64.2±2.5
VetBERT+rank[rand]+M 73.9±1.2 76.2±2.8 62.1±1.1
VetBERT+rank[rand]+M+A 74.9±0.4 80.6±1.3 63.1±2.6

Table 2: Predictive accuracy (%) of reason for antimicrobial administration over the SOURCE and TARGET do-
mains, trained on 2-hours’ worth of labeled data with the three domain similarity selection methods over the top-
3000 from X′

YZ of random sampling (“+rank[rand]”), modified exponential sampling (“+rank[exp]”), and linear
step-wise sampling (“+rank[linear]”).

SOURCE TARGET Y TARGET Z

VetBERT+rand 70.9±1.5 76.2±1.6 58.0±2.0
VetBERT+rand+A 69.7±0.4 75.8±1.1 59.6±0.0
VetBERT+rand+M 70.5±0.1 77.4±0.6 57.4±2.4
VetBERT+rand+M+A 69.9±0.9 77.4±0.6 59.6±1.7
VetBERT+rank[linear] 74.3±0.2 76.6±3.0 66.9±2.2
VetBERT+rank[linear]+A 75.8±1.3 81.0±2.6 63.7±1.4
VetBERT+rank[linear]+M 73.4±0.9 77.1±1.9 65.9±2.4
VetBERT+rank[linear]+M+A 75.7±0.8 81.0±2.8 63.8±3.5
VetBERT+cluster 73.4±1.1 68.6±1.3 63.0±2.1
VetBERT+cluster+A 73.9±0.1 75.2±2.7 67.8±0.7
VetBERT+cluster+M 73.3±0.5 66.2±0.7 62.5±1.4
VetBERT+cluster+M+A 72.8±0.6 75.2±0.0 63.5±5.4

Table 3: Predictive accuracy (%) of reason for antimicrobial administration in the SOURCE and TARGET do-
mains, trained on 2-hours’ worth of labeled data, with random selection (“+rand”), linear step-wise sampling
(“+rank[linear]”; results duplicated from Table 2), and clustering (“+cluster”).

2012), based on random sampling. In this way, we
create up to two additional training instances1 in
addition to the original instance, potentially tripling
the amount of training data. We signal the use of
data augmentation with “+A” in the results tables.

4.2.3 Results for dataset augmentation
methods

Mention boundary tagging and data augmentation
generally led to improvements in results both in-

1In the instance of there being no synonym substitutes for
any words in the original clinical note, no additional training
instances are generated.

and out-of-domain, as seen in Table 1. The highest
accuracy over the source domain 81.2% was ob-
tained with both mention boundary tagging and
data augmentation (without instance selection),
while the best out-of-domain results were obtained
with data augmentation (with or without instance
selection).

4.3 Instance selection under two
annotation-hour constraint

All results to date have been based on the gener-
ous supervision setting of 3000 instances, or ap-
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proximately 24 hours’ annotation time. One natu-
ral question, inspired by the work of Garrette and
Baldridge (2013) in the context of part-of-speech
tagging in low-resource languages, is whether sim-
ilar results can be achieved with a more realistic
budget of expert annotation time. Specifically, we
assume access to only 2 hours of expert annota-
tor time, which translates to the annotation of 250
clinical notes. We propose three approaches to in-
stance selection under this constraint: (1) domain
similarity selection; and (2) clustering. We contrast
these with a random selection baseline (“+rand” in
our results tables).

4.3.1 Domain similarity selection
Our first approach is based on the instance selection
method from Section 4.1, except that we now select
only 250 instances from SOURCE for annotation,
based on their similarity with the target domain (as
distinct from the top-3000 instances in Table 1).
That is, we take the top-3000 instances from X′

YZ
and perform additional sub-sampling, in the form
of: (a) random sampling (“+rank[rand]”);2 (b) mod-
ified exponential sampling (“+rank[exp]”); or (c)
linear step-wise sampling (“+rank[linear]”).

Modified exponential sampling is implemented
by mapping 3000 onto an exponential scale of 250
steps over the 3000 results, rounding to the near-
est integer, and additionally rounding up in the
case that there is a collision with a value earlier
in the series. That is, instead of the (rounded) se-
ries being 0, 0, 0, ..., 2879, 2938, 2999 it becomes
0, 1, 2, ..., 2879, 2938, 2999.

Linear step-wise sampling involves separating
the domain space evenly, and taking every nth sam-
ple where n = blen(N)/xc where x is the number
of labeled instances (= 250) and N is the total num-
ber of samples (= 3000).

Results for the different instance selection meth-
ods are presented in Table 2. The best-performing
method is step-wise sampling, achieving out-of-
domain accuracy which is competitive with the
results from Table 1 over 12 times the amount of
training data.

4.3.2 Clustering-based instance selection
Our second approach is based on the intuition that
the diversity in the training data will optimize per-
formance. We achieve this by clustering the source

2Note that this differs from +rand in that it is over the
top-3000 instances, whereas +rand is over all 5008 annotated
instances.

domain instances, and selecting prototypical in-
stances from each cluster.

First, we generate a representation of each
source-domain clinical note using the pretrained
VetBERT model, based on the [CLS] token in
the second-last layer of the model. Next, we cluster
the instances into 250 clusters using k-means++
(Arthur and Vassilvitskii, 2006), and select the in-
stance closest to the centroid for each cluster. This
method is labeled “+cluster” in Table 3.

Clustering results in the highest accuracy for
TARGET Z of 67.8%, but weaker results for TAR-
GET Y.

5 Discussion

5.1 Pretraining Improvements

Pretraining BERT to the veterinary domain us-
ing the VetCompass Australia corpus showed the
most dramatic improvement in our experiments.
This was demonstrated by marked improvement
over other baselines, without any additional steps
(Table 1: VetBERT vs. BERT and LSTM). How-
ever, even with the pretraining used to create
VetBERT, there was significant degradation in per-
formance across the domains where there were
fewer training instances (VetBERT in Table 1 vs.
VetBERT+rand in Table 3).

5.2 Sub-domain transfer performance

The relative performance over TARGET Z as
compared to TARGET Y when transferring from
SOURCE was generally poor (Tables 1 and 3). This
could be due to TARGET Y sharing more similar-
ities with SOURCE, along with the more skewed
class distribution in TARGET Y (Figure 2), poten-
tially making it an easier classification task. More
analysis is needed to understand this effect.

5.3 Optimizing for two hours of annotation
time

When optimizing for two hours of annotation time,
there were consistent improvements with the in-
stance selection methods, compared to random se-
lectin (Table 3: VetBERT+rand vs. others).

5.4 Dataset manipulation methods

The results for data augmentation and the ad-
dition of mention boundary embeddings were
not as clear, in that they sometimes resulted in
improvements and sometimes did not (Table 2
and 3: +A and +M vs. others). The clustering
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method generally performed better with data
augmentation and worst with mention boundary
embeddings (Table 3: VetBERT+cluster+A
vs. VetBERT+cluster+M+A and
VetBERT+cluster+M).

5.5 Limitations

The primary limiting factor was also the motivation
of this study, namely the difficulty in obtaining suf-
ficient high-quality annotations to perform accurate
analysis of the model performance. We were also
limited in that the instance selection was performed
retrospectively over the 5008 annotated instances,
and we were limited to the instances provided for
the SOURCE domain, rather than a larger sample
that could be obtained from VetCompass. There are
also additional domains of data within this corpus
that should be evaluated, such as records from spe-
cialty practices vs. records from general practices.
This was shown to result in significant degrada-
tion of performance by Nie et al. (2018), and is a
potential area for future research.

6 Conclusions and future work

In conclusion, we proposed a range of methods to
transfer knowledge derived from labeled data for
one antimicrobial agent to other agents, consider-
ing the additional constraint of a limited annotation
resource time of two hours. While the in-domain
accuracy of 83% exceeds the raw inter-annotator
agreement of 80% (Cohen’s Kappa = 0.78) on the
source domain, transfer to other classes is still sub-
stantially lower with an average of 76% between
the two classes. This shows that while the accuracy
on classifying diseases is on par with human clas-
sifications for a single disease, there is still room
for improvement on transferability to new data sub-
domains.

The primary question is whether the labels cre-
ated are good enough to report the reason for an-
tibiotic administration in epidemiological reporting
and antimicrobial stewardship guidelines. While
the labels for why cefovecin was administered were
better than the current standard of using expert an-
notations, our results indicate that accuracy varies
substantially depending on the antibiotic being ad-
ministered, and testing of the accuracy for each
individual antibiotic should be evaluated prior to
reporting the results based on labels generated by
any model.

In future research, these methods could be im-

proved through utilization of available resources
such as UMLS or Drugbank to identify clinical use
guidelines for antibiotics, to allow for training or
adapting a model with few or no annotations. Ad-
ditionally, further work is required to apply these
models into a data pipeline to create labels for Vet-
Compass data to enable analysis of the key reasons
for antimicrobial administration in veterinary hos-
pitals across Australia.
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Abstract

Much of biomedical and healthcare data is
encoded in discrete, symbolic form such as
text and medical codes. There is a wealth
of expert-curated biomedical domain knowl-
edge stored in knowledge bases and ontolo-
gies, but the lack of reliable methods for learn-
ing knowledge representation has limited their
usefulness in machine learning applications.
While text-based representation learning has
significantly improved in recent years through
advances in natural language processing, at-
tempts to learn biomedical concept embed-
dings so far have been lacking. A recent fam-
ily of models called knowledge graph embed-
dings have shown promising results on general
domain knowledge graphs, and we explore
their capabilities in the biomedical domain.
We train several state-of-the-art knowledge
graph embedding models on the SNOMED-
CT knowledge graph, provide a benchmark
with comparison to existing methods and in-
depth discussion on best practices, and make
a case for the importance of leveraging the
multi-relational nature of knowledge graphs
for learning biomedical knowledge represen-
tation. The embeddings, code, and materials
will be made available to the community1.

1 Introduction

A vast amount of biomedical domain knowledge is
stored in knowledge bases and ontologies. For ex-
ample, SNOMED Clinical Terms (SNOMED-CT)2

is the most widely used clinical terminology in the
world for documentation and reporting in health-
care, containing hundreds of thousands of medical
terms and their relations, organized in a polyhierar-
chical structure. SNOMED-CT can be thought of
as a knowledge graph: a collection of triples con-
sisting of a head entity, a relation, and a tail entity,
denoted (h, r, t). SNOMED-CT is one of over a

1https://github.com/dchang56/snomed kge
2https://www.nlm.nih.gov/healthit/snomedct

hundred terminologies under the Unified Medical
Language System (UMLS) (Bodenreider, 2004),
which provides a metathesaurus that combines mil-
lions of biomedical concepts and relations under
a common ontological framework. The unique
identifiers assigned to the concepts as well as the
Resource Release Format (RRF) standard enable
interoperability and reliable access to information.
The UMLS and the terminologies it encompasses
are a crucial resource for biomedical and healthcare
research.

One of the main obstacles in clinical and biomed-
ical natural language processing (NLP) is the abil-
ity to effectively represent and incorporate domain
knowledge. A wide range of downstream applica-
tions such as entity linking, summarization, patient-
level modeling, and knowledge-grounded language
models could all benefit from improvements in our
ability to represent domain knowledge. While re-
cent advances in NLP have dramatically improved
textual representation (Alsentzer et al., 2019), at-
tempts to learn analogous dense vector represen-
tations for biomedical concepts in a terminology
or knowledge graph (concept embeddings) so far
have several drawbacks that limit their usability
and wide-spread adoption. Further, there is cur-
rently no established best practice or benchmark
for training and comparing such embeddings. In
this paper, we explore knowledge graph embedding
(KGE) models as alternatives to existing methods
and make the following contributions:

• We train five recent KGE models on
SNOMED-CT and demonstrate their advan-
tages over previous methods, making a case
for the importance of leveraging the multi-
relational nature of knowledge graphs for
biomedical knowledge representation.

• We establish a suite of benchmark tasks to
enable fair comparison across methods and
include much-needed discussion on best prac-
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tices for working with biomedical knowledge
graphs.

• We also serve the general KGE community by
providing benchmarks on a new dataset with
real-world relevance.

• We make the embeddings, code, and other ma-
terials publicly available and outline several
avenues of future work to facilitate progress
in the field.

2 Related Work and Background

2.1 Biomedical concept embeddings
Early attempts to learn biomedical concept embed-
dings have applied variants of the skip-gram model
(Mikolov et al., 2013) on large biomedical or clini-
cal corpora. Med2Vec (Choi et al., 2016) learned
embeddings for 27k ICD-9 codes by incorporating
temporal and co-occurrence information from pa-
tient visits. Cui2Vec (Beam et al., 2019) used an
extremely large collection of multimodal medical
data to train embeddings for nearly 109k concepts
under the UMLS.

These corpus-based methods have several draw-
backs. First, the corpora are inaccessible due to
data use agreements, rendering them irreproducible.
Second, these methods tend to be data-hungry and
extremely data inefficient for capturing domain
knowledge. In fact, one of the main limitations
of language models in general is their reliance on
the distributional hypothesis, essentially making
use of mostly co-occurrence level information in
the training corpus (Peters et al., 2019). Third,
they do a poor job of achieving sufficient concept
coverage: Cui2Vec, despite its enormous training
data, was only able to capture 109k concepts out of
over 3 million concepts in the UMLS, drastically
limiting its downstream usability.

A more recent trend has been to apply network
embedding (NE) methods directly on a knowledge
graph that represents structured domain knowl-
edge. NE methods such as Node2Vec (Grover and
Leskovec, 2016) learn embeddings for nodes in a
network (graph) by applying a variant of the skip-
gram model on samples generated using random
walks, and they have shown impressive results on
node classification and link prediction tasks on a
wide range of network datasets. In the biomedi-
cal domain, CANode2Vec (Kotitsas et al., 2019)
applied several NE methods on single-relation sub-
sets of the SNOMED-CT graph, but the lack of

comparison to existing methods and the disregard
for the heterogeneous structure of the knowledge
graph substantially limit its significance.

Notably, Snomed2Vec (Agarwal et al., 2019)
applied NE methods on a clinically relevant multi-
relational subset of the SNOMED-CT graph and
provided comparisons to previous methods to
demonstrate that applying NE methods directly on
the graph is more data efficient, yields better em-
beddings, and gives explicit control over the subset
of concepts to train on. However, one major limita-
tion of NE approaches is that they relegate relation-
ships to mere indicators of connectivity, discarding
the semantically rich information encoded in multi-
relational, heterogeneous knowledge graphs.

We posit that applying KGE methods on a knowl-
edge graph is more principled and should there-
fore yield better results. We now provide a brief
overview of the KGE literature and describe our
experiments in Section 3.

2.2 Knowledge Graph Embeddings

Knowledge graphs are collections of facts in the
form of ordered triples (h, r, t), where entity h
is related to entity t by relation r. Because knowl-
edge graphs are often incomplete, an ability to infer
unknown facts is a fundamental task (link predic-
tion). A series of recent KGE models approach link
prediction by learning embeddings of entities and
relations based on a scoring function that predicts
a probability that a given triple is a fact.

RESCAL (Nickel et al., 2011) represents rela-
tions as a bilinear product between subject and
object entity vectors. Although a very expressive
model, RESCAL is prone to overfitting due to the
large number of parameters in the full rank relation
matrix, increasing quadratically with the number
of relations in the graph.

DistMult (Yang et al., 2015) is a special case
of RESCAL with a diagonal matrix per relation,
reducing overfitting. However, by limiting linear
transformations on entity embeddings to a stretch,
DistMult cannot model asymmetric relations.

ComplEx (Trouillon et al., 2016) extends Dist-
Mult to the complex domain, enabling it to model
asymmetric relations by introducing complex con-
jugate operations into the scoring function.

SimplE (Kazemi and Poole, 2018) modifies
Canonical Polyadic (CP) decomposition (Hitch-
cock, 1927) to allow two embeddings for each en-
tity (head and tail) to be learned dependently.
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A recent model TuckER (Balažević et al., 2019)
is shown to be a fully expressive, linear model
that subsumes several tensor factorization based
approaches including all models described above.

TransE (Bordes et al., 2013) is an example of
an alternative translational family of KGE models,
which regard a relation as a translation (vector off-
set) from the subject to the object entity vectors.
Translational models have an additive component
in the scoring function, in contrast to the multiplica-
tive scoring functions of bilinear models.

RotatE (Sun et al., 2019) extends the notion of
translation to rotation in the complex plane, en-
abling the modeling of symmetry/antisymmetry,
inversion, and composition patterns in knowledge
graph relations.

We restrict our experiments to five models due
to their available implementation under a common,
scalable platform (Zhu et al., 2019): TransE, Com-
plEx, DistMult, SimplE, and RotatE.

3 Experimental Setup

3.1 Data
Given the complexity of the UMLS, we detail our
preprocessing steps to generate the final dataset.
We subset the 2019AB version of the UMLS to
SNOMED_CT_US terminology, taking all active
concepts and relations in the MRCONSO.RRF and
MRREL.RRF files. We extract semantic type in-
formation from MRSTY.RRF and semantic group
information from the Semantic Network website3

to filter concepts and relations to 8 broad semantic
groups of interest: Anatomy (ANAT), Chemicals
& Drugs (CHEM), Concepts & Ideas (CONC),
Devices (DEVI), Disorders (DISO), Phenomena
(PHEN), Physiology (PHYS), and Procedures
(PROC). We also exclude specific semantic types
deemed unnecessary. A full list of the semantic
types included in the dataset and their broader se-
mantic groups can be found in the Supplements.

The resulting list of triples comprises our fi-
nal knowledge graph dataset. Note that the
UMLS includes reciprocal relations (ISA and
INVERSE_ISA), making the graph bidirectional.
A random split results in train-to-test leakage,
which can inflate the performance of weaker mod-
els (Dettmers et al., 2018). We fix this by ensuring
reciprocal relations are in the same split, not across
splits. Descriptive statistics of the final dataset are
shown in Table 1. After splitting, we also ensure

3https://semanticnetwork.nlm.nih.gov

there are no unseen entities or relations in the vali-
dation and test sets by simply moving them to the
train set. More details and the code used for data
preparation are included in the Supplements.

Descriptions Statistics
Entities 293,884
Relation types 170
Facts 2,073,848
- Train 1,965,032
- Valid / Test 48,936 / 49,788

Table 1: Statistics of the final SNOMED dataset.

3.2 Implementation
Considering the non-trivial size of SNOMED-CT
and the importance of scalability and consistent
implementation for running experiments, we use
GraphVite (Zhu et al., 2019) for the KGE mod-
els. GraphVite is a graph embedding framework
that emphasizes scalability, and its speedup relative
to existing implementations is well-documented4.
While the backend is written largely in C++, a
Python interface allows customization. We make
our customized Python code available. We use the
five models available in GraphVite in our experi-
ments: TransE, ComplEx, DistMult, SimplE, and
RotatE. While we restrict our current work to these
models, future work should also consider other
state-of-the-art models such as TuckER (Balažević
et al., 2019) and MuRP (Balažević et al., 2019),
especially since MuRP is shown to be particularly
effective for graphs with hierarchical structure. Pre-
trained embeddings for Cui2Vec and Snomed2Vec
were used as provided by the authors, with dimen-
sionality 500 and 200, respectively.

All experiments were run on 3 GTX-1080ti
GPUs, and final runs took ∼6 hours on a sin-
gle GPU. Hyperparameters were either tuned on
the validation set for each model: margin (4,
6, 8, 10) and learning_rate (5e-4, 1e-4, 5e-
5, 1e-5); set: num_negative (60), dim (512),
num_epoch (2000); or took default values from
GraphVite. The final hyperparameter configuration
can be found in the Appendix.

3.3 Evaluation and Benchmark
3.3.1 KGE Link Prediction
A standard evaluation task in the KGE literature
is link prediction. However, NE methods also use

4https://github.com/DeepGraphLearning/graphVite
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link prediction as a standard evaluation task. While
both predict whether two nodes are connected, NE
link prediction performs binary classification on a
balanced set of positive and negative edges based
on the assumption that the graph is complete. In
contrast, knowledge graphs are typically assumed
incomplete, making link prediction for KGE a
ranking-based task in which the model’s scoring
function is used to rank candidate samples without
relying on ground truth negatives. In this paper,
link prediction refers to the latter ranking-based
KGE method.

Candidate samples are generated for each triple
in the test set using all possible entities as the target
entity, where the target can be set to head, tail,
or both. For example, if the target is tail, the
model predicts scores for all possible candidates
for the tail entity in (h, r, ?). For a test set with
50k triples and 300k possible unique entities, the
model calculates scores for fifteen billion candi-
date triples. The candidates are filtered to exclude
triples seen in the train, validation, and test sets,
so that known triples do not affect the ranking and
cause false negatives. Several ranking-based met-
rics are computed based on the sorted scores. Note
that SNOMED-CT contains a transitive closure
file, which lists explicit transitive closures for the
hierarchical relations ISA and INVERSE_ISA (if
A ISA B, and B ISA C, then the transitive closure
includes A ISA C). This file should be included in
the file list used to filter candidates to best enable
the model to learn hierarchical structure.

Typical link prediction metrics include Mean
Rank (MR), Mean Reciprocal Rank (MRR), and
Hits@k (H@k). MR is considered to be sensitive
to outliers and unreliable as a metric. Guu et al.
proposed using Mean Quantile (MQ) as a more ro-
bust alternative to MR and MRR. We use MQ100 as
a more challenging version of MQ that introduces a
cut-off at the top 100th ranking, appropriate for the
large numbers of possible entities. Link prediction
results are reported in Table 2.

3.3.2 Embedding Evaluation
For fair comparison with existing methods, we per-
form some of the benchmark tasks for assessing
medical concept embeddings proposed by Beam
et al.. However, we discuss their methodological
flaws in Section 5 and suggest more appropriate
evaluation methods.

Since non-KGE methods are not directly com-
parable on tasks that require both relation and con-

cept embeddings, to compare embeddings across
methods we perform entity semantic classification,
which requires only concept embeddings.

We generate a dataset for entity classification by
taking the intersection of the concepts covered in
all (7) models, comprising 39k concepts with 32
unique semantic types and 4 semantic groups. We
split the data into train and test sets with 9:1 ratio,
and train a simple linear layer with 0.1 dropout and
no further hyperparameter tuning. The single linear
layer for classification assesses the linear separabil-
ity of semantic information in the entity embedding
space for each model. Results for semantic type
and group classification are reported in Table 3.

4 Visualization

We first discuss the embedding visualizations ob-
tained through LargeVis (Tang et al., 2016), an
efficient large-scale dimensionality reduction tech-
nique available as an application in GraphVite.

Figure 1 shows concept embeddings for RotatE,
ComplEx, Snomed2Vec, and Cui2Vec, with colors
corresponding to broad semantic groups. Cui2Vec
embeddings show structure but not coherent seman-
tic clusters. Snomed2Vec shows tighter groupings
of entities, though the clusters are patchy and scat-
tered across the embedding space. ComplEx pro-
duces globular clusters centered around the origin,
with clearer boundaries between groups. RotatE
gives visibly distinct clusters with clear group sep-
aration that appear intuitive: entities of the Physi-
ology semantic group (black) overlap heavily with
those of Disorders (magenta); also entities under
the Concepts semantic group (red) are relatively
scattered, perhaps due to their abstract nature, com-
pared to more concrete entities like Devices (cyan),
Anatomy (blue), and Chemicals (green), which
form tighter clusters.

Interestingly, the embedding visualizations for
the 5 KGE models fall into 2 types: RotatE and
TransE produce well-separated clusters while Com-
plEx, DistMult and SimplE produce globular clus-
ters around the origin. Since the plots for each
type appear almost indistinguishable we show one
from each (RotatE and ComplEx). We attribute the
characteristic difference between the two model
types to the nature of their scoring functions: Ro-
tatE and TransE have an additive component while
ComplEx, DistMult and SimplE are multiplicative.

Figure 2 shows more fine-grained semantic struc-
ture by coloring 5 selected semantic types under
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Figure 1: Concept embedding visualization (RotatE, ComplEx, Snomed2Vec, Cui2Vec) by semantic group.

the Procedures semantic group and greying out
the rest. We see that RotatE produces subclusters
that are also intuitive. Laboratory procedures are
well-separated on their own, health care activity
and educational activity overlap significantly, and
diagnostic procedures and therapeutic or preven-
tative procedures overlap significantly. ComplEx
also reveals subclusters with globular shape, and
Snomed2Vec captures laboratory procedures well
but leaves other types scattered. These observa-
tions are consistent across other semantic groups.
We include similar visualizations for the Chemicals
& Drugs semantic group in the Supplements.

While semantic class information is not the
only significant aspect of SNOMED-CT, since the
SNOMED-CT graph is largely organized around
semantic group and type information, it is promis-
ing that embeddings learned (without supervision)
preserve it.

5 Results

5.1 Link Prediction
Table 2 shows results for the link prediction task
for the 5 KGE models on SNOMED-CT. Having

Model MRR MQ100 H@1 H@10
TransE .346 .739 .212 .597
ComplEx .461 .761 .360 .652
DistMult .420 .752 .309 .626
SimplE .432 .735 .337 .615
RotatE .317 .742 .162 .599
TransEFB .294 - - .465
TransEWN .226 - - .501
RotatEFB .338 - .241 .533
RotatEWN .476 - .428 .571

Table 2: Link prediction results: for the 5 KGE models
on SNOMED-CT (top); and for TransE and RotatE on
two standard KGE datasets (Sun et al., 2019) (bottom).

no previous results to compare to, we include per-
formance of TransE and RotatE on two standard
KGE benchmark datasets for reference: FB15k-237
(14,541 entities, 237 relations, and 310,116 triples)
and WN18RR (40,943 entities, 11 relations, and
93,003 triples). Given that SNOMED-CT is larger
and arguably a more complex knowledge graph
than the two datasets, the link prediction results
suggest that the KGE models learn a reasonable
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Figure 2: Visualization of selected semantic types under the Procedures semantic group for RotatE, ComplEx, and
Snomed2Vec. Semantic types with more than 2,000 entities were subsampled to 1,200 for visibility. Cui2Vec (not
shown) was similar to Snomed2Vec but more dispersed.

representation of SNOMED-CT. We include sam-
ple model outputs for the top 10 entity scores for
link prediction in the Supplements.

5.2 Embedding Evaluation and Relation
Prediction

Test set accuracy for entity semantic type (STY)
and semantic group (SG) classification are reported
in Table 3. In accordance with the visualiza-
tions of semantic clusters (Figures 1 and 2), the
KGE and NE methods perform significantly bet-
ter than the corpus-based method (Cui2Vec). No-
tably, TransE and RotatE attain near-perfect accu-
racy for the broader semantic group classification
(4 classes). ComplEx, DistMult, and SimplE per-
form slighty worse, Snomed2Vec slightly below
them, and Cui2Vec falls behind by a significant
margin. We see a greater discrepancy in relative
performance by model type in semantic type clas-
sification (32 classes), in which more fine-grained
semantic information is required.

Two advantages of the semantic type and group
entity classification tasks are: (i) information is
provided by the UMLS, making the task non-
proprietary and standardized; (ii) it readily shows
whether a model preserves the semantic structure of
the ontology, an important aspect of the data. The
tasks can also easily be modified for custom data
and specific domains, e.g. class labels for genes
and proteins relevant to a particular biomedical ap-
plication can be used in classification to assess how
well the model captures relevant domain-specific
information.

For comparison to related work, we also exam-
ine the benchmark tasks to assess medical con-
cept embeddings based on statistical power and

cosine similarity bootstrapping, proposed by Beam
et al.. For a given known relationship pair (e.g.
x cause_of y), a null distribution of pairwise
cosine similarity scores is computed by bootstrap-
ping 10,000 samples of the same semantic cate-
gory as x and y respectively. The cosine similarity
of the observed sample is compared to the 95th
percentile of the bootstrap distribution (statistical
significance at the 0.05 level). The authors claim
that, when applied to a collection of known relation-
ships (causative, comorbidity, etc), the procedure
estimates the fraction of true relationships discov-
ered given a tolerance for some false positive rate.
Following this, we report the statistical power of
all 7 models for two of the tasks: semantic type
and causative relationships. The former (ST) aims
to assess a model’s ability to determine if two con-
cepts share the same semantic type. The latter
consists of two relation types: cause_of (Co)
and causative_agent_of (CA). Results are
reported in Table 3. The cosine similarity boot-
strap results, particularly for the causative relation-
ship tasks, illustrate a major flaw in the protocol.
While Snomed2Vec and Cui2Vec attain similar
statistical powers for CA and Co, we see large
discrepancies between the two tasks for the KGE
models, especially for ComplEx, DistMult, and
SimplE, which produce globular embedding clus-
ters. Examining the dataset, we observe that the
cause_of relations occur mostly between con-
cepts within the same semantic group/cluster (e.g.
Disorder), whereas the causative_agent_of
relations occur between concepts in different se-
mantic groups/clusters (e.g. Chemicals to Disor-
ders). The large discrepancy in CA task results
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Entity Classification Cosine-Sim Bootstrap Relation Prediction
Model SG (4) STY (32) ST CA Co MRR H@1 H@10
Snomed2Vec .944 .769 .387 .903 .894 - - -
Cui2Vec .891 .673 .416 .584 .559 - - -
TransE .993 .827 .579 .765 .978 .800 .727 .965
ComplEx .956 .786 .249 .001 .921 .731 .606 .914
DistMult .971 .794 .275 .014 .971 .734 .569 .946
SimplE .953 .768 .242 .011 .791 .854 .803 .946
RotatE .995 .829 .544 .242 .943 .849 .799 .957

Table 3: Results for (i) entity classification of semantic type and group (test accuracy); (ii) selected tasks from
(Beam et al., 2019); and (iii) relation prediction. Best results in bold.

for the KGE models is because using cosine simi-
larity embeds the assumption that all related enti-
ties are close, regardless of the relation type. The
assumption that cosine similarity in the concept
embedding space is an appropriate measure of a
diverse range of relatedness (a much broader ab-
straction that subsumes semantic similarity and
causality), renders this evaluation protocol unsuit-
able for assessing a model’s ability to capture spe-
cific types of relational information in the embed-
dings. Essentially, all that can be said about the
cosine similarity-based procedure is that it assesses
how close entities are in that space as measured
by cosine distance. It does not reveal the nature of
their relationship or what kind of relational infor-
mation is encoded in the space to begin with.

In contrast, KGE methods explicitly model re-
lations and are better equipped to make inferences
about the relational structure of the knowledge
graph embeddings. Thus, we propose relation pre-
diction as a standard evaluation task for assessing
a model’s ability to capture information about re-
lations in the knowledge graph. We simply mod-
ify the link prediction task described above to ac-
commodate relation as a target (formulated as
(h, ?, t), generating ranking-based metrics for the
model’s ability to prioritize the correct relation type
given a pair of concepts. This provides a more prin-
cipled and interpretable way to evaluate the models’
relation representations directly based on the model
prediction. The last 3 columns of Table 3 report
relation prediction metrics for the 5 KGE models.
In particular, RotatE and SimplE perform well, at-
taining around 0.8 Hits@1 and around 0.85 MRR.

We conduct error analysis to gain further insight
by categorizing relation types into 6 groups based
on the cardinality and homogeneity of their source
and target semantic groups. If the set of unique

head or tail entities for a relation type in the dataset
belongs to only one semantic group, then it has a
cardinality of 1, and a cardinality of many other-
wise. If the mapping of the source semantic groups
to the target semantic groups are one-to-one (e.g.
DISO to DISO and CHEM to CHEM), then it is
considered homogeneous. We report relation pre-
diction metrics for each of the 6 groups of relation
types for RotatE and ComplEx in Table 4.

We see that RotatE gives impressive rela-
tion prediction performance for all groups ex-
cept for many-to-many-homogeneous, a seem-
ingly challenging group of relations contain-
ing ambiguous and synonymous relation types,
e.g. possibly_equivalent_to, same_as,
refers_to, isa. The full list of M-M-hom re-
lations are shown in the Appendix. In contrast,
ComplEx struggles with a wider array of relation
types, suggesting that it is generally less able to
model different types than RotatE. The last two
rows under each model show per-relation results for
the causative relationships mentioned previously:
cause_of and causative_agent_of. Ro-
tatE again shows significantly better results com-
pared to ComplEx, in line with its theoretically
superior representation capacity (Sun et al., 2019).

6 Discussion

Based on our findings, we recommend the use of
KGE models to leverage the multi-relational na-
ture of knowledge graphs for learning biomedical
concept and relation embeddings; and of appropri-
ate evaluation tasks such as link prediction, entity
classification and relation prediction for fair com-
parison across models. We also encourage analysis
beyond standard validation metrics, e.g. visual-
ization, examining model predictions, reporting
metrics for different relation groupings and devis-
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Relation MRR H@1 H@10 Count
ComplEx

1-1-hom .600 .319 .944 72
M-M-hom .605 .417 .877 29,028

M-1 .683 .557 .884 2,509
1-M .738 .640 .916 2,497
1-1 .889 .817 .995 420

M-M .867 .819 .941 15,044
Co .706 .662 .779 145
CA .857 .822 .908 303

RotatE
M-M-hom .784 .718 .934 29,028

M-M .973 .944 .992 15,044
M-1 .971 .945 .998 2,509
1-M .975 .953 .998 2,497
1-1 .985 .959 1. 420

1-1-hom .972 .976 1. 72
Co .803 .738 .890 145
CA .996 .993 1. 303

Table 4: Relation prediction results for RotatE and
ComplEx by category of relation type (last two rows
relate to causative relation types).

ing problem or domain-specific validation tasks. A
further promising evaluation task is the triple pre-
diction proposed in (Allen et al., 2019), which we
leave for future work. A more ideal way to assess
concept embeddings in biomedical NLP applica-
tions and patient-level modeling would be to design
a suite of benchmark downstream tasks that incor-
porate the embeddings, but that warrants a rigorous
paper of its own and is left for future work.

We believe this paper serves the biomedical NLP
community as an introduction to KGEs and their
evaluation and analyses, and also the KGE commu-
nity by providing a potential standard benchmark
dataset with real-world relevance.

7 Conclusion and Future Work

We present results from applying 5 leading KGE
models to the SNOMED-CT knowledge graph and
compare them to related work through visualiza-
tions and evaluation tasks, making a case for the
importance of using models that leverage the multi-
relation nature of knowledge graphs for learning
biomedical knowledge representation. We discuss
best practices for working with biomedical knowl-
edge graphs and evaluating the embeddings learned
from them, proposing link prediction, entity classi-
fication, and relation prediction as standard evalua-

tion tasks. We encourage researchers to engage in
further validation through visualizations, error anal-
yses based on model predictions, examining strat-
ified metrics, and devising domain-specific tasks
that can assess the usefulness of the embeddings
for a given application domain.

There are several immediate avenues of future
work. While we focus on the SNOMED-CT dataset
and the KGE models implemented in GraphVite,
other biomedical terminologies such as the Gene
Ontology (The Gene Ontology Consortium, 2018)
and RxNorm (Nelson et al., 2011) could be ex-
plored and more recent KGE models, e.g. TuckER
(Balažević et al., 2019) and MuRP (Balažević et al.,
2019), applied. Additional sources of information
could also potentially be incorporated, such as tex-
tual descriptions of entities and relations. In prelim-
inary experiments, we initialized entity and relation
embeddings with the embeddings of their textual
descriptors extracted using Clinical Bert (Alsentzer
et al., 2019), but it did not yield gains. This may
suggest that the concept and language spaces are
substantially different and strategies to jointly train
with linguistic and knowledge graph information
require further study. Other sources of information
include entity types (e.g. UMLS semantic type) and
paths, or multi-hop generalizations of the 1-hop
relations (triples) typically used in KGE models
(Guu et al., 2015). Notably, CoKE trains contex-
tual knowledge graph embeddings using path-level
information under an adapted version of the BERT
training paradigm (Wang et al., 2019).

Lastly, the usefulness of biomedical knowledge
graph embeddings should be investigated in down-
stream applications in biomedical NLP such as
information extraction, concept normalization and
entity linking, computational fact checking, ques-
tion answering, summarization, and patient trajec-
tory modeling. In particular, entity linkers act as
a bottleneck between text and concept spaces, and
leveraging KGEs could help develop sophisticated
tools to parse existing biomedical and clinical text
datasets for concept-level annotations and addi-
tional insights. Well performing entity linkers may
then enable training knowledge-grounded large-
scale language models like KnowBert (Peters et al.,
2019). Overall, methods for learning and incorpo-
rating domain-specific knowledge representation
are still at an early stage and further discussions
are needed.
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Abstract

When comparing entities extracted by a med-
ical entity recognition system with gold stan-
dard annotations over a test set, two types of
mismatches might occur, label mismatch or
span mismatch. Here we focus on span mis-
match and show that its severity can vary from
a serious error to a fully acceptable entity ex-
traction due to the subjectivity of span anno-
tations. For a domain-specific BERT-based
NER system, we showed that 25% of the er-
rors have the same labels and overlapping span
with gold standard entities. We collected ex-
pert judgement which shows more than 90% of
these mismatches are accepted or partially ac-
cepted by the user. Using the training set of the
NER system, we built a fast and lightweight
entity classifier to approximate the user expe-
rience of such mismatches through accepting
or rejecting them. The decisions made by this
classifier are used to calculate a learning-based
F-score which is shown to be a better approx-
imation of a forgiving user’s experience than
the relaxed F-score. We demonstrated the re-
sults of applying the proposed evaluation met-
ric for a variety of deep learning medical entity
recognition models trained with two datasets.

1 Introduction

Named entity recognition (NER) in medical texts
involves the automated recognition and classifica-
tion of relevant medical/clinical entities, and has nu-
merous applications including information extrac-
tion from clinical narratives (Meystre et al., 2008),
identifying potential drug interactions and adverse
affects (Harpaz et al., 2014; Liu et al., 2016), and
de-identification of personal health data (Dernon-
court et al., 2017).

In recent years, medical NER systems have im-
proved over previous baseline performance by in-
corporating developments such as deep learning
models (Yadav and Bethard, 2018), contextual

word embeddings (Zhu et al., 2018; Si et al., 2019),
and domain-specific word embeddings (Alsentzer
et al., 2019; Lee et al., 2019; Peng et al., 2019).
Typically, research groups report their results us-
ing common evaluation metrics (most often preci-
sion, recall, and F-score) on standardized data sets.
While this facilitates exact comparison, it is diffi-
cult to know whether modest gains in F-score are
associated with significant qualitative differences
in the system performance, and how the benefits
and drawbacks of different embedding types are
reflected in the output of the NER system.

This work aims to investigate the types of errors
and their proportion in the output of modern deep
learning models for medical NER. We suggest that
an evaluation metric should be a close reflection of
what users experience when using the model. We
investigate different types of errors that are penal-
ized by exact F-score and identify a specific error
type where there is high degrees of disagreement
between the human user experience and what ex-
act F-score measures: namely, errors where the
extracted entity is correctly labeled, but the span
only overlaps with the annotated entity rather than
matching perfectly. We obtain expert human judge-
ment for 5296 such errors, ranking the severity
of the error in terms of end user experience. We
then compare the commonly used F-score metrics
with human perception, and investigate if there is
a way to automatically analyze such errors as part
of the system evaluation. The code that calculates
the number of different types of errors given the
predictions of an NER model and the correspond-
ing annotations is available upon request and will
be released at https://github.com/nrc-cnrc/

NRC-MedNER-Eval after publication. We will also
release the collected expert judgements so that
other researchers can use it as a benchmark for
further investigation about this type of errors.
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2 What do NER Evaluation Metrics
Measure?

An output entity from an NER system can be incor-
rect for two reasons: either the span is wrong, or
the label is wrong (or both). Although entity-level
exact F-score (also called strict F-score) is estab-
lished as the most common metric for comparing
NER models, exact F-score is the least forgiving
metric in that it only credits a prediction when both
the span and the label exactly match the annotation.

Other evaluation metrics have been proposed.
The Message Understanding Conference (MUC)
used an evaluation which took into account differ-
ent types of errors made by the system (Chinchor
and Sundheim, 1993). Building on that work, the
SemEval 2013 Task 9.1 (recognizing and labelling
pharmacological substances in biomedical text) em-
ployed four different evaluations: strict match, in
which label and span match the gold standard ex-
actly, exact boundary match, in which the span
boundaries match exactly regardless of label, par-
tial boundary match, in which the span boundaries
partially match regardless of label, and type match,
in which the label is correct and the span overlaps
with the gold standard (Segura Bedmar et al., 2013).
The latter metric, also commonly known as inexact
match, has been used to compute inexact or relaxed
F-score in the i2b2 2010 clinical NER challenge
(Uzuner et al., 2011). Relaxed F-score and exact
F-score are the most frequently used evaluation
metrics for measuring the performance of medical
NER systems (Yadav and Bethard, 2018). Other
biomedical NER evaluations have accepted a span
as a match as long as either the right or left bound-
ary is correct (Tsai et al., 2006). In BioNLP shared
task 2013, the accuracy of the boundaries is relaxed
or measured based on similarity of entities (Bossy
et al., 2013). Another strategy is to annotate all
possible spans for an entity and accept any matches
as correct (Yeh et al., 2005), although this detailed
level of annotation is rare.

Here, we focus on the differences between what
F-score measures and the user experience. In the
case of a correct label with a span mismatch, it is
not always obvious that the user is experiencing an
error, due to the subjectivity of span annotations
(Tsai et al., 2006; Kipper-Schuler et al., 2008). Ex-
isting evaluation metrics treat all such span mis-
matches equally, either penalizing them all (exact
F-score), rewarding them all (relaxed F-score), or
based on oversimplified rules that do not general-

ize across applications and data sets. We use both
human judgement and a learning-based approach
to evaluate span mismatch errors and the result-
ing gap between what F-score measures and what
a human user experiences. We only consider the
information extraction task and not any specific
downstream task.

3 Types of Errors in NER systems

While the SemEval 2013 Task 9.1 categorized dif-
ferent types of matches for the purpose of evalua-
tion, we further categorize mismatches for the sake
of error analysis. We consider five types of mis-
matches between annotation and prediction of the
NER system. Reporting and comparing the number
of these mismatches alongside an averaged score
such as F-score can shed light on the differences of
NER systems.

• Mismatch Type-1, Complete False Positive:
An entity is predicted by the NER model, but
is not annotated in the hand-labelled text.

• Mismatch Type-2, Complete False Nega-
tive: A hand labelled entity is not predicted
by the model.

• Mismatch Type-3, Wrong label, Right
span: A hand-labelled entity and a predicted
one have the same spans but different tags.

• Mismatch Type-4, Wrong label, Overlap-
ping span: A hand-labelled entity and a pre-
dicted one have overlapping spans but differ-
ent tags.

• Mismatch Type-5, Right label, Overlap-
ping span: A hand-labelled entity and a pre-
dicted one have overlapping spans and the
same tags.

We focus on Type-5 errors and show that treat-
ing these mismatches is not a trivial task. Pre-
vious works have shown that some Type-5 mis-
matches are completely wrong predictions while
others are fully acceptable predictions resulting
from the subjectivity and inconsistency of span
annotations (Tsai et al., 2006).

Figure 1 shows several examples of error Type-5.
In the first example, an adenosine - thallium stress
test is annotated as a test, while the NER system
extracts thallium stress test as a test. Here, what
NER extracted is partially correct but misses an
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Figure 1: Examples of Type-5 error. We used the visualisation tool developed in (Zhu et al., 2018)

important part of the entity. Whether the extracted
entity is acceptable may depend on the downstream
task. In the next sentence, patchy consolidation in
all lobes is annotated as a problem, but the NER
system extracted patchy consolidation in all lobes
of both longs as the problem. Here, the system’s
prediction is more complete than the annotated
entity, and so it appears to be a fully acceptable
prediction. In the last example, according to human
annotation, 1cm cyst in the right lobe of the liver is
a problem, but the NER system extracts two entities
from the same phrase, 1) 1cm cyst in the right
lobe as a problem and 2) liver as another problem.
While the first extracted entity is correct and may
be acceptable the second one is completely wrong.

4 Datasets and Models

We consider two medical text datasets, one clinical
and the other biomedical. We analyse the errors of
three models for each dataset to cover a variety of
deep learning models.

i2b2 dataset: The i2b2 dataset of annotated clin-
ical notes was introduced by (Uzuner et al., 2011)
in a shared task on entity recognition and relation
extraction. The texts, consisting of de-identified
discharge summaries, have been annotated for three
entity types: problems, tests, and treatments. There
are two versions of this dataset, as the version that
was released to the wider NLP community contains
fewer texts than in the original shared task. We use

the second version, which has become an impor-
tant benchmark in the literature on clinical NER
(Bhatia et al., 2019; Zhu et al., 2018). There are
170 documents (16520 entities) in the i2b2 train set
and 256 documents (31161 entities) in its test set.

The i2b2 dataset was annotated by community
annotators with carefully crafted guidelines. The
ground truth generated by the community obtained
F-measures above 0.90 against the ground truth of
the experts (Uzuner et al., 2011).

MedMentions dataset: The MedMentions
dataset was released in 2019 and contains 4,392
abstracts from biomedical articles on PubMed
(Mohan and Li, 2019). The abstracts are annotated
for UMLS concepts and semantic types. The fully
annotated dataset contains 127 semantic types and
these classes are highly-imbalanced. The creators
of the dataset also provide a version which has
been annotated with only a subset of the most
relevant concepts, called ‘st21pv’ (21 semantic
types from preferred vocabularies); we consider
this version in the current work. While fewer
papers have been published on MedMentions to
date, it represents an interesting challenge to NLP
systems due to its imbalanced and high number of
classes, and some observed inconsistencies in the
annotations (Fraser et al., 2019). There are 3513
documents (162,908 entities) in the st21pv train set
and 879 documents (40,101 entities) in the test set.

MedMentions was annotated by a team of profes-
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sional annotators with rich experience in biomedi-
cal content curation. The precision of the annota-
tion in MedMention is estimated as 97.3% (Mohan
and Li, 2019).

Model Structures: We explore a variety of NER
deep learning models. For all the models we fol-
low the commonly used deep learning structure
consisting of a pretrained embedding model and su-
pervised prediction layers. For embedding, we ex-
plore three different models: a non-contextualized
embedding model (Glove), general domain contex-
tualized embedding model (BERT pretrained on
general domain text) and a domain-specific contex-
tualized embedding model (BERT pretrained on
domain-specific text corpora). For the i2b2 dataset,
we consider Glove+bi-LSTM+CRF (Pennington
et al., 2014), BERT+linear (Devlin et al., 2018)
and ClinicalBERT+linear (Alsentzer et al., 2019)
models. For the st21pv MedMentions dataset, we
consider Glove+bi-LSTM+CRF, BERT+linear and
BioBERT+linear models (Lee et al., 2019). Clin-
ical BERT is pretrained on clinical notes (similar
to i2b2) and BioBERT is pretrained on biomedical
articles from PubMed (similar to st21pv).

5 Analysis of Error Types Across Models
and Datasets

Further investigation of Type-5 errors is only worth-
while if a significant proportion of the errors belong
to this group. We looked at the distribution of error
types across datasets and NER models, described
in Section 4, and visualized the results in Figure 2.
By calculating the distribution of error types, we
observed that for all assessed models at least 20%
of the errors are recognized as Type-5 mismatches.

Moreover, for both datasets, we observed that
better NER models generate more Type-5 errors.
Models based on general BERT outperform glove-
based models in terms of both exact and relaxed
f-score and they also generate relatively more Type-
5 errors. Same pattern is observed when comparing
domain-specific BERT models with general BERT
models. This observation may be explained with
the fact that contextualized embeddings combine
the meaning of words through attention mechanism
and the span information might be more vague in
the resulting representation. Figure 3 shows exact
F-score, relaxed F-score and the proportion of Type-
5 mismatches to the total number of errors, for all
the models and datasets. This analysis implies that
proper handling of Type-5 errors becomes more

important for comparison of modern strong NER
systems.

6 Expert Judgement on Type-5 Errors

We considered an information extraction task and
asked a medical doctor to assess the Type-5 errors
made by the BioBERT NER model on the st21pv
dataset and either confirm or reject the extracted
entity with granular scores. Our goal is to: 1) inves-
tigate the proportion of Type-5 extracted entities
that are acceptable, 2) set a benchmark of human
experience from Type-5 errors.

Human Judgement Scheme: The following
scoring scheme is used by the expert for scoring
the acceptability of Type-5 mismatches for the
BioBERT-based model trained with the st21vp
dataset. The Type-5 mismatches are identified and
the expert is given the original sentence in the test
set, the annotated (gold-standard) entity, and the
entity predicted by the NER model for all 5296
Type-5 mismatches.

SCORE = 1: The predicted entity is wrong
and gets rejected. For example, while gene transfer
is annotated as a research activity in the test set,
the NER extracted gene as research activity.
SCORE = 2: The predicted entity is correct but an
important piece of information is missing when
seen in the full sentence. The prediction is partially
accepted by the expert. For example, injury of
lung is labeled as injury or poisoning in the test
set, but the NER extracts only the word injury as
injury or poisoning.
SCORE = 3: The predicted entity is correct
but could be more complete. The prediction is
accepted by the expert. The entity normal HaCaT
lines is annotated as anatomical structure in the
test set but the NER extracts only HaCaT lines
with the same label.
SCORE = 4: The predicted entity is equally
correct and is accepted by the expert. As an
example the annotated entity in test set is 196b-5p,
as an anatomical structure but the NER extracts
-196b-5p, as an entity with the same tag.
SCORE = 5: The predicted entity is more
complete than the annotated entity and is accepted
by the expert. The annotated entity in the test set is
drugs with the tag chemical and the NER extracts
Alzheimer’s drugs with the same tag.
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Figure 2: Types of errors made on the i2b2 and MedMentions-st21pv datasets

Figure 3: The change of relative proportion of Type-5 errors across dataset and models as the f-scores change

Results of Human Judgement Analysis: The
results of the expert judgement are summarized
in Figure 4.

• Almost 40% of the Type-5 errors are scored
as 5. This means that in 40% of the cases the
prediction of the NER is more complete than
the entity labeled in its test set.

• 70% of the extracted entities scored 3 or above
and are fully accepted by the expert.

• 21% of the Type-5 mismatches are scored as
2. These are accepted as a correct entity ex-
traction when seen out of the context, but in
the context of a given sentence they lack an
important piece of information. Depending
on the downstream tasks, they might be an
acceptable prediction or not.

• Only 9% of the extracted entities are totally
rejected by the expert.

Figure 4: Results of expert judgement for Type-5 mis-
matches of the BioBERT-based NER model trained
with MedMentions-st21pv dataset.

7 Entity Classifier for Automatic
Refining of Type-5 Mismatches

We propose that an entity classifier can be trained
to predict the tag of entities extracted by the NER
model and the predicted tag can be used to distin-
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(a) Training

(b) Using for evaluation of the NER model

Figure 5: Workflow of the proposed entity classifier

guish between acceptable and unacceptable Type-5
errors. Figure 5 shows the workflow of the pro-
posed method. Using the training dataset of the
NER model, we train an entity classifier with gold
standard entities as inputs and their assigned tags
as outputs. For this classifier, the span is given
and the tag is the only information that has to be
learned. Although the full context of the sentence
helps the NER model to learn a better representa-
tion of the entity, many entities can be classified
without seeing the full sentence and this is what the
entity classifier learns.

For Type-5 entities, the human annotators and
the NER already agree on the tag and it is only the
span that is in disagreement. So, the intuition here
is that the entity classifier can confirm or reject the
tag predicted by NER, given the identified span.
This classifier is meant to play a third party role
that has seen the variety of span annotations in
the training dataset and performs the task that the
human expert did in Section 6. This classifier is
trained once for each dataset and is not dependent
on the type of the NER model.

7.1 Building the Training Data for the Entity
Classifier

In order to build a training dataset for the entity clas-
sifier, we extracted pairs of (entity, tag) from the
IOB annotated dataset. The entity classifier should
also be able to identify cases where the extracted
entity does not belong to any of the pre-defined
tags. For this reason we add the label other to the
list of tags of the classifier. To find examples of the
other class, we used the spaCy library (Honnibal
and Montani, 2017) to extract all the noun chunks
that are out of the boundaries of tagged entities and
randomly chose a number of them. We limited the

size of the other class to the average size of classes
related to the existing tags.

7.2 Classifier Structure

For the classifier structure, we chose to use a Dis-
tilBERT model (Sanh et al., 2019) with a linear
prediction layer. DistilBERT is a distilled version
of BERT that is an optimum choice when fast in-
ference is required. Since this classifier is going
to be used for evaluation and error analysis and
is not the main focus of building an NER model,
the lightweight and fast inference is an important
practical criterion. We train the classifier only one
epoch for both datasets. When trained on the train
set and tested on the test set, we achieved 89% F-
score for i2b2 and 77% F-score for st21pv dataset.

Figure 6: Comparison of decisions made by the hu-
man expert and the entity classifier for the Type-5 mis-
matches of BioBERT NER and st21pv dataset.

7.3 Using the Entity Classifier for Refining
Type-5 Mismatches

By building the entity classifier, our goal is to re-
fine the Type-5 errors and separate the acceptable
predictions of the NER from the unacceptable. For
instance, in the last example shown in Figure 1
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Annotated in test set Tag in test set Extracted by NER Tag from Entity classifier Decision
Central pathology biomedical discipline Central Spatial concept Reject

Therapies healthcare activity Agonist Therapies healthcare activity Accept

Table 1: Examples of accepted and rejected Type-5 mismatches using the entity classifier (st21pv dataset).

there are two Type-5 errors. We feed the two ex-
tracted entities ‘1 cm cyst in the right lobe’ and

‘liver’ to the entity classifier trained for i2b2 dataset.
The classifier predicts the tag ‘problem’ for the
extracted entity ‘1 cm cyst in the right lobe’ and

‘Other’ for the extracted entity ‘liver’. Using these
predictions we decide that the first entity is ac-
ceptable, since although the span of the extracted
entity does not match the annotation, the classifier
still recognizes it as a member of the correct class.
We reject the extracted entity ‘liver’ as a ‘prob-
lem’ since the classifier recognizes it as not being
a ‘problem’. Table 1 shows examples of rejected
and accepted Type-5 mismatches from the st21pv
dataset.

7.4 Comparing the Classifier and the Expert

Figure 6 shows the comparison between the ex-
pert’s judgment and the classifier’s judgement
about Type-5 mismatches for the BioBERT NER
model on st21 pv dataset.

Our analysis shows that 96% of the entities ac-
cepted by the classifier are also accepted or par-
tially accepted by the expert, and 86% of the en-
tities accepted or partially accepted by the expert
are accepted by the classifier as well. The clas-
sifier and the expert disagree about 17% of the
entities. In 24% of the disagreements, the proba-
bilities assigned to the tags generated by the en-
tity classifier are low (less than 0.5) and our man-
ual investigation shows that the classifier’s predic-
tion is mostly wrong in these cases. These mis-
takes mostly occurs in 5 classes namely anatomi-
cal structure, biologic function, chemical, finding
and health care activity.

We also observed that this classifier is not able
to distinguish between accepted and partially ac-
cepted entities extracted by the NER model, which
is one of the limitations of this method. The prob-
abilities assigned to the tags is 0.89 ± 0.17 for
accepted entities, 0.88±0.17 for partially accepted
entities, and 0.78± 0.23 for rejected entities.

8 Refining Type-5 Mismatches Across
Datasets and Models

Figure 7 shows how the entity classifier refines
Type-5 errors across models and datasets. Con-
sistently, a significant proportion of Type-5 errors
are accepted by the entity classifier. For exam-
ple, for the Glove-based model trained on i2b2
dataset, the entity classifier accepts 90% of Type-
5 errors which is 26.6% of the total number of
the errors penalized by the exact f-score. The pro-
portion of accepted Type-5 mismatches to the to-
tal number of errors is 31.11% for i2b2+BERT,
33.23% for i2b2+ClinicalBERT, 17.95% for
st21pv+Glove, 19.55% for st21pv+BERT and
19.36% for st21pv+BioBERT. To sum up, about
20% to 30% of the mismatches penalized by exact
f-score are accepted by the entity classifier.

9 Learning-Based F-score

The trained entity classifier can be leveraged for
F-score calculation. Here, instead of penalizing
all the type-5 mismatches as in exact F-score or
rewarding all of them in relaxed F-score, we penal-
ize the type-5 mismatches that are rejected by the
classifier and reward the rest of them. In other
words, this F-score penalizes errors of Type-1,
Type-2, Type-3, Type-4 and the Rejected Type-
5 mismatches. Accepted Type-5 mismatches and
exact matches are rewarded.

9.1 Evaluation of the Learning-Based F-score

We use the expert judgement collected in Section 6
to quantify human experience for the BioBERT-
based NER model on st21pv dataset and then
use that as a benchmark to evaluate the proposed
learning-based F-score. We consider two scenar-
ios based on the scores described in Section 6, 1)
a strict user that only accepts scores equal to or
above 3, 2) a forgiving user that accepts scores
equal to or above 2. We calculated the F-score for
each scenario and investigated the error of exact
F-score, relaxed F-score and the proposed F-score
to each of these scenarios. Table 2 shows that in
applications where strict evaluation of the NER
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Figure 7: Number of accepted/rejected Type-5 mismatches by the entity classifier

F-score err. wtr strict user err. wtr forgiving user

Exact -4.3% -5.5%
Proposed 5.9% 4.7%
Relaxed 8.2% 7.1%

Table 2: Comparing F-scores with human experience.

is needed, exact F-score is better than both pro-
posed and relaxed f-score and results in the least
error with respect to the human experience. How-
ever, in cases that partially accepted entities can
be considered as useful predictions, the proposed
method results in the least disagreement with hu-
man experience. A better classifier would be able
to model human preferences better, and thus make
the learning-based F-score a stronger alternative
to exact or relaxed F-scores. Another important
finding from Table 2 that when choosing between
exact and relaxed F-score, exact is the better metric
to choose.

Figure 8 shows how the proposed F-score can be
compared with exact and relaxed F-score. We only
have annotations for the BioBERT+stpv dataset
and for the rest of the models we cannot evaluate
the F-score with respect to human experience. As
expected, from this figure we observe that for all
the models, the proposed F-score is a forgiving one
and is much closer to the relaxed F-score than the
exact F-score.

10 Discussion

We highlighted the fact that when we evaluate NER
systems by comparing extracted and annotated en-
tities across a test set, for a significant part of the
errors that are penalized by the exact F-score, the la-

bel is recognized correctly and the span has overlap
with the annotated entity. We referred to this type
of error as Type-5 mismatch and for six NER mod-
els (3 model structures and 2 datasets) showed that
at least 20% of the errors belong to this category.
The previous literature has raised the issue that in
the case of medical NER, many such predictions
are valid and useful entity extractions and penaliz-
ing them is a flaw of evaluation metrics. However,
distinguishing between acceptable and unaccept-
able predictions when the label is correct and the
span overlaps is not trivial.

We argue that the best evaluation metric is the
one that reflects the human experience of the sys-
tem best. We collected human judgement about a
all Type-5 errors made by a NER model based on
BioBERT embeddings, trained with st21pv dataset
and showed that almost 70% of such errors are
completely acceptable and only 10% of them are
rejected by the user. The rest of the predictions are
acceptable entities for the associated tags but lack
important information when seen in the context.

Setting human experience as a benchmark, we
suggested that expert judgement can be approxi-
mated by a decision made by an entity classifier.
The entity classifier can be trained using the train-
ing set of an NER. While the NER model looks at
the context and identifies the type of the entity and a
partially correct span, this classifier looks at the ex-
tracted entities out of context and decides whether
with the partially correct span, the extracted en-
tity can still belong to the predicted class or not.
The entity classifier trained on st21pv dataset ac-
cepts more than 80% of Type-5 errors made by
BioBERT-based NER model trained with the same
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Figure 8: Comparison of f-scores.

dataset, 96% of which is also accepted by the ex-
pert user. The proposed entity classifier is trained
for each NER training set once and can be used to
evaluate any NER model trained on that dataset,
regardless of the structure of the NER model being
evaluated. We used a computationally inexpensive
model structure and encourage researchers to use
this model in order to automatically evaluate Type-
5 mismatches. Reporting the distribution of errors
across all error types and also accepted and rejected
Type-5 errors, will allow us to compare our models
in a variety of dimensions and sheds light on how
these models behave differently for detecting labels
and spans.

Accepting some Type-5 errors as useful predic-
tions can be translated to F-score calculation by
not penalizing the accepted entity extractions. We
did this calculation separately for the cases that
were accepted by human expert or the classifier,
and showed that the F-score resulting from the clas-
sifier is closer to the judgement of a forgiving user
than both the exact and the relaxed F-score. In
cases where a strict evaluation of the system is de-
sired, exact F-score is a better approximation of
human experience, due to the fact that the entity
classifier is a forgiving one and accepts most of the
cases that are partially accepted by the expert.

We only collected human judgement on the de-
cisions made by NER model for one model and
one dataset. Further investigation is needed to con-
firm or reject our observations and to investigate
the limitations and potential capabilities of training
an entity classifier alongside a NER model and us-
ing that for error analysis. Also, further research
is needed to find a way of distinguishing between
partially accepted and accepted entity extractions,
which is a necessary tool for measuring the experi-

ence of a strict user. Using extra sources of training
data other than the NER training dataset may be a
way to improve the judgements of the entity classi-
fier. We used this classifier for error analysis and
refining of Type-5 errors. In future work, we can
look at the possibility of using this classifier as a
refining tool for all types of mismatches or a post-
processing tool without the need for annotation to
identify the types of mismatches.

11 Conclusion

Medical NER systems that are based on most recent
deep learning structures generate a high amount of
outputs that match with the hand-labelled entities
in terms of tag but only overlap in the span. While
the exact f-score penalizes all of these predictions
and relaxed f-score credits all of them, a human
user accepts a significant proportion of them as
valid entities and rejects the rest.
A reformatted version of the NER training dataset
can be used to train an entity classifier for eval-
uation of extracted entities with right label and
overlapping span. We showed that there is a high
degree of agreement between human expert and
this entity classifier in accepting or rejecting span
mismatches. This classifier is used to calculate a
learning-based evaluation metric that outperforms
relaxed F-score in approximating the experience of
a forgiving user.
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Abstract

Fact triples are a common form of structured
knowledge used within the biomedical domain.
As the amount of unstructured scientific texts
continues to grow, manual annotation of these
texts for the task of relation extraction be-
comes increasingly expensive. Distant super-
vision offers a viable approach to combat this
by quickly producing large amounts of labeled,
but considerably noisy, data. We aim to reduce
such noise by extending an entity-enriched re-
lation classification BERT model to the prob-
lem of multiple instance learning, and defin-
ing a simple data encoding scheme that signif-
icantly reduces noise, reaching state-of-the-art
performance for distantly-supervised biomed-
ical relation extraction. Our approach further
encodes knowledge about the direction of rela-
tion triples, allowing for increased focus on re-
lation learning by reducing noise and alleviat-
ing the need for joint learning with knowledge
graph completion.

1 Introduction

Relation extraction (RE) remains an important nat-
ural language processing task for understanding the
interaction between entities that appear in texts. In
supervised settings (GuoDong et al., 2005; Zeng
et al., 2014; Wang et al., 2016), obtaining fine-
grained relations for the biomedical domain is chal-
lenging due to not only the annotation costs, but
the added requirement of domain expertise. Distant
supervision (DS), however, provides a meaning-
ful way to obtain large-scale data for RE (Mintz
et al., 2009; Hoffmann et al., 2011), but this form of
data collection also tends to result in an increased
amount of noise, as the target relation may not al-
ways be expressed (Takamatsu et al., 2012; Ritter
et al., 2013). Exemplified in Figure 1, the last two

∗ Equal contribution
On behalf of the PRECISE4Q consortium

Figure 1: Example of a distantly supervised bag of sen-
tences for a knowledge base tuple (neurofibromatosis 1,
breast cancer) with special order sensitive entity mark-
ers to capture the position and the latent relation direc-
tion with BERT for predicting the missing relation.

sentences can be seen as potentially noisy evidence,
as they do not explicitly express the given relation.

Since individual instance labels may be unknown
(Wang et al., 2018), we instead build on the recent
findings of Wu and He (2019) and Soares et al.
(2019) in using positional markings and latent re-
lation direction (Figure 1), as a signal to mitigate
noise in bag-level multiple instance learning (MIL)
for distantly supervised biomedical RE. Our ap-
proach greatly simplifies previous work by Dai
et al. (2019) with following contributions:

• We extend sentence-level relation enriched
BERT (Wu and He, 2019) to bag-level MIL.

• We demonstrate that the simple applications
of this model under-perform and require
knowledge base order-sensitive markings, k-
tag, to achieve state-of-the-art performance.
This data encoding scheme captures the latent
relation direction and provides a simple way
to reduce noise in distant supervision.

• We make our code and data creation pipeline
publicly available: https://github.com/

suamin/umls-medline-distant-re
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2 Related Work

In MIL-based distant supervision for corpus-level
RE, earlier works rely on the assumption that at
least one of the evidence samples represent the
target relation in a triple (Riedel et al., 2010; Hoff-
mann et al., 2011; Surdeanu et al., 2012). Recently,
piecewise convolutional neural networks (PCNN)
(Zeng et al., 2014) have been applied to DS (Zeng
et al., 2015), with notable extensions in selective at-
tention (Lin et al., 2016) and the modelling of noise
dynamics (Luo et al., 2017). Han et al. (2018a) pro-
posed a joint learning framework for knowledge
graph completion (KGC) and RE with mutual atten-
tion, showing that DS improves downstream KGC
performance, while KGC acts as an indirect signal
to filter textual noise. Dai et al. (2019) extended
this framework to biomedical RE, using improved
KGC models, ComplEx (Trouillon et al., 2017) and
SimplE (Kazemi and Poole, 2018), as well as ad-
ditional auxiliary tasks of entity-type classification
and named entity recognition to mitigate noise.

Pre-trained language models, such as BERT (De-
vlin et al., 2019), have been shown to improve the
downstream performance of many NLP tasks. Rel-
evant to distant RE, Alt et al. (2019) extended the
OpenAI Generative Pre-trained Transformer (GPT)
model (Radford et al., 2019) for bag-level MIL
with selective attention (Lin et al., 2016). Sun et al.
(2019) enriched pre-training stage with KB entity
information, resulting in improved performance.
For sentence-level RE, Wu and He (2019) proposed
an entity marking strategy for BERT (referred to
here as R-BERT) to perform relation classification.
Specifically, they mark the entity boundaries with
special tokens following the order they appear in
the sentence. Likewise, Soares et al. (2019) studied
several data encoding schemes and found marking
entity boundaries important for sentence-level RE.
With such encoding, they further proposed a novel
pre-training scheme for distributed relational learn-
ing, suited to few-shot relation classification (Han
et al., 2018b).

Our work builds on these findings, in particular,
we extend the BERT model (Devlin et al., 2019) for
bag-level MIL, similar to Alt et al. (2019). More
importantly, noting the significance of sentence-
ordered entity marking in sentence-level RE (Wu
and He, 2019; Soares et al., 2019), we introduce
the knowledge-based entity marking strategy suited
to bag-level DS. This naturally encodes the infor-
mation stored in KB, reducing the inherent noise.

3 Bag-level MIL for Distant RE

3.1 Problem Definition
Let E and R represent the set of entities and re-
lations from a knowledge base KB, respectively.
For h, t ∈ E and r ∈ R, let (h, r, t) ∈ KB be a
fact triple for an ordered tuple (h, t). We denote all
such (h, t) tuples by a set G+, i.e., there exists some
r ∈ R for which the triple (h, r, t) belongs to the
KB, called positive groups. Similarly, we denote
by G− the set of negative groups, i.e., for all r ∈ R,
the triple (h, r, t) does not belong to KB. The union
of these groups is represented by G = G+ ∪ G− 1.
We denote by Bg = [s

(1)
g , ..., s

(m)
g ] an unordered se-

quence of sentences, called bag, for g ∈ G such that
the sentences contain the group g = (h, t), where
the bag size m can vary. Let f be a function that
maps each element in the bag to a low-dimensional
relation representation [r

(1)
g , ..., r

(m)
g ]. With o, we

represent the bag aggregation function, that maps
instance level relation representation to a final bag
representation bg = o(f(Bg)). The goal of dis-
tantly supervised bag-level MIL for corpus-level
RE is then to predict the missing relation r given
the bag.

3.2 Entity Markers
Wu and He (2019) and Soares et al. (2019) showed
that using special markers for entities with BERT in
the order they appear in a sentence encodes the po-
sitional information that improves the performance
of sentence-level RE. It allows the model to focus
on target entities when, possibly, other entities are
also present in the sentence, implicitly doing entity
disambiguation and reducing noise. In contrast,
for bag-level distant supervision, the noisy channel
be attributed to several factors for a given triple
(h, r, t) and bag Bg:

1. Evidence sentences may not express the rela-
tion.

2. Multiple entities appearing in the sentence,
requiring the model to disambiguate target
entities among other.

3. The direction of missing relation.

4. Discrepancy between the order of the target
entities in the sentence and knowledge base.

To address (1), common approaches are to learn a
negative relation class NA and use better bag ag-
gregation strategies (Lin et al., 2016; Luo et al.,

1The sets are disjoint, G+ ∩ G− = ∅
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2017; Alt et al., 2019). For (2), encoding posi-
tional information is important, such as, in PCNN
(Zeng et al., 2014), that takes into account the rela-
tive positions of head and tail entities (Zeng et al.,
2015), and in (Wu and He, 2019; Soares et al.,
2019) for sentence-level RE. To account for (3) and
(4), multi-task learning with KGC and mutual at-
tention has proved effective (Han et al., 2018a; Dai
et al., 2019). Simply extending sentence sensitive
marking to bag-level can be adverse, as it enhances
(4) and even if the composition is uniform, it dis-
tributes the evidence sentence across several bags.
On the other hand, expanding relations to multiple
sub-classes based on direction (Wu and He, 2019),
enhances class imbalance and also distributes sup-
porting sentences. To jointly address (2), (3) and
(4), we introduce KB sensitive encoding suitable
for bag-level distant RE.

Formally, for a group g = (h, t) and a match-
ing sentence s(i)g with tokens (x0, ..., xL)2, we add
special tokens $ and ˆ to mark the entity spans as:
Sentence ordered: Called s-tag, entities are
marked in the order they appear in the sentence.
Following Soares et al. (2019), let s1 = (i, j)
and s2 = (k, l) be the index pairs with 0 <
i < j − 1, j < k, k ≤ l − 1 and l ≤ L de-
limiting the entity mentions e1 = (xi, ..., xj) and
e2 = (xk, ..., xl) respectively. We mark the bound-
ary of s1 with $ and s2 with ˆ. Note, e1 and e2 can
be either h or t.
KB ordered: Called k-tag, entities are marked in
the order they appear in the KB. Let sh = (i, j)
and st = (k, l) be the index pairs delimiting head
(h) and tail (t) entities, irrespective of the order
they appear in the sentence. We mark the boundary
of sh with $ and st with ˆ.

The s-tag annotation scheme is followed by
Soares et al. (2019) and Wu and He (2019) for
span identification. In Wu and He (2019), each
relation type r ∈ R is further expanded to two
sub-classes as r(e1, e2) and r(e2, e1) to capture di-
rection, while holding the s-tag annotation as fixed.
For DS-based RE, since the ordered tuple (h, t) is
given, the task is reduced to relation classification
without direction. This side information is encoded
in data with k-tag, covering (2) but also (3) and
(4). To account for (1), we also experiment with
selective attention (Lin et al., 2016) which has been
widely used in other works (Luo et al., 2017; Han
et al., 2018a; Alt et al., 2019).

2x0 =[CLS] and xL =[SEP]

Figure 2: Multiple instance learning (MIL) based bag-
level relation classification BERT with KB ordered en-
tity marking (Section 3.2). Special markers $ and ˆ al-
ways delimit the span of head (hs, he) and tail (ts, te)
entities regardless of their order in the sentence. The
markers captures the positions of entities and latent re-
lation direction.

3.3 Model Architecture
BERT (Devlin et al., 2019) is used as our base
sentence encoder, specifically, BioBERT (Lee
et al., 2020), and we extend R-BERT (Wu and
He, 2019) to bag-level MIL. Figure 2 shows the
model’s architecture with k-tag. Consider a bag
Bg of size m for a group g ∈ G representing the
ordered tuple (h, t), with corresponding spans
Sg = [(s

(1)
h , s

(1)
t ), ..., (s

(m)
h , s

(m)
t )] obtained with

k-tag, then for a pair of sentences in the bag and
spans, (s(i), (s

(i)
h , s

(i)
t )), we can represent the

model in three steps, such that the first two steps
represent the map f and the final step o, as follows:

1. SENTENCE ENCODING: BERT is applied to the
sentence and the final hidden state H

(i)
0 ∈ Rd, cor-

responding to the [CLS] token, is passed through
a linear layer3 W(1) ∈ Rd×d with tanh(.) activa-
tion to obtain the global sentence information in
h
(i)
0 .

2. RELATION REPRESENTATION: For the head en-
tity, represented by the span s(i)h = (j, k) for k > j,
we apply average pooling 1

k−j+1

∑k
n=j H

(i)
n , and

similarly for the tail entity with span s(i)t = (l,m)

for m > l, we get 1
m−l+1

∑m
n=l H

(i)
n . The

pooled representations are then passed through a
shared linear layer W(2) ∈ Rd×d with tanh(.)

activation to get h
(i)
h and h

(i)
t . To get the fi-

nal latent relation representation, we concatenate
the pooled entities representation with [CLS] as
r
(i)
g = [h

(i)
0 ;h

(i)
h ;h

(i)
t ] ∈ R3d.

3Each linear layer is implicitly assumed with a bias vector
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3. BAG AGGREGATION: After applying the first
two steps to each sentence in the bag, we obtain
[r

(1)
g , ..., r

(m)
g ]. With a final linear layer consisting

of a relation matrix Mr ∈ R|R|×3d and a bias vec-
tor br ∈ R|R|, we aggregate the bag information
with o in two ways:
Average: The bag elements are averaged as:

bg =
1

m

m∑

i=1

r(i)g

Selective attention (Lin et al., 2016): For a row r
in Mr representing the relation r ∈ R, we get the
attention weights as:

αi =
exp(rT r

(i)
g )

∑m
j=1 exp(r

T r
(j)
g )

bg =

m∑

i=1

αir
(i)
g

Following bg, a softmax classifier is applied to pre-
dict the probability p(r|bg; θ) of relation r being a
true relation with θ representing the model param-
eters, where we minimize the cross-entropy loss
during training.

4 Experiments

4.1 Data
Similar to (Dai et al., 2019), UMLS4 (Bodenreider,
2004) is used as our KB and MEDLINE abstracts5

as our text source. A data summary is shown in
Table 1 (see Appendix A for details on the data cre-
ation pipeline). We approximate the same statistics
as reported in Dai et al. (2019) for relations and
entities, but it is important to note that the data does
not contain the same samples. We divided triples
into train, validation and test sets, and following
(Weston et al., 2013; Dai et al., 2019), we make
sure that there is no overlapping facts across the
splits. Additionally, we add another constraint, i.e.,
there is no sentence-level overlap between the train-
ing and held-out sets. To perform groups negative
sampling, for the collection of evidence sentences
supporting NA relation type bags, we extend KGC
open-world assumption to bag-level MIL (see A.3).
20% of the data is reserved for testing, and of the
remaining 80%, we use 10% for validation and the
rest for training.

4We use 2019 release: umls-2019AB-full
5https://www.nlm.nih.gov/bsd/medline.

html

Table 1: Overall statistics of the data.

Triples Entities Relations Pos. Groups Neg. Groups

169,438 27,403 355 92,070 64,448

4.2 Models and Evaluation

We compare each tagging scheme, s-tag and k-tag,
with average (avg) and selective attention (attn) bag
aggregation functions. To test the setup of Wu and
He (2019), which follows s-tag, we expand each
relation type (exprels) r ∈ R to two sub-classes
r(e1, e2) and r(e2, e1) indicating relation direction
from first entity to second and vice versa. For all
experiments, we used batch size 2, bag size 16 with
sampling (see A.4 for details on bag composition),
learning rate 2e−5 with linear decay, and 3 epochs.
As the standard practice (Weston et al., 2013), eval-
uation is performed through constructing candidate
triples by combining the entity pairs in the test set
with all relations (except NA) and ranking the re-
sulting triples. The extracted triples are matched
against the test triples and the precision-recall (PR)
curve, area under the PR curve (AUC), F1 measure,
and Precision@k, for k in {100, 200, 300, 2000,
4000, 6000} are reported.

4.3 Results

Performance metrics are shown in Table 2 and plots
of the resulting PR curves in Figure 3. Since our
data differs from Dai et al. (2019), the AUC cannot
be directly compared. However, Precision@k indi-
cates the general performance of extracting the true
triples, and can therefore be compared. Generally,
models annotated with k-tag perform significantly
better than other models, with k-tag+avg achieving
state-of-the-art Precision@{2k,4k,6k} compared
to the previous best (Dai et al., 2019). The best
model of Dai et al. (2019) uses PCNN sentence
encoder, with additional tasks of SimplE (Kazemi
and Poole, 2018) based KGC and KG-attention,
entity-type classification and named entity recog-
nition. In contrast our data-driven method, k-tag,
greatly simplifies this by directly encoding the KB
information, i.e., order of the head and tail en-
tities and therefore, the latent relation direction.
Consider again the example in Figure 1 where our
source triple (h, r, t) is (neurofibromatosis 1, asso-
ciated genetic condition, breast cancer), and only
last sentence has the same order of entities as KB.
This discrepancy is conveniently resolved (note in
Figure 2, for last sentence the extracted entities
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Table 2: Relation extraction results for different model configurations and data splits.

Model Bag Agg. AUC F1 P@100 P@200 P@300 P@2k P@4k P@6k

Dai et al. (2019) - - - - - - .913 .829 .753

s-tag
avg .359 .468 .791 .704 .649 .504 .487 .481
attn .122 .225 .587 .563 .547 .476 .441 .418

s-tag+exprels
avg .383 .494 .508 .519 .521 .507 .508 .511
attn .114 .216 .459 .476 .482 .504 .496 .484

k-tag
avg .684 .649 .974 .983 .986 .983 .977 .969
attn .314 .376 .967 .941 .925 .857 .814 .772

sentence order is flipped to KG order when con-
catenating, unlike s-tag) with k-tag. We remark
that such knowledge can be seen as learned, when
jointly modeling with KGC, however, considering
the task of bag-level distant RE only, the KG triples
are known information and we utilize this informa-
tion explicitly with k-tag encoding.

As PCNN (Zeng et al., 2015) can account for the
relative positions of head and tail entities, it also
performs better than the models tagged with s-tag
using sentence order. Similar to Alt et al. (2019)6,
we also note that the pre-trained contextualized
models result in sustained long tail performance.
s-tag+exprels reflects the direct application of Wu
and He (2019) to bag-level MIL for distant RE. In
this case, the relations are explicitly extended to
model entity direction appearing first to second in
the sentence, and vice versa. This implicitly intro-
duces independence between the two sub-classes
of the same relation, limiting the gain from shared
knowledge. Likewise, with such expanded rela-
tions, class imbalance is further enhanced to more
fine-grained classes.

Though selective attention (Lin et al., 2016) has
been shown to improve the performance of distant
RE (Luo et al., 2017; Han et al., 2018a; Alt et al.,
2019), models in our experiments with such an
attention mechanism significantly underperformed,
in each case bumping the area under the PR curve
and making it flatter. We note that more than 50%
of bags are under-sized, in many cases, with only
1-2 sentences, requiring repeated over-sampling to
match fixed bag size, therefore, making it difficult
for attention to learn a distribution over the bag
with repetitions, and further adding noise. For such
cases, the distribution should ideally be close to
uniform, as is the case with averaging, resulting in
better performance.

6Their model does not use any entity marking strategy.

Figure 3: Precision-Recall (PR) curve for different
models. We see that the models with k-tag perform
better than the s-tag with average aggregation showing
consistent performance for long-tail relations.

5 Conclusion

This work extends BERT to bag-level MIL and in-
troduces a simple data-driven strategy to reduce the
noise in distantly supervised biomedical RE. We
note that the position of entities in sentence and the
order in KB encodes the latent direction of relation,
which plays an important role for learning under
such noise. With a relatively simple methodology,
we show that this can sufficiently be achieved by
reducing the need for additional tasks and high-
lighting the importance of data quality.

Acknowledgements

The authors would like to thank the anonymous
reviewers for helpful feedback. The work was par-
tially funded by the European Union’s Horizon
2020 research and innovation programme under
grant agreement No. 777107 through the project
Precise4Q and by the German Federal Ministry
of Education and Research (BMBF) through the
project DEEPLEE (01IW17001).

191



References
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A Data Pipeline

In this section, we explain the steps taken to create
the data for distantly-supervised (DS) biomedical
relation extraction (RE). We highlight the impor-
tance of a data creation pipeline as the quality of
data plays a key role in the downstream perfor-
mance of our model. We note that a pipeline is like-
wise important for generating reproducible results,
and contributes toward the possibility of having
either a benchmark dataset or a repeatable set of
rules.

A.1 UMLS processing
The fact triples were obtained for English con-
cepts, filtering for RO relation types only (Dai et al.,
2019). We collected 9.9M (CUI head, relation text,
CUI tail) triples, where CUI represents the concept
unique identifier in UMLS.

A.2 MEDLINE processing
From 34.4M abstracts, we extracted 160.4M unique
sentences. To perform fast and scalable search, we
use the Trie data structure7 to index all the tex-
tual descriptions of UMLS entities. In obtaining
a clean set of sentences, we set the minimum and
maximum sentence character length to 32 and 256
respectively, and further considered only those sen-
tences where matching entities are mentioned only
once. The latter decision is to lower the noise that
may come when only one instance of multiple oc-
currences is marked for a matched entity. With
these constraints, the data was reduced to 118.7M
matching sentences.

A.3 Groups linking and negative sampling
Recall the entity groups G = G+∪G− (Section 3.1).
For training with NA relation class, we generate
hard negative samples with an open-world assump-
tion (Soares et al., 2019; Lerer et al., 2019) suited to
bag-level multiple instance learning (MIL). From
9.9M triples, we removed the relation type and col-
lected 9M CUI groups in the form of (h, t). Since
each CUI is linked to more than one textual form,
all of the text combinations for two entities must
be considered for a given pair, resulting in 531M
textual groups T for the 586 relation types.

Next, for each matched sentence, let P2
s denote

the size 2 permutations of entities present in the
sentence, then T ∩ P2

s return groups which are
present in KB and have matching evidence (positive

7https://github.com/vi3k6i5/flashtext
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groups, G+). Simultaneously, with a probability of
1
2 , we remove the h or t entity from this group and
replace it with a novel entity e in the sentence, such
that the resulting group (e, t) or (h, e) belongs to
G−. This method results in sentences that are seen
both for the true triple, as well as for the invalid
ones. Further using the constraints that the relation
group sizes must be between 10 to 1500, we find
3548 relation types (approximately the same as Dai
et al. (2019)) with 92K positive groups and 2.1M
negative groups, which were reduced to 64K by
considering a random subset of 70% of the positive
groups. Table 1 provides these summary statistics.

A.4 Bag composition and data splits
For bag composition, we created bags of constant
size by randomly under- or over-sampling the sen-
tences in the bag (Han et al., 2019) to avoid larger
bias towards common entities (Soares et al., 2019).
The true distribution had a long tail, with more than
50% of the bags having 1 or 2 sentences. We de-
fined a bag to be uniform, if the special markers
represent the same entity in each sentence, either
h or t. If the special markers can take on both h
or t, we consider that bag to have a mix composi-
tion. The k-tag scheme, on the other hand, naturally
generates uniform bags. Further, to support the set-
ting of Wu and He (2019), we followed the s-tag
scheme and expanded the relations by adding a suf-
fix to denote the directions as r(e1, e2) or r(e2, e1),
with the exception of the NA class, resulting in 709
classes. For fair comparisons with k-tag, we gener-
ated uniform bags with s-tag as well, by keeping e1
and e2 the same per bag. Due to these bag compo-
sition and class expansion (in one setting, exprels)
differences, we generated three different splits, sup-
porting each scheme, with the same test sets in
cases where the classes are not expanded and a dif-
ferent test set when the classes are expanded. Table
A.1 shows the statistics for these splits.

Table A.1: Different data splits.

Model Set Type Triples Triples (w/o NA) Groups Sentences (Sampled)

k-tag
train 92,972 48,563 92,972 1,487,552
valid 13,555 8,399 15,963 255,408
test 33,888 20,988 38,860 621,760

s-tag
train 91,555 47,588 125,852 2,013,632
valid 13,555 8,399 22,497 359,952
test 33,888 20,988 55,080 881,280

s-tag+exprels
train 125,155 71,402 125,439 2,007,024
valid 22,604 16,298 22,607 361,712
test 55,083 39,282 55,094 881,504

8355 including NA relation
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Abstract

Due to the exponential growth of biomedical
literature, event and relation extraction are im-
portant tasks in biomedical text mining. Most
work only focus on relation extraction, and de-
tect a single entity pair mention on a short
span of text, which is not ideal due to long
sentences that appear in biomedical contexts.
We propose an approach to both relation and
event extraction, for simultaneously predicting
relationships between all mention pairs in a
text. We also perform an empirical study to
discuss different network setups for this pur-
pose. The best performing model includes
a set of multi-head attentions and convolu-
tions, an adaptation of the transformer archi-
tecture, which offers self-attention the ability
to strengthen dependencies among related el-
ements, and models the interaction between
features extracted by multiple attention heads.
Experiment results demonstrate that our ap-
proach outperforms the state of the art on a
set of benchmark biomedical corpora includ-
ing BioNLP 2009, 2011, 2013 and BioCre-
ative 2017 shared tasks.

1 Introduction

Event and relation extraction has become a key re-
search topic in natural language processing with
a variety of practical applications especially in
the biomedical domain, where these methods are
widely used to extract information from massive
document sets, such as scientific literature and pa-
tient records. This information contains the inter-
actions between named entities such as protein-
protein, drug-drug, chemical-disease, and more
complex events.

Relations are usually described as typed, some-
times directed, pairwise links between defined
named entities (Björne et al., 2009). Event ex-
traction differs from relation extraction in the sense
that an event has an annotated trigger word (e.g., a

verb), and could be an argument of other events to
connect more than two entities. Event extraction
is a more complicated task compared to relation
extraction due to the tendency of events to capture
the semantics of texts. For clarity, Figure 1 shows
an example from the GE11 shared task corpus that
includes two nested events.

Figure 1: Example of nested events from GE11 shared
task

Recently, deep neural network models obtain
state-of-the-art performance for event and relation
extraction. Two major neural network architectures
for this purpose include Convolutional Neural Net-
works (CNNs) (Santos et al., 2015; Zeng et al.,
2015) and Recurrent Neural Networks (RNNs)
(Mallory et al., 2015; Verga et al., 2015; Zhou et al.,
2016). While CNNs can capture the local features
based on the convolution operations and are more
suitable for addressing short sentence sequences,
RNNs are good at learning long-term dependency
features, which are considered more suitable for
dealing with long sentences. Therefore, combining
the advantages of both models is the key point for
improving biomedical event and relation extraction
performance (Zhang et al., 2018).

However, encoding long sequences to incorpo-
rate long-distance context is very expensive in
RNNs (Verga et al., 2018) due to their computa-
tional dependence on the length of the sequence.
In addition, computations could not be parallelized
since each token’s representation requires as input
the representation of its previous token. In con-
trast, CNNs can be executed entirely in parallel
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across the sequence, and have shown good perfor-
mance in event and relation extraction (Björne and
Salakoski, 2018). However, the amount of context
incorporated into a single token’s representation
is limited by the depth of the network, and very
deep networks can be difficult to learn (Hochreiter,
1998).

To address these problems, self-attention net-
works (Parikh et al., 2016; Lin et al., 2017) come
into play. They have shown promising empirical
results in various natural language processing tasks,
such as information extraction (Verga et al., 2018),
machine translation (Vaswani et al., 2017) and nat-
ural language inference (Shen et al., 2018). One of
their strengths lies in their high parallelization in
computation and flexibility in modeling dependen-
cies regardless of distance by explicitly attending
to all the elements. In addition, their performance
can be improved by multi-head attention (Vaswani
et al., 2017), which projects the input sequence
into multiple subspaces and applies attention to the
representation in each subspace.

In this paper, we propose a new neural network
model that combines multi-head attention mecha-
nisms with a set of convolutions to provide global
locality in biomedical event and relation extraction.
Convolutions capture the local structure of text,
while self-attention learns the global interaction
between each pair of words. Hence, our approach
models locality for self-attention while the interac-
tions between features are learned by multi-head
attentions. The experiment results over the biomed-
ical benchmark corpora show that providing global
locality outperforms the existing state of the art
for biomedical event and relation extraction. The
proposed architecture is shown in Figure 2.

Conducting a set of experiments over the cor-
pora of the shared tasks for BioNLP 2009, 2011
and 2013, and BioCreative 2017, we compare the
performance of our model with the best-performing
system (TEES) (Björne and Salakoski, 2018) in the
shared tasks. The results we achieve via precision,
recall, and F-score demonstrate that our model ob-
tains state-of-the-art performance. We also em-
pirically assess three variants of our model and
elaborate on the results further in the experiments.

The rest of the paper is organized as follows. Sec-
tion 2 summarizes the background. The data, and
the proposed approach are explained in Sections 3
and 4 respectively. Section 5 explains the experi-
ments and discusses the achieved results. Finally,

Section 6 summarizes the findings of the paper and
presents future work.

2 Background

Biomedical event and relation extraction have been
developed thanks to the contribution of corpora
generated for community shared tasks (Kim et al.,
2009, 2011; Nédellec et al., 2013; Segura Bedmar
et al., 2011, 2013; Krallinger et al., 2017). In these
tasks, relevant biomedical entities such as genes,
proteins and chemicals are given and the informa-
tion extraction methods aim to identify relations
alone or relations and events together within a sen-
tence span.

A variety of methods have been evaluated on
these tasks, which range from rule based meth-
ods to more complex machine learning methods,
either supported by shallow or deep learning ap-
proaches. Some of the deep learning based meth-
ods include CNNs (Björne and Salakoski, 2018;
Santos et al., 2015; Zeng et al., 2015) and RNNs
(Li et al., 2019; Mallory et al., 2015; Verga et al.,
2015; Zhou et al., 2016). CNNs will identify local
context relations while their performance may suf-
fer when entities need to be identified in a broader
context. On the other hand, RNNs are difficult to
parallelize while they do not fully solve the long de-
pendency problem (Verga et al., 2018). Moreover,
such approaches are proposed for relation extrac-
tion, but not to extract nested events. In this work,
we intend to improve over existing methods. We
combine a set of parallel multi-head attentions with
a set of 1D convolutions to provide global locality
in biomedical event and relation extraction. Our
approach models locality for self-attention while
the interactions between features are learned by
multi-head attentions. We evaluate our model on
data from the shared tasks for BioNLP 2009, 2011
and 2013, and BioCreative 2017.

The BioNLP Event Extraction tasks provide the
most complex corpora with often large sets of event
types and at times relatively small corpus sizes. Our
proposed approach achieves higher performance
on the GE09, GE11, EPI11, ID11, REL11, GE13,
CG13 and PC13 BioNLP Shared Task corpora,
compared to the top performing system (TEES)
(Björne and Salakoski, 2018) for both relation and
event extraction in these tasks. Since the annota-
tions for the test sets of the BioNLP Shared Task
corpora are not provided, we uploaded our predic-
tions to the task organizers’ servers for evaluation.

196



Word	Embedding
Relative	Position	Embedding
Distance	Embedding

1 2 3

1
2
3

Vector	Representation

Multi-Head
Attention

Multi-Head
Attention

Multi-Head
Attention

Multi-head	Attentions 1D-Convolutions Max	Pooling Merge	Layer Output	Layer

x1

xn

x2

.

.

.

Multi-Head
Attention

Figure 2: Our model architecture for biomedical event and relation extraction: The embedding vectors are merged
together before the multi-head attention and convolution layers. The global max pooling is then applied to the
results of these operations. Finally, the output layer shows the predicted labels.

The CHEMPROT corpus in the BioCreative VI
Chemical–Protein relation extraction task (CP17)
also provides a standard comparison with current
methods in relation extraction. The CHEMPROT
corpus is relatively large compared to its low num-
ber of five relation types. Our model outperforms
the best-performing system (TEES) (Björne and
Salakoski, 2018) for relation extraction in this task.

3 Data

We develop and evaluate our approach on a
number of event and relation extraction corpora.
These corpora originate from three BioNLP Shared
Tasks (Kim et al., 2009; Björne and Salakoski,
2011; Nédellec et al., 2013) and the BioCre-
ative VI Chemical–Protein relation extraction task
(Krallinger et al., 2017). The BioNLP corpora
cover various domains of molecular biology and
provide the most complex event annotations. The
BioCreative corpora use pairwise relation anno-
tations. Table 1 shows information about these
corpora.

For further analysis and experiments, we also
used the AMIA gene-mutation corpus available in
(Jimeno Yepes et al., 2018). The training/testing
sets contain 2656/385 mentions of mutations, and
2799/280 of genes or proteins, and 1617/130 rela-

Corpus Domain E I S

GE09 Molecular Biology 10 6 11380

GE11 Molecular Biology 10 6 14958
EPI11 Epigenetics and PTM:s 16 6 11772
ID11 Infection Diseases 11 7 5118
REL11 Entity Relations 1 2 11351

GE13 Molecular Biology 15 6 8369
CG13 Cancer Genetics 42 9 5938
PC13 Pathway Curation 24 9 5040

CP17 Chemical-Protein Int. - 5 24594

Table 1: Information about the domain, number of
event and entity types (E), number of event argument
and relation types (I), and number of sentences (S), re-
lated to the corpora of the biomedical shared tasks

tions between genes and mutations. We extracted
about 30% of the training set as the validation set.

4 Model

We propose a new biomedical event extraction
model that is mainly built upon multi-head atten-
tions to learn the global interactions between each
pair of tokens, and convolutions to provide locality.
The proposed neural network architecture consists
of 4 parallel multi-head attentions followed by a set
of 1D convolutions with window sizes 1, 3, 5 and 7.
Our model attends to the most important tokens in
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the input features1, and enhances the feature extrac-
tion of dependent elements across multiple heads,
irrespective of their distance. Moreover, we model
locality for multi-head attentions by restricting the
attended tokens to local regions via convolutions.

The relation and event extraction task is mod-
elled as a graph representation of events and rela-
tions (Björne and Salakoski, 2018). Entities and
event triggers are nodes, and relations and event ar-
guments are the edges that connect them. An event
is modelled as a trigger node and its set of outgoing
edges. Relation and event extraction are performed
through the following classification tasks: (i) En-
tity and Trigger Detection, which is a named-entity
recognition task where entities and event triggers in
a sentence span are detected to generate the graph
nodes; (ii) Relation and Event Detection, where
relations and event arguments are predicted for all
valid pairs of entity and trigger nodes to create the
graph edges; (iii) Event Duplication, where each
event is classified as an event or a negative which
causes unmerging in the graph2; (iv) Modifier De-
tection, in which event modality (speculation or
negation) is detected. In relation extraction tasks
where entities are given, only the second classifica-
tion task is partially used.

The same network architecture is used for all
four classification tasks, with the number of pre-
dicted labels changing between tasks.

4.1 Inputs
The input is modelled in the context of a sen-
tence window, centered around the target entity,
relation or event. The sentence is modelled as
a linear sequence of word tokens. Following
the work in (Björne and Salakoski, 2018), we
use a set of embedding vectors as the input fea-
tures, where each unique word token is mapped
to the relevant vector space embeddings. We use
the pre-trained 200-dimensional word2vec vectors
(Mikolov et al., 2013) induced on a combination of
the English Wikipedia and the millions of biomed-
ical research articles from PubMed and PubMed
Central (Moen and Ananiadou, 2013), along with
the 8-dimensional embeddings of relative positions,
and distances learned from the input corpus. Fol-
lowing the work in (Zeng et al., 2014), we use
Distance features, where the relative distances to
tokens of interest are mapped to their own vec-

1We choose different embeddings for each task/dataset to
be in line with TEES.

2Since events are n-ary relations, event nodes may overlap.

tors. We also consider Relative Position features
to identify the locations and roles (i.e., entities,
event triggers, and arguments) of tokens in the clas-
sified structure. Finally, these embeddings with
their learned weights3 are concatenated together to
shape an n-dimensional vector ei for each word to-
ken. This merged input sequence is then processed
by a set of parallel multi-head attentions followed
by convolutional layers.

4.2 Multi-head Attention
Self-attention networks produce representations by
applying attention to each pair of tokens from the
input sequence, regardless of their distance. Ac-
cording to the previous work (Vaswani et al., 2017),
multi-head attention applies self-attention multiple
times over the same inputs using separately normal-
ized parameters (attention heads) and combines the
results, as an alternative to applying one pass of at-
tention with more parameters. The intuition behind
this modeling decision is that dividing the attention
into multiple heads makes it easier for the model to
learn to attend to different types of relevant infor-
mation with each head. The self-attention updates
input embeddings ei by performing a weighted sum
over all tokens in the sequence, weighted by their
importance for modeling token i. Given an input
sequence E = {e1, ..., eI} ∈ RI×d, the model first
projects each input to a key k, value v, and query
q, using separate affine transformations with ReLU
activations (Glorot et al., 2011). Here, k, v, and
q are each in R

d
H , where d indicates the hidden

size, and H is the number of heads. The attention
weights ahij for head h between tokens i and j are
computed using scaled dot-product attention:

ahij = σ(
qhi

T
khj√
d

) (1)

ohi =
∑

j

vhj � shij

where ohi is the output of the attention head h. � de-
notes element-wise multiplication and σ indicates
a softmax along the jth dimension. The scaled at-
tention is meant to aid optimization by flattening
the softmax and better distributing the gradients
(Vaswani et al., 2017). The outputs of the indi-
vidual attention heads are concatenated into oi as:
oi = [o1i ; ...; o

H
i ]. Herein, all layers use residual

3The only exception is for the word vectors, where the
original weights are used to provide generalization to words
outside the task’s training corpus.
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connections between the output of the multi-headed
attention and its input. Layer normalization (Lei Ba
et al., 2016), LN(.), is then applied to the output:
mi = LN(ei + oi). The multi-head attention layer
uses a softmax activation function.

4.3 Convolutions

The multi-head attentions are then followed by a set
of parallel 1D convolutions with window sizes 1, 3,
5 and 7. Adding these explicit n-gram modelings
helps the model to learn to attend to local features.
Our convolutions use the ReLU activation function.
We use C(.) to denote a convolutional operator.
The convolutional portion of the model is given by:

ci = ReLU(C(mi)) (2)

Global max pooling is then applied to each 1D
convolution and the resulting features are merged
together into an output vector.

4.4 Classification

Finally, the output layer performs the classifica-
tion, where each label is represented by one neuron.
The classification layer uses the sigmoid activation
function. Classification is performed as multilabel
classification where each example may have zero,
one or multiple positive labels.

We use the adam optimizer with binary crossen-
tropy and a learning rate of 0.001. Dropout of 0.1 is
also applied at two steps of merging input features
and global max pooling to provide generalization.

5 Experiments and Results

We have conducted a set of experiments to eval-
uate our proposed approach over the benchmark
biomedical corpora. In addition to evaluating our
main model (4MHA-4CNN), we have evaluated
the performance of three variants of our proposed
approach: (i) 4MHA: 4 parallel multi-head atten-
tions apply self-attention multiple times over the
input features; (ii) 1MHA: only 1 multi-head atten-
tion applies self-attention to the input features; (iii)
4CNN-4MHA: multiple self-attentions are applied
to the input features via a set of 1D convolutions4.
The 4CNN architecture matches the best perform-
ing configuration (4CNN - mixed 5 X ensemble)5

used by TEES (Björne and Salakoski, 2018), which
4We also conducted experiments with 1CNN-1MHA and

1MHA-1CNN, which are excluded due to the poor perfor-
mance.

5We use 4CNN to represent this configuration.

is composed of four 1D convolutions with window
sizes 1, 3, 5 and 7. In our models and TEES, we
set the number of filters for the convolutions to 64.
The number of heads for multi-head attentions is
also set to 8. The reported results of TEES are
achieved by running their out-of-the-box system
for different tasks.

Since training a single model can be prone to
overfitting if the validation set is too small (Björne
and Salakoski, 2018), we use mixed 5 model en-
semble, which takes 5-best models (out of 20),
ranked with micro-averaged F-score on random-
ized train/validation set split, and considers their
averaged predictions. These ensemble predictions
are calculated for each label as the average of all
the models’ predicted confidence scores. Precision,
recall, and F-score of the proposed approach and
its variants are compared to TEES in Table 2. Our
model (4MHA-4CNN) obtains the state-of-the-art
results compared to those of the top performing
system (TEES) in different shared tasks: BioNLP
(GE09, GE11, EPI11, ID11, REL11, GE13, CG13,
PC13), BioCreative (CP17), and the AMIA dataset.

Analyzing the results, we observe that the pro-
posed 4MHA-4CNN model has the best F-score
in the majority of datasets except for EPI11, ID11
and CG13, where the proposed MHA models (i.e.,
1MHA and 4MHA) have the best F-score and re-
call. These tasks are related to epigenetics and
post-translational modifications (EPI11), infection
diseases (ID11) and cancer genetics (CG13), where
events typically require long dependencies in most
of the cases. It explains why the MHA-alone mod-
els are better than when combined with convolu-
tions. The F-scores achieved by 4MHA-4CNN
and 4MHA models on GE09 dataset are also very
close. In many cases, when using the configura-
tions in which MHA is applied to the input features,
both precision and recall are better compared to
other configurations. Moreover, having four paral-
lel MHAs applied to the input features outperforms
1MHA and the other potential variants6.

In terms of precision, the advantage of applying
4CNN versus 4MHA to the merged input features
depends on the dataset. On PC13, the precision
when using 4CNN on the merged input features is
much higher compared to other configurations, but
the recall is significantly lower.

The proposed 4MHA-4CNN model has also
6The experiment with 8MHA, and multiple MHAs one

after the other on the whole sequence are excluded from the
paper due to the poor perfromance.
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Task Precision Recall F-score Approach

65.73 44.72 53.23 TEES 4CNN
65.01 46.83 54.44 Proposed 4MHA

GE09 64.37 45.19 53.10 Proposed 1MHA
61.99 45.51 52.48 Proposed 4CNN-4MHA
65.98 45.60 53.93 Proposed 4MHA-4CNN

66.09 46.62 54.68 TEES 4CNN
66.19 48.67 56.09 Proposed 4MHA

GE11 66.26 48.60 56.07 Proposed 1MHA
67.07 47.61 55.69 Proposed 4CNN-4MHA
66.12 49.34 56.51 Proposed 4MHA-4CNN

63.31 46.73 53.78 TEES 4CNN
63.71 50.73 56.48 Proposed 4MHA

EPI11 66.38 49.85 56.94 Proposed 1MHA
63.60 45.72 53.20 Proposed 4CNN-4MHA
65.43 48.55 55.74 Proposed 4MHA-4CNN

70.14 44.36 54.35 TEES 4CNN
66.63 48.65 56.24 Proposed 4MHA

ID11 71.64 46.99 56.75 Proposed 1MHA
68.92 41.04 51.44 Proposed 4CNN-4MHA
69.05 44.91 54.43 Proposed 4MHA-4CNN

71.26 62.37 66.52 TEES 4CNN
71.56 63.78 67.45 Proposed 4MHA

REL11 68.55 64.39 66.40 Proposed 1MHA
71.02 55.53 62.33 Proposed 4CNN-4MHA
71.91 65.39 68.50 Proposed 4MHA-4CNN

62.22 39.96 48.66 TEES 4CNN
60.68 40.35 48.47 Proposed 4MHA

GE13 60.21 40.75 48.60 Proposed 1MHA
58.14 37.66 45.71 Proposed 4CNN-4MHA
59.76 41.65 49.09 Proposed 4MHA-4CNN

66.08 49.05 56.30 TEES 4CNN
65.92 53.50 59.06 Proposed 4MHA

CG13 67.02 52.49 58.87 Proposed 1MHA
61.91 48.02 54.09 Proposed 4CNN-4MHA
65.47 51.71 57.78 Proposed 4MHA-4CNN

63.49 43.37 51.54 TEES 4CNN
59.45 49.90 54.26 Proposed 4MHA

PC13 60.64 47.25 53.11 Proposed 1MHA
57.61 43.23 49.39 Proposed 4CNN-4MHA
60.51 49.43 54.41 Proposed 4MHA-4CNN

73.00 45.00 56.00 TEES 4CNN
70.00 58.00 63.00 Proposed 4MHA

CP17 77.00 48.00 58.00 Proposed 1MHA
77.00 44.00 56.00 Proposed 4CNN-4MHA
75.00 50.00 60.00 Proposed 4MHA-4CNN

84.41 87.52 85.90 TEES 4CNN
83.73 88.51 86.01 Proposed 4MHA

AMIA 85.12 89.50 87.31 Proposed 1MHA
85.02 89.01 87.00 Proposed 4CNN-4MHA
85.21 90.11 87.53 Proposed 4MHA-4CNN

Table 2: Precision, Recall and F-score, measured on the corpora of various shared tasks for our models, and
the state of the art. The best scores (the first and the second highest scores) for each task are bolded and high-
lighted, respectively. All the results (except those of CP17 and AMIA) are evaluated using the official evaluation
program/server of each task.

good recall, except for EPI11, ID11, and CG13,
where 4MHA is better. As mentioned before, the
addition of convolutions after the multi-head atten-

tions might be less useful in these three sets, since
sentences in these topics describe interactions for
which long context dependencies are present.
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Figure 3: Visualization of multi-head attention in different architectures

Overall, our observations support the hypothesis
that higher recall/F-score is obtained in configura-
tions in which 4MHA is applied first to the merged
input features, where CNNs are not as convenient
as MHAs to deal with long dependencies.

5.1 Discussion

Besides improving the previous state of the art, the
results indicate that combining multi-head attention
with convolution provides an effective performance
compared to individual components. Among the
variants of our model, 4MHA also outperforms
TEES over all the shared tasks reported in Table
2. Even though convolutions are quite effective
(Björne and Salakoski, 2018) on their own, multi-
head attentions improve their performance being
able to deal with longer dependencies.

Figure 3 shows the multi-head attention (sum of
the attention of all heads) of the ”relation and event
detection” classification task for different proposed
network architectures (4MHA-4CNN, 1MHA, and
4MHA) on a sample sentence ”The presence of
activating TSH-R mutations has also been demon-
strated in differentiated thyroid carcinomas.”. In
the 4MHA and 4MHA-4CNN models, the four
multi-head attention layers contribute distinctively
different attentions from each other. This allows
the 4MHA and 4MHA-4CNN models to indepen-
dently exploit more relationships between the to-

kens than the 1MHA model. In addition, the convo-
lutions make the 4MHA-4CNN model have more
focused attentions on certain important tokens than
the 4MHA model.

Considering the computational complexity, ac-
cording to the work in (Vaswani et al., 2017), self-
attention has a cost that is quadratic with the length
of the sequence, while the convolution cost is
quadratic with respect to the representation dimen-
sion of the data. The representation dimension of
the data is typically higher compared to the length
of individual sentences. Outperforming convolu-
tions in terms of computational complexity and
F-score, multi-head attention mechanisms seem to
be better suited. Although the addition of convolu-
tions after the multi-head makes the model more
expensive, the lower representation dimension of
the filters reduces the cost.

5.2 Error Analysis

We have performed error analysis on the baseline
system (TEES), and our approach7 over the gene-
mutation AMIA and CP17 datasets8, and observed
the following sources of error.

7We consider the same configuration for the convolutions
in both TEES and our approach.

8We only use these datasets for error analysis due to the
limited access to the gold set of other datasets. Hence, this
error analysis only covers relation extraction.
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Figure 4: Error analysis of TEES and our approach over the gene-mutation AMIA dataset
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Table 3: Empirical evaluation of long-distance dependencies on CP17

Relations involving multiple entities: This is a
major source of false negatives for TEES, while
our approach exhibits a more robust behavior and
achieves full recall. The reason would be the ability
of multi-head attention to jointly attend to infor-
mation from different representation subspaces at
different positions (Vaswani et al., 2017). In an ex-
ample from the AMIA dataset (Figure 4 (a)), there
is a ”has mutation” relationship between the term
”mutations” and the three gene-protein entities of
”MLH1”, ”MSH2”, and ”MSH6”. While the state-
of-the-art approach only finds the relation between
the mutation and the first gene-protein (MLH1) and
ignores the other two relations, our approach cap-
tures the relations between the mutation and all
three entities (MLH1, MSH2, and MSH6).

Long-distance dependencies: TEES also seems
to have difficulty in annotating long-distance re-
lations, as in the missed relation between ”dele-
tions” and ”TGF-β” in an example from the AMIA

dataset (Figure 4 (b)), which is captured by our
approach. We explored this issue further by plot-
ting the performance of different proposed archi-
tectures and that of TEES over different distances.
We relied on the CP17 dataset, since the test set
is considerably larger than AMIA. We performed
this analysis for the best performing network ar-
chitecture proposed (4MHA-4CNN) along with
4MHA and 4CNN architectures separately as the
individual components, to study how these archi-
tectures behave in capturing distant relations. We
measure the distance as the number of tokens be-
tween the farthest entities involved in a relation,
by employing the tokenization carried out by the
TEES pre-processing tool. The results are provided
in Figure 3. Regardless of the evaluation metric
used, we observe that the scores decrease at longer
distances, and 4MHA outperforms the other two ar-
chitectures, which lies in the ability of multi-head
attention to capture long distance dependencies.
This experiment shows how 4MHA provides glob-
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ality in 4MHA-4CNN, which slightly outperforms
4CNN in longer distances.

Negative or speculative contexts: Regarding
the false positives for TEES that are generally well
handled by our system, the annotation of specula-
tive or negative language seems to be problematic.
For instance, as depicted in Figure 4 (c), TEES
incorrectly captures the relation between ”muta-
tion” and ”SMAD2”, despite the negative cue, ”in-
activating”. Even though our approach correctly
ignores this false positive in the short distance, it
still captures speculative long dependencies, which
motivates a natural extension of our work in future.

6 Conclusion

We have proposed a novel architecture based on
multi-head attention and convolutions, which deals
with the long dependencies typical of biomedical
literature. The results show that this architecture
outperforms the state of the art on existing biomed-
ical information extraction corpora. While multi-
head attention identifies long dependencies in ex-
tracting relations and events, convolutions provide
the additional benefit of capturing more local rela-
tions, which improves the performance of existing
approaches. The finding that CNN-before-MHA is
outperformed by MHA-before-CNN is very inter-
esting and could be used as a competitive baseline
for future work.

Our ongoing work includes generalizing our find-
ings to other non-biomedical information extrac-
tion tasks. Current work is focused on event and
relation extraction from a single short/long sen-
tence; we would like to experiment with additional
contents to study the behaviour of these models
across sentence boundaries (Verga et al., 2018). Fi-
nally, we intend to extend our approach to deal with
speculative contexts by considering more semantic
linguistic features, e.g., sense embeddings (Rothe
and Schütze, 2015) on biomedical literature.
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Abstract

Multi-task learning (MTL) has achieved re-
markable success in natural language process-
ing applications. In this work, we study a
multi-task learning model with multiple de-
coders on varieties of biomedical and clini-
cal natural language processing tasks such as
text similarity, relation extraction, named en-
tity recognition, and text inference. Our em-
pirical results demonstrate that the MTL fine-
tuned models outperform state-of-the-art trans-
former models (e.g., BERT and its variants)
by 2.0% and 1.3% in biomedical and clinical
domains, respectively. Pairwise MTL further
demonstrates more details about which tasks
can improve or decrease others. This is par-
ticularly helpful in the context that researchers
are in the hassle of choosing a suitable model
for new problems. The code and models are
publicly available at https://github.com/
ncbi-nlp/bluebert.

1 Introduction

Multi-task learning (MTL) is a field of machine
learning where multiple tasks are learned in paral-
lel while using a shared representation (Caruana,
1997). Compared with learning multiple tasks indi-
vidually, this joint learning effectively increases the
sample size for training the model, thus leads to per-
formance improvement by increasing the general-
ization of the model (Zhang and Yang, 2017). This
is particularly helpful in some applications such as
medical informatics where (labeled) datasets are
hard to collect to fulfill the data-hungry needs of
deep learning.

MTL has long been studied in machine learn-
ing (Ruder, 2017) and has been used success-
fully across different applications, from natural
language processing (Collobert and Weston, 2008;
Luong et al., 2016; Liu et al., 2019c), computer
vision (Wang et al., 2009; Liu et al., 2019a; Chen

et al., 2019), to health informatics (Zhou et al.,
2011; He et al., 2016; Harutyunyan et al., 2019).
MTL has also been studied in biomedical and clin-
ical natural language processing (NLP) such as
named entity recognition and normalization and the
relation extraction. However, most of these studies
focus on either one task with multi corpora (Khan
et al., 2020; Wang et al., 2019b) or multi-tasks on
a single corpus (Xue et al., 2019; Li et al., 2017;
Zhao et al., 2019).

To bridge this gap, we investigate the use of MTL
with transformer-based models (BERT) on multiple
biomedical and clinical NLP tasks. We hypothe-
size the performance of the models on individual
tasks (especially in the same domain) can be im-
proved via joint learning. Specifically, we compare
three models: the independent single-task model
(BERT), the model refined via MTL (called MT-
BERT-Refinement), and the model fine-tuned for
each task using MT-BERT-Refinement (called MT-
BERT-Fine-Tune). We conduct extensive empirical
studies on the Biomedical Language Understand-
ing Evaluation (BLUE) benchmark (Peng et al.,
2019), which offers a diverse range of text genres
(biomedical and clinical text) and NLP tasks (such
as text similarity, relation extraction, and named
entity recognition). When learned and fine-tuned
on biomedical and clinical domains separately, we
find that MTL achieved over 2% performance on
average, created new state-of-the-art results on four
BLUE benchmark tasks. We also demonstrate the
use of multi-task learning to obtain a single model
that still produces state-of-the-art performance on
all tasks. This positive answer will be very helpful
in the context that researchers are in the hassle of
choosing a suitable model for new problems where
training resources are limited.

Our contribution in this work is three-fold:
(1) We conduct extensive empirical studies on 8
tasks from a diverse range of text genres. (2) We
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demonstrate that the MTL fine-tuned model (MT-
BERT-Fine-Tune) achieved state-of-the-art perfor-
mance on average and there is still a benefit to
utilizing the MTL refinement model (MT-BERT-
Refinement). Pairwise MTL, where two tasks were
trained jointly, further demonstrates which tasks
can improve or decrease other tasks. (3) We make
codes and pre-trained MT models publicly avail-
able.

The rest of the paper is organized as follows.
We first present related work in Section 2. Then,
we describe the multi-task learning in Section 3,
followed by our experimental setup, results, and
discussion in Section 4. We conclude with future
work in the last section.

2 Related work

Multi-tasking learning (MTL) aims to improve the
learning of a model for task t by using the knowl-
edge contained in the tasks where all or a sub-
set of tasks are related (Zhang and Yang, 2017).
It has long been studied and has applications on
neural networks in the natural language process-
ing domain (Caruana, 1997). Collobert and We-
ston (2008) proposed to jointly learn six tasks
such as part-of-speech tagging and language mod-
eling in a time-decay neural network. Changpinyo
et al. (2018) summarized recent studies on apply-
ing MTL in sequence tagging tasks. Bingel and
Søgaard (2017) and Martı́nez Alonso and Plank
(2017) focused on conditions under which MTL
leads to gain in NLP, and suggest that certain data
features such as learning curve and entropy distri-
bution are probably better predictors of MTL gains.

In the biomedical and clinical domains, MTL
has been studied mostly in two directions. One is
to apply MTL on a single task with multiple cor-
pora. For example, many studies focused on named
entity recognition (NER) tasks (Crichton et al.,
2017; Wang et al., 2019a,b). Zhang et al. (2018),
Khan et al. (2020), and Mehmood et al. (2019) in-
tegrated MTL in the transformer-based networks
(BERT), which is the state-of-the-art language rep-
resentation model and demonstrated promising re-
sults to extract biomedical entities from literature.
Yang et al. (2019) extracted clinical named entity
from Electronic Medical Records using LSTM-
CRF based model. Besides NER, Li et al. (2018)
and Li and Ji (2019) proposed to use MTL on re-
lation classification task and Du et al. (2017) on
biomedical semantic indexing. Xing et al. (2018)

exploited domain-invariant knowledge to segment
Chinese word in medical text.

The other direction is to apply MTL on differ-
ent tasks, but the annotations are from a single
corpus. Li et al. (2017) proposed a joint model
extract biomedical entities as well as their relations
simultaneously and carried out experiments on ei-
ther the adverse drug event corpus (Gurulingappa
et al., 2012) or the bacteria biotope corpus (Deléger
et al., 2016). Shi et al. (2019) also jointly extract
entities and relations but focused on the BioCre-
ative/OHNLP 2018 challenge regarding family his-
tory extraction (Liu et al., 2018). Xue et al. (2019)
integrated the BERT language model into joint
learning through dynamic range attention mech-
anism and fine-tuned NER and relation extraction
tasks jointly on one in-house dataset of coronary
arteriography reports.

Different from these works, we studied to jointly
learn 8 different corpora from 4 different types of
tasks. While MTL has brought significant improve-
ments in medicine tasks, no (or mixed) results have
been reported when pre-training MTL models in
different tasks on different corpora. To this end,
we deem that our model can provide more insights
about conditions under which MTL leads to gains
in BioNLP and clinical NLP, and sheds light on the
specific task relations that can lead to gains from
MTL models over single-task setups.

3 Multi-task model

The architecture of the MT-BERT model is shown
in Figure 1. The shared layers are based on
BERT (Devlin et al., 2018). The input X can be
either a sentence or a pair of sentences packed to-
gether by a special token [SEP]. If X is longer
than the allowed maximum length (e.g., 128 tokens
in the BERT’s base configuration), we truncate
X to the maximum length. When X is packed
by a sequence pair, we truncate the longer se-
quence one token at a time. Similar to (Devlin
et al., 2018), two additional tokens are added at the
start ([CLS]) and end ([SEP]) ofX , respectively.
Similar to (Lee et al., 2020; Peng et al., 2019), in
the sequence tagging tasks, we split one sentence
into several sub-sentences if it is longer than 30
words.

In the shared layers, the BERT model first con-
verts the input sequence to a sequence of embed-
ding vectors. Then, it applies attention mecha-
nisms to gather contextual information. This se-
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Figure 1: The architecture of the MT-BERT model.

mantic representation is shared across all tasks and
is trained by our multi-task objectives. Finally, the
BERT model encodes that information in a vector
for each token (h0, . . . , hn).

On top of the shared BERT layers, the task-
specific layer uses a fully-connected layer for each
task. We fine-tune the BERT model and the task-
specific layers using multi-task objectives during
the training phase. More details of the multi-task
objectives in the BLUE benchmark are described
below.

3.1 Sentence similarity

Suppose that h0 is the BERT’s output of the to-
ken [CLS] in the input sentence pair (X1, X2).
We use a fully connected layer to compute the
similarity score sim(X1, X2) = ah0 + b, where
sim(X1, X2) is a real value. This task is trained
using the Mean Squared Error (MSE) loss: (y −
sim(X1, X2))

2, where y is the real-value similar-
ity score of the sentence pair.

3.2 Relation extraction

This task extracts binary relations (two arguments)
from sentences. After replacing two arguments
of interest in the sentence with pre-defined tags
(e.g., GENE, or DRUG), this task can be treated
as a classification problem of a single sentence
X . Suppose that h0 is the output embedding of
the token [CLS], the probability that a relation
is labeled as class c is predicted by a fully con-
nected layer and a logistic regression with softmax:
P (c|X) = softmax(ah0 + b). This approach is

widely used in the transformer-based models (De-
vlin et al., 2018; Peng et al., 2019; Liu et al., 2019c).
This task is trained using the categorical cross-
entropy loss: −∑

c δ(yc = ŷ) log(P (c|X)), where
δ(yc = ŷ) = 1 if the classification ŷ of X is the
correct ground-truth for the class c ∈ C; otherwise
δ(yc = ŷ) = 0.

3.3 Inference

After packing the pair of premise sentences with
hypothesis into one sequence, this task can also
be treated as a single sentence classification prob-
lem. The aim is to find logical relation R between
premise P and hypothesis H . Suppose that that
h0 is the output embedding of the token [CLS] in
X = P ⊕H , P (R|P ⊕H) = softmax(ah0+ b).
This task is trained using the categorical cross-
entropy loss as above.

3.4 Named entity recognition

The output of the BERT model produces a fea-
ture vector sequence {hi}ni=0 with the same length
as the input sequence X . The MTL model pre-
dicts the label sequence by using a softmax out-
put layer, which scales the output for a label
l ∈ {1, 2, . . . , L} as follows: P (ŷi = j|x) =

exp(hiWj)∑L

l=1
exp(hiWj)

, where L is the total number of

tags. This task is trained using the categorical cross-
entropy loss: −∑

i

∑
yi δ(yi = ŷi) logP (yi|X).

3.5 The training procedure

The training procedure for MT-BERT consists of
three stages: (1) pretraining the BERT model,
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(2) refining it via multi-task learning (MT-BERT-
Refinement), and (3) fine-tuning the model using
the task-specific data (MT-BERT-Fine-Tune).

3.5.1 Pretraining
The pretraining stage follows that of the BERT us-
ing the masked language modeling technique (De-
vlin et al., 2018). Here we used the base version.
The maximum length of the input sequences is thus
128.

3.5.2 Refining via Multi-task learning
In this step, we refine all layers in the model. Al-
gorithm 1 demonstrates the process of multi-task
learning (Liu et al., 2019c). We first initialize the
shared layers with the pre-trained BERT model
and randomly initialize the task-specific layer pa-
rameters. Then we create the dataset by merging
mini-batches of all the datasets. In each epoch, we
randomly select a mini-batch bt of task t from all
datasets D. Then we update the model according
to the task-specific objective of the task t. Same as
in (Liu et al., 2019c), we use the mini-batch based
stochastic gradient descent to learn the parameters.

Algorithm 1: Multi-task learning.

Initialize model parameters θ
Shared layer parameters by BERT;
Task-specific layer parameters

randomly;
end
Create D by merging mini-batches for each
dataset;

for epoch in 1, 2, ..., epochmax do
Shuffle D;
for bt in D do

Compute loss: L(θ) based on task t;
Compute gradient: ∇(θ)
Update model: θ = θ − η∇(θ)

end
end

3.5.3 Fine-tuning MT-BERT
We fine-tune existing MT-BERT that are trained in
the previous stage by continue training all layers
on each specific task. Provided that the dataset is
not drastically different in context to other datasets,
the MT-BERT model will already have learned gen-
eral features that are relevant to a specific problem.
Specifically, we truncate the last layer (softmax and

linear layers) of the MT-BERT and replace it with
a new one, then we use a smaller learning rate to
train the network.

4 Experiments

We evaluate the proposed MT-BERT on 8 tasks in
BLUE benchmarks. We compare three types of
models: (1) existing start-of-the-art BERT models
fine-tuned directly on each task, respectively; (2)
refinement MT-BERT with multi-task training (MT-
BERT-Refinement); and (3) MT-BERT with fine-
tuning (MT-BERT-Fine-Tune).

4.1 Datasets

We evaluate the performance of the models on 8
datasets in the BLUE benchmark used by (Peng
et al., 2019). Table 1 gives a summary of these
datasets. Briefly, ClinicalSTS is a corpus of sen-
tence pairs selected from Mayo Clinics’s clinical
data warehouse (Wang et al., 2018). The i2b2 2010
dataset was collected from three different hospi-
tals and was annotated by medical practitioners for
eight types of relations between problems and treat-
ments (Uzuner et al., 2011). MedNLI is a collection
of sentence pairs selected from MIMIC-III (Shiv-
ade, 2017). For a fair comparison, we use the same
training, development and test sets to train and eval-
uate the models. ShARe/CLEF is a collection of
299 de-identified clinical free-text notes from the
MIMIC-II database (Suominen et al., 2013). This
corpus is for disease entity recognition.

In the biomedical domain, the ChemProt con-
sists of 1,820 PubMed abstracts with chemical-
protein interactions (Krallinger et al., 2017). The
DDI corpus is a collection of 792 texts selected
from the DrugBank database and other 233 Med-
line abstracts (Herrero-Zazo et al., 2013). These
two datasets were used in the relation extraction
task for various types of relations. BC5CDR is
a collection of 1,500 PubMed titles and abstracts
selected from the CTD-Pfizer corpus and was used
in the named entity recognition task for chemical
and disease entities (Li et al., 2016).

4.2 Training

Our implementation of MT-BERT is based on
the work of (Liu et al., 2019c).1 We trained
the model on one NVIDIA® V100 GPU using
the PyTorch framework. We used the Adamax

1https://github.com/namisan/mt-dnn
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Corpus Task Metrics Domain Train Dev Test

ClinicalSTS Sentence similarity Pearson Clinical 675 75 318
ShARe/CLEFE NER F1 Clinical 4,628 1,075 5,195
i2b2 2010 Relation extraction F1 Clinical 3,110 11 6,293
MedNLI Inference Accuracy Clinical 11,232 1,395 1,422
BC5CDR disease NER F1 Biomedical 4,182 4,244 4,424
BC5CDR chemical NER F1 Biomedical 5,203 5,347 5,385
DDI Relation extraction F1 Biomedical 2,937 1,004 979
ChemProt Relation extraction F1 Biomedical 4,154 2,416 3,458

Table 1: Summary of eight tasks in the BLUE benchmark. More details can be found in (Peng et al., 2019).

Model ClinicalSTS i2b2 2010 re MedNLI ShARe/CLEFE Avg

BlueBERTclinical 0.848 0.764 0.840 0.771 0.806
MT-BlueBERT-Refinementclinical 0.822 0.745 0.835 0.826 0.807
MT-BlueBERT-Fine-Tuneclinical 0.840 0.760 0.846 0.831 0.819

Table 2: Test results on clinical tasks.

Model ChemProt DDI
BC5CDR BC5CDR

Avg
disease chemical

BlueBERTbiomedical 0.725 0.739 0.866 0.935 0.816
MT-BlueBERT-Refinementbiomedical 0.714 0.792 0.824 0.930 0.815
MT-BlueBERT-Fine-Tunebiomedical 0.729 0.820 0.865 0.931 0.836

Table 3: Test results on biomedical tasks.

optimizer (Kingma and Ba, 2015) with a learn-
ing rate of 5e−5, a batch size of 32, a linear
learning rate decay schedule with warm-up over
0.1, and a weight decay of 0.01 applied to every
epoch of training by following (Liu et al., 2019c).
We use the BioBERT (Lee et al., 2020), Blue-
BERT base model (Peng et al., 2019), and Clin-
icalBERT (Alsentzer et al., 2019) as the domain-
specific language model2. As a result, all the to-
kenized texts using wordpieces were chopped to
spans no longer than 128 tokens. We set the max-
imum number of epochs to 100. We also set the
dropout rate of all the task-specific layers as 0.1. To
avoid the exploding gradient problem, we clipped
the gradient norm within 1. To fine-tune the MT-
BERT on specific tasks, we set the maximum num-
ber of epochs to 10 and learning rate e−5.

4.3 Results
One of the most important criteria of building prac-
tical systems is fast adaptation to new domains.

2https://github.com/ncbi-nlp/bluebert

To evaluate the models on different domains, we
multi-task learned various MT-BERT on BLUE
biomedical tasks and clinical tasks, respectively.
BlueBERTclinical is the base BlueBERT model
pretrained on PubMed abstracts and MIMIC-III
clinical notes, and fine-tuned for each BLUE task
on task-specific data. MT- model are the pro-
posed models described in Section 3. We used
the pre-trained BlueBERTclinical to initialize its
shared layers, refined the model via MTL on the
BLUE tasks (MT-BlueBERT-Refinementclinical).
We keep fine-tuning the model for each BLUE task
using task-specific data, then got MT-BlueBERT-
Fine-Tuneclinical.

Table 2 shows the results on clinical tasks. MT-
BlueBERT-Fine-Tuneclinical created new state-of-
the-art results on 2 tasks and pushing the bench-
mark to 81.9%, which amounts to 1.3% abso-
lution improvement over BlueBERTclinical and
1.2% absolute improvement over MT-BlueBERT-
Refinementclinical. On the ShAReCLEFE task, the
model gained the largest improvement by 6%. On
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Figure 2: Pairwise MTL relationships in clinical (left) and biomedical (right) domains.

Model ClinicalSTS i2b2 2010 re MedNLI ShARe/CLEFE Avg

MT-ClinicalBERT-Fine-Tune 0.816 0.746 0.834 0.817 0.803
MT-BioBERT-Fine-Tune 0.837 0.741 0.832 0.818 0.807
MT-BlueBERT-Fine-Tunebiomedical 0.824 0.738 0.824 0.825 0.803
MT-BlueBERT-Fine-Tuneclinical 0.840 0.760 0.846 0.831 0.819

Table 4: Test results of MT-BERT-Fine-Tune models on clinical tasks.

Model ChemProt DDI
BC5CDR BC5CDR

Avg
disease chemical

MT-BioBERT-Fine-Tune 0.729 0.812 0.851 0.928 0.830
MT-BlueBERT-Fine-Tunebiomedical 0.729 0.820 0.865 0.931 0.836
MT-BlueBERT-Fine-Tuneclinical 0.714 0.792 0.824 0.930 0.815

Table 5: Test results of MT-BERT-Fine-Tune models on biomedical tasks.

the MedNLI task, the MT model gained improve-
ment by 2.4%. On the remaining tasks, the MT
model also performed well by reaching the state-
of-the-art performance with less than 1% differ-
ences. When compared the models with and with-
out fine-tuning on single datasets, Table 2 shows
that the multi-task refinement model is similar to
single baselines on average. Consider that MT-
BlueBERT-Refinementclinical is one model while
BlueBERTclinical are 4 individual models, we be-
lieve the MT refinement model would bring the ben-
efit when researchers are in the hassle of choosing
the suitable model for new problems or problems
with limited training data.

In biomedical tasks, we used
BlueBERTbiomedical as the baseline because
it achieved the best performance on the BLUE
benchmark. Table 3 shows the similar results
as in the clinical tasks. MT-BlueBERT-Fine-
Tunebiomedical created new state-of-the-art results

on 2 tasks and pushing the benchmark to 83.6%,
which amounts to 2.0% absolute improvement over
BlueBERTbiomedical and 2.1% absolute improve-
ment over MT-BlueBERT-Refinementbiomedical.
On the DDI task, the model gained the largest
improvement by 8.1%.

4.4 Discussion

4.4.1 Pairwise MTL
To investigate which tasks are beneficial or harm-
ful to others, we train on two tasks jointly us-
ing MT-BlueBERT-Refinementbiomedical and MT-
BlueBERT-Refinementclinical. Figure 2 gives pair-
wise relationships. The directed green (or red and
grey) edge from s to t means s improves (or de-
creases and has no effect on) t.

In the clinical tasks, ShARe/CLEFE always gets
benefits from multi-task learning the remaining 3
tasks as the incoming edges are green. One fac-
tor might be that ShARe/CLEFE is an NER task
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Model
BlueBERT BlueBERT MT-BioBERT MT-BlueBERT MT-BlueBERT
biomedical clinical Fine-Tune Fine-Tunebiomedical Fine-Tuneclinical

ClinicalSTS 0.845 0.848 0.807 0.820 0.807
i2b2 2010 re 0.744 0.764 0.740 0.738 0.748
MedNLI 0.822 0.840 0.831 0.814 0.842
ChemProt 0.725 0.692 0.735 0.724 0.686
DDI 0.739 0.760 0.810 0.808 0.779
BC5CDR disease 0.866 0.854 0.849 0.853 0.848
BC5CDR chemical 0.935 0.924 0.928 0.928 0.914
ShARe/CLEFE 0.754 0.771 0.812 0.814 0.830

Avg 0.804 0.807 0.814 0.812 0.807

Table 6: Test results on eight BLUE tasks.

that generally requires more training data to fulfill
the data-hungry need of the BERT model. Clini-
calSTS helps MedNLI because the nature of both
are related and their inputs are a pair of sentences.
MedNLI can help other tasks except ClinicalSTS
partially because the test set of ClinialSTS is too
small to reflect the changes. We also note that i2b2
2010 re can be both beneficial and harmful, depend-
ing on which other tasks they are trained with. One
potential cause is i2b2 2010 re was collected from
three different hospitals and have the largest label
size of 8.

In the biomedical tasks, both DDI and ChemProt
tasks can be improved by MTL on other tasks, po-
tentially because they are harder with largest size of
label thus require more training data. In the mean-
while, BC5CDR chemical and disease can barely
be improved potentially because they have already
got large dataset to fit the model.

4.4.2 MTL on BERT variants

First, we would like to compare multi-task
learning on BERT variants: BioBERT, Clinical-
BERT, and BlueBERT. In the clinical tasks (Ta-
ble 4), MT-BlueBERT-Fine-Tuneclinical outper-
forms other models on all tasks. When compared
the MTL models using BERT model pretrained on
PubMed only (rows 2 and 3) and on the combina-
tion of PubMed and clinical notes (row 4), it shows
the impact of using clinical notes during the pre-
training process. This observation is consistently
as shown in (Peng et al., 2019). On the other hand,
MT-ClinicalBERT-Fine-Tune, which used Clinical-
BERT during the pretraining, drops ∼1.6% across
the tasks. The differences between ClinicalBERT
and BlueBERT are at least in 2-fold. (1) Clini-

calBERT used “cased” text while BlueBERT used
“uncased” text; and (2) the number of epochs to con-
tinuously pretrained the model. Given that there are
limited details of pretraining ClinicalBERT, further
investigation may be necessary.

In the biomedical tasks, Table 5 shows that
MT-BioBERT-Fine-Tune and MT-BlueBERT-Fine-
Tunebiomedical reached comparable results and pre-
training on clinical notes has a negligible impact.

4.4.3 Results on all BLUE tasks
Next, we also compare MT-BERT with its vari-
ants on all BLUE tasks. Table 6 shows that MT-
BioBERT-Fine-Tune reached the best performance
on average and MT-BlueBERT-Fine-Tunebiomedical

stays closely. While confusing results were ob-
tained when combing variety of tasks in both
biomedical and clinical domains, we observed
again that MTL models pretrained on biomedical
literature perform better in biomedical tasks; and
MTL models pretrained on both biomedical liter-
ature and clinical notes perform better in clinical
tasks. These observations may suggest that it might
be helpful to train separate deep neural networks
on different types of text genres in BioNLP.

5 Conclusions and future work

In this work, we conduct an empirical study on
MTL for biomedical and clinical tasks, which so
far has been mostly studied with one or two tasks.
Our results provide insights regarding domain adap-
tation and show benefits of the MTL refinement
and fine-tuning. We recommend a combination of
the MTL refinement and task-specific fine-tuning
approach based on the evaluation results. When
learned and fine-tuned on a different domain, MT-
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BERT achieved improvements by 2.0% and 1.3%
in biomedical and clinical domains, respectively.
Specifically, it has brought significant improve-
ments in 4 tasks.

There are two limitations to this work. First, our
results on MTL training across all BLUE bench-
mark show that MTL is not always effective. We
are interested in exploring further the character-
ization of task relationships. For example, it is
not clear whether there are data characteristics that
help to determine its success (Martı́nez Alonso and
Plank, 2017; Changpinyo et al., 2018). In addi-
tion, our results suggest that the model could ben-
efit more from some specific examples of some
of the tasks in Table 1. For example, it might
be of interest to not using the BC5CDR corpus
in the relation extraction task in future. Second,
we studied one approach to MTL by sharing the
encoder between all tasks while keeping several
task-specific decoders. Other approaches, such as
fine-tuning only the task specific layers, soft pa-
rameter sharing (Ruder, 2017), knowledge distilla-
tion (Liu et al., 2019b), need to be investigated in
the future.

While our work only scratches the surface of
MTL in the medical domain, we hope it will shed
light on the development of generalizable NLP
models and task relations that can lead to gains
from MTL models over single-task setups.
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