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Abstract

Improving the quality of medical research re-
porting is crucial to reduce avoidable waste in
research and to improve the quality of health
care. Despite various initiatives aiming at im-
proving research reporting – guidelines, check-
lists, authoring aids, peer review procedures,
etc. – overinterpretation of research results,
also known as distorted reporting or spin, is
still a serious issue in research reporting.

In this paper, we propose a Natural Language
Processing (NLP) system for detecting several
types of spin in biomedical articles reporting
randomized controlled trials (RCTs). We use a
combination of rule-based and machine learn-
ing approaches to extract important informa-
tion on trial design and to detect potential spin.

The proposed spin detection system includes
algorithms for text structure analysis, sentence
classification, entity and relation extraction,
semantic similarity assessment. Our algo-
rithms achieved operational performance for
the these tasks, F-measure ranging from 79,42
to 97.86% for different tasks. The most diffi-
cult task is extracting reported outcomes.

Our tool is intended to be used as a semi-
automated aid tool for assisting both authors
and peer reviewers to detect potential spin.
The tool incorporates a simple interface that al-
lows to run the algorithms and visualize their
output. It can also be used for manual annota-
tion and correction of the errors in the outputs.

The proposed tool is the first tool for spin de-
tection. The tool and the annotated dataset are
freely available.

At the time of reported work, Anna Koroleva was a PhD
student at LIMSI-CNRS in Orsay, France and at the Academic
Medical Center, University of Amsterdam in Amsterdam, the

1 Background

It is widely acknowledged nowadays that that the
quality of reporting of research results in the clin-
ical domain is suboptimal. As a consequence, re-
search findings can often not be replicated, and
billions of euros may be wasted yearly (Ioannidis,
2005).

Numerous initiatives aim at improving the qual-
ity of research reporting. Guidelines and checklists
have been developed for every type of clinical re-
search. Still, the quality of reporting remains low:
authors fail to choose and follow a correct guide-
line/checklist (Samaan et al., 2013). Automated
tools, such as Penelope1, are introduced to facili-
tate the use of guidelines/checklists. It was proved
that authoring aids improve the completeness of
reporting (Barnes et al., 2015).

Enhancing the quality of peer reviewing is an-
other step to improve research reporting. Peer re-
viewing requires assessing a large number of in-
formation items. Nowadays, Natural Language
Processing (NLP) is applied to facilitate laborious
manual tasks such as indexing of medical literature
(Huang et al., 2011) and systematic review process
(Ananiadou et al., 2009). Similarly, the peer re-
viewing process can be partially automated with
the help of NLP.

Our project tackles a specific issue of research
reporting that, to our knowledge, has not been ad-
dressed by the NLP community: spin, also referred
to as overinterpretation of research results. In the
context of clinical trials assessing a new (experi-

Netherlands. Sanjay Kamath was a PhD student at LIMSI-
CNRS and LRI Univ. Paris-Sud in Orsay, France.

1https://www.penelope.ai/
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mental) intervention, spin consists in exaggerating
the beneficial effects of the studied intervention
(Boutron et al., 2010).

Spin is common in articles reporting random-
ized controlled trials (RCTs) - clinical trials com-
paring health interventions, to which participants
are allocated randomly to avoid biases - with non-
significant primary outcome. Abstracts are more
prone to spin than full texts. Spin is found in a
high percentage of abstracts of articles in surgical
research (40%) (Fleming, 2016), cardiovascular
diseases (57%) (Khan et al., 2019), cancer (47%)
(Vera-Badillo et al., 2016), obesity (46.7%) (Austin
et al., 2018), otolaryngology (70%) (Cooper et al.,
2018), anaesthesiology (32,2%) (Kinder et al.,
2018), and wound care (71%) (Lockyer et al.,
2013). Although the problem of spin has started to
attract attention in the medical community in the
recent years, the shown prevalence of spin proves
that it often remains unnoticed by editors and peer
reviewers.

Abstracts are often the only part of the article
available to readers, and spin in abstracts of RCTs
poses a serious threat to the quality of health care
by causing overestimation of the intervention by
clinicians (Boutron et al., 2014), which may lead to
the use of an ineffective of unsafe intervention in
clinical practice. Besides, spin in research articles
is linked to spin in press releases and health news
(Haneef et al., 2015; Yavchitz et al., 2012), which
has the negative impact of raising false expectations
regarding the intervention among the public.

The importance of the problem of spin motivated
our work. We aimed at developing NLP algorithms
to aid authors and readers in detecting spin. We
focused on randomized controlled trials (RCTs) as
they are the most important source of evidence for
Evidence-based medicine, and spin in RCTs has
high negative impact.

Our work lies within the scope of the Methods in
Research on Research (MiRoR) project2, an inter-
national project devoted to improving the planning,
conduct, reporting and peer reviewing of health
care research. For the design and development
of our toolkit, we benefited from advice from the
MiRoR consortium members.

In this paper, we introduce a prototype of a sys-
tem, called DeSpin (Detector of Spin), that au-
tomatically detects potential spin in abstracts of
RCTs and relevant supporting information. This

2http://miror-ejd.eu/

prototype comprises a set of spin-detecting algo-
rithms and a simple interface to run the algorithms
and display their output.

This paper is organized as follows: first, we pro-
vide an overview of some existing semi-automated
aid systems for authors, reviewers and readers of
biomedical articles. Second, we introduce in more
detail the notion of spin, the types of spin that we
address, and the information that is required to as-
sess an article for spin. After that, we describe our
current algorithms, methods employed and provide
their evaluation. Finally, we discuss the potential
future development of the prototype.

2 Related work

Although there has been no attempt to automate
spin detection in biomedical articles, a number of
works addressed developing automated aid tools
to assist authors and readers of scientific articles
in performing various other tasks. Some of these
tools were tested and were shown to reduce the
workload and improve the performance of human
experts on the corresponding task.

2.1 Authoring aid tools

Barnes et al. (2015) assessed the impact of a writing
aid tool based on the CONSORT statement (Schulz
et al., 2010) on the completeness of reporting of
RCTs. The tools was developed for six domains of
the Methods section (trial design, randomization,
blinding, participants, interventions, and outcomes)
and consisted of reminders of the corresponding
CONSORT item(s), bullet points enumerating the
key elements to report, and good reporting exam-
ples. The tool was assessed in an RCT in which
the participants were asked to write a Methods sec-
tion of an article based on a trial protocol, either
using the aid tool (’intervention’ group) or without
using the tool (’control’ group). The results of 41
participants showed that the mean global score for
reporting completeness was higher with the use of
the tool than without it.

2.2 Aid tools for readers and reviewers

Kiritchenko et al. (2010) developed a system called
ExaCT to automatically extract 21 key characteris-
tics of clinical trial design, such as treatment names,
eligibility criteria, outcomes, etc. ExaCT consists
of an information extraction algorithm that looks
for text fragments corresponding to the target in-
formation elements, a web-based user interface
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through which human experts can view and correct
the suggested fragments.

The National Library of Medicine’s Medical
Text Indexer (MTI) is a system providing auto-
matic recommendations based on the Medical Sub-
ject Headings (MeSH) terms for indexing medical
articles (Mork et al., 2013). MTI is used to assist
human indexers, catalogers, and NLM’s History of
Medicine Division in their work. Its use by index-
ers was shown to grow over years (used to index
15.75% of the articles 2002 vs 62.44% in 2014)
and to improve the performance (precision, recall
and F-measure) of indexers (Mork et al., 2017).

Marshall et al. (2015) addressed the task of au-
tomating assessment of risk of bias in clinical trials.
Bias is phenomenon related to spin: it is a sys-
tematic error or a deviation from the truth in the
results or conclusions that can cause an under- or
overestimation of the effect of the examined treat-
ment (Higgins and Green, 2008). The authors de-
veloped a system called RobotReviewer that used
machine learning to assess an article for the risk
of different types of bias and to extract text frag-
ments that support these judgements. These works
showed that automated risk of bias assessment can
be achieve reasonable performance, and the extrac-
tion of supporting text fragments reached similar
quality to that of human experts. Marshall et al.
(2017) further developed RobotReviewer, adding
functionality for extracting the PICO (Population,
Interventions/Comparators, Outcomes) elements
from articles and detecting study design (RCT),
for the purpose of automated evidence synthesis.
Soboczenski et al. (2019) assessed RobotReviewer
in a user study involving 41 participants, evaluating
time spent for bias assessment, text fragment sug-
gestions by machine learning, and usability of the
tool. Semi-automation in this study was shown to
be quicker than manual assessment; 91% of the au-
tomated risk of bias judgments and 62% of support-
ing text suggestions were accepted by the human
reviewers.

The cited works demonstrate that semi-
automated aid tools can prove useful for both au-
thors and readers/reviewers of medical articles and
has a potential to improve the quality of the articles
and facilitate the analysis of the texts.

3 Spin: definition and types

We adopt the definition and classification of spin
introduced by Boutron et al. (2010) and Lazarus

et al. (2015), who divided instances of spin into
several types and subtypes.

We addressed the following types of spin:

1. Outcome switching – unjustified change of the
pre-defined trial outcomes, leading to report-
ing only the favourable outcomes that support
the hypothesis of the researchers (Goldacre
et al., 2019). Outcome switching is one of the
most common types of spin. It can consist in
omitting the primary outcome in the results /
conclusions of the abstract, or in the focus on
significant secondary outcomes, e.g.:

The primary end point of this trial was overall
survival. <...> This trial showed a signifi-
cantly increased R0 resection rate although
it failed to demonstrate a survival benefit.

In this example, the primary outcome (”over-
all survival”), the results for which were not
favourable, is mentioned in the conclusion,
but it is not reported in the first place and oc-
curs within a concessive clause (starting by
”although”). This way of reporting puts the
focus on the other, favourable, outcome (”R0
resection rate”).

2. Interpreting non-significant outcome as a
proof of equivalence of the treatments, e.g.:

The median PFS was 10.3 months in the
XELIRI and 9.3 months in the FOLFIRI arm
(p = 0.78). Conclusion: The XELIRI regi-
men showed similar PFS compared to the
FOLFIRI regimen.

The results for the outcome ”median PFS” are
not significant, which is often erroneously
interpreted as a proof of similarity of the
treatments. However, a non-significant result
means that the null hypothesis of a difference
could not be rejected, which is not equivalent
to a demonstration of similarity of the treat-
ments. This would require the rejection of the
null hypothesis of a difference, or a substantial
difference, in outcomes between treatments.

3. Focus on within-group comparisons, e.g.:

Both groups showed robust improvement in
both symptoms and functioning.

The goal of randomized controlled trials is to
compare two treatments with regard to some
outcomes. If the superiority of the experimen-
tal treatment over the control treatment was
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not shown, within-group comparisons (report-
ing the changes within a group of patients
receiving a treatment, instead of comparing
patients receiving different treatments) can be
used to persuade the reader of beneficial ef-
fects of the experimental treatment.

Two concepts are vital for spin detection and
play a key role in our algorithms:

1. The primary outcome of a trial – the most
important variable monitored during the trial
to assess how the studied treatment impacts
it. Primary outcomes are recorded in trial
registries (open online databases storing the
information about registered clinical trials),
and should be defined in the text of clinical
articles, e.g.:

The primary end point was a difference of
> 20% in the microvascular flow index of
small vessels among groups.

2. Statistical significance of the primary out-
come. Statistical hypothesis testing is used to
check for a significant difference in outcomes
between two patient groups, one receiving the
experimental treatment and the other receiving
the control treatment. Statistical significance
is often reported as a P-value compared to pre-
defined threshold, usually set to 0.05. Spin
most often occurs when the results for the
primary outcome are not significant (Boutron
et al., 2010; Fleming, 2016; Khan et al., 2019;
Vera-Badillo et al., 2016; Austin et al., 2018;
Cooper et al., 2018; Kinder et al., 2018; Lock-
yer et al., 2013), although trials with signifi-
cant effect on the primary outcome may also
be prone to spin (Beijers et al., 2017).

Trial results are commonly reported as an ef-
fect on the (primary) outcome3, along with
the p-value.

Microcirculatory flow indices of small and
medium vessels were significantly higher in
the levosimendan group as compared to the
control group (p < 0.05).

Statistical significance levels of trial outcomes
are vital for spin detection, as spin is com-
monly related to non-significant results for

3It is important to distinguish between the notions of out-
come, effect and result in this context: an outcome is a mea-
sure/variable monitored during a clinical trial; effect refers to
the change in an outcome observed during a trial; trial results
refer to the set of effects for all measured outcomes.

the primary outcome, or to selective reporting
of significant outcomes only.

4 Algorithms

Spin is a complex notion and thus detecting spin
cannot be seen as a binary classification problem.
We believe that the most viable approach to spin de-
tection is to assess each (sub)type of spin separately.
We aimed at developing algorithms to extract and
analyse pieces of information relevant to the ad-
dressed types of spin. The extracted information
and its analysis, provided by our tool, can help hu-
man experts in making the conclusion on presence
or absence of spin of the given (sub)type.

Detection of spin and related information is a
complex task which cannot by fully automated.
Our system is designed as a semi-automated tool
that finds potential instances of the addressed types
of spin and extracts the supporting information that
can help the user to make the final decision on
the presence of spin. In this section, we present
the algorithms currently included in the system,
according to the types of spin that they are used to
detect.

As we aim at detecting spin in the Results and
Conclusions sections of articles’ abstracts, we first
need an algorithm analyzing the given article to
detect its abstract and the Results and Conclusions
sections within the abstract. We will not mention
this algorithm in the list of algorithms for each spin
type to avoid repetition. If we talk about extracting
some information from the abstract, it implies that
the text structure analysis algorithm was applied.

4.1 Outcome switching
We focus on the switching (change/omission) of
the primary outcome. Primary outcome switching
can occur at several points:

• the primary outcome(s) recorded in the trial
registry can differ from the primary out-
come(s) declared in the article;

• the primary outcome(s) declared in the ab-
stract can differ from the primary outcome(s)
declared in the body of the article;

• the primary outcome(s) recorded in the trial
registry can be omitted when reporting the
results for the outcomes in the abstract;

• the primary outcome(s) recorded in the article
can be omitted when reporting the results for
the outcomes in the abstract.
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Primary outcome switching detection involves the
following algorithms:

1. Identification of primary outcomes in trial reg-
istries and in the article’s text.

2. Identification of reported outcomes from sen-
tences reporting the results, e.g. (reported
outcomes are in bold):

The results of this study showed that symptom
Scores in massage group were improved sig-
nificantly compared with control group, and
the rate of dyspnea, cough and wheeze in the
experimental group than the control group
were reduced by approximately 45%, 56% and
52%.

3. Assessment of semantic similarity of pairs of
outcomes extracted by the above algorithms to
check for missing outcomes. We perform the
assessment for the following sets of outcomes:

• The primary outcome extracted from the
registry is compared to the primary out-
come(s) declared in the article;

• The primary outcome extracted from the
abstract is compared to the primary out-
come(s) declared in the body of the arti-
cle;

• The primary outcome extracted from the
article is compared to the outcomes re-
ported in the abstract;

• The primary outcome extracted from the
registry is compared to the outcomes re-
ported in the abstract.

These assessments allow to detect switching
of the primary outcome at all the possible
stages. If the primary outcome in the registry
and in the article, or in the abstract and body of
the article differ, we conclude that there is po-
tential outcome switching, which is reported
to the user. Similarly, if the primary outcome
(from the article or from the registry) is miss-
ing from the list of the reported outcomes, we
suspect selective reporting of outcomes, and
the system reports it to the user.

In the example on the page 3, the system
should extract ”overall survival” as the pri-
mary outcome, and ”R0 resection rate” and
”survival” as reported outcomes. The similar-
ity between ”overall survival” and ”R0 resec-
tion rate” is low, while the similarity between

”overall survival” and ”survival” is high, thus,
we conclude that the primary outcome ”over-
all survival” is reported as ”survival”.

As semantic similarity often depends on the
context, the conclusions of the system are pre-
sented to the user, who can check them to
make the conclusions on correctness of the
analysis.

4. Assessing the discourse prominence of the
reported primary outcome (detected by the
previous algorithms) by checking if it is re-
ported the first place among all the outcomes;
if it is reported in a concessive clause.

In the example above, the system will de-
tect that the primary outcome ”survival” is
reported within a concessive clause (starting
by ”although”) and will flag the sentence as
potentially focusing on secondary outcomes.

4.2 Interpreting non-significant outcome as a
proof of equivalence of the treatments

As we stated above, conclusions on the similar-
ity/equivalence of the studies treatments are justi-
fied only if the trial was of non-inferiority or equiv-
alence type. Thus, we employ two algorithms to
detect this type of spin:

1. Identification of statements of similarity be-
tween treatments, e.g.:

Both products caused similar leukocyte
counts diminution and had similar safety pro-
files.

2. Identifying the markers of non-inferiority or
equivalence trial design, e.g.:

ONCEMRK is a phase 3, multicenter, double-
blind, noninferiority trial comparing ralte-
gravir 1200mg QD with raltegravir 400mg
BID in treatment-naive HIV-1–infected adults.

If there is a statement of similarity of treatments
while no markers of non-inferiority / equivalence
design are found, we conclude the presence of spin
and report it to the user.

4.3 Focus on within-group comparisons
Any statement in the results and conclusions of the
abstract that presents a comparison of two states
of a patient group without comparing it to another
group is a within-group comparison. This type of
spin is detected by a single algorithm that identifies
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within-group comparisons that are further reported
to the user:

Young Mania Rating Scale total scores improved
with ritanserin.

4.4 Other algorithms

We support extraction of some information that is
not directly involved in the detection of spin, but
that can help user in spin assessment and that can
be used in the future when new spin types are added.
The algorithms include:

1. Extraction of measures of statistical signifi-
cance, both numerical and verbal (in bold):

Study group patients had a significant lower
reintubation rate than did controls; six
patients (17%) versus 19 patients (48%),
P<0.05; respectively.

2. Extraction of the relation between the reported
outcomes and their statistical significance, ex-
tracted at the previous stages. For the ex-
ample above, we extract pairs (”reintubation
rate”, ”significant”) and (”reintubation rate”,
”P<0.05”).

These algorithms, in combination with the
assessment of semantic similarity of extracted
outcomes, allows to identify the significance
level for the primary outcome.

5 Methods

In this section, we briefly outline the methods used
in our algorithms, the datasets used for evaluation,
and the current performance of the algorithms. Our
approach is based on some previous works for the
related tasks. As the details on development of the
algorithms, annotating the data and testing differ-
ent approaches are described in detail in the corre-
sponding articles, we limit ourselves here to only
a brief description of the best-performing method
that we selected for each task.

The methods we employ can be divided into two
groups: machine learning, including deep learning,
used for the core tasks for which we have sufficient
training data, and rule-based methods, used for the
simpler tasks or for tasks where we do not have
enough data for machine learning.

5.1 Rule-based methods

We developed rules for the following tasks:

• To find the abstract, we use regular expres-
sions rules that are evaluated on the set of
3938 PubMed Central (PMC)4 articles in
XML format with a specific tag for the ab-
stract, used as the gold standard. To evaluate
our algorithm, we applied it to the raw texts
extracted from the XML files and compared
the extracted abstracts to those obtained using
the XML tag.

• To extract outcomes from trial registries, we
use regular expressions to extract the trial reg-
istration number from the article; using it, we
find on the web, download and parse the reg-
istry entry corresponding to the trial.

• To extract significance levels, we use rules
based on regular expressions and token,
lemma and pos-tag information.

• To assess the discourse prominence of an out-
come, to detect statements of similarity be-
tween treatments, within-group comparisons
and markers of non-inferiority design, we em-
ploy rules based on token, lemma and pos-tag
information.

We annotated abstracts of 180 articles (2402
sentences) for similarity statements and
within-group comparisons (Koroleva, 2020).
The proportion of these types of statements
in our corpus is low: we identified only 72
similarity statements and 127 within-group
comparisons. The evaluation of statements
of similarity between treatments and within-
group comparisons was performed with two
settings: 1) using the whole text of abstracts;
2) using only the Results and Conclusions
sections of the abstract, which raised the pre-
cision, as expected (Table 1).

5.2 Machine learning methods
For the core tasks of our system, we either used
an existing annotated corpus or annotated our own
corpora. Our corpora were annotated by a single
annotator (AK), consulted by consulted our med-
ical advisors from the MiRoR network (Isabelle
Boutron, Patrick Bossuyt and Liz Wager).

We tested several approaches for each task,
including rule-based and machine-learning ap-
proaches (see details below). Overall, we found
that the best performance on our tasks was shown

4https://www.ncbi.nlm.nih.gov/pmc/
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Algorithm Method Annotated dataset Precision Recall F1
Primary outcomes
extraction

Deep
learning

2,000 sentences / 1,694
outcomes

86.99 90.07 88.42

Reported out-
comes extraction

Deep
learning

1,940 sentences / 2,251
outcomes

81.17 78.09 79.42

Outcome similar-
ity assessment

Deep
learning

3,043 pairs of outcomes 88.93 90.76 89.75

Similarity state-
ments extraction

Rules 180 abstracts / 2402 sen-
tences
whole abstract 77.8 87.5 82.4
results and conclusions 85.1 87.5 86.3

Within-group com-
parisons

Rules 180 abstracts / 2402 sen-
tences
whole abstract 53.2 90.6 67.1
results and conclusions 71.9 90.6 80.1

Abstract extrac-
tion

Rules 3938 abstracts 94.7 94 94.3

Text structure
analysis: sections
of abstract

Deep
learning

PubMed200k 97.82 95.81 96.8

Extraction of sig-
nificance levels

Rules 664 sentences / 1,188
significance level markers

99.18 96.58 97.86

Outcome - signif-
icance level rela-
tion extraction

Deep
learning

2,678 pairs of outcomes
and significance level
markers

94.3 94 94

Table 1: Overview of algorithms, methods, results and annotated datasets

by a deep learning approach that was recently
proved to be highly successful in many NLP appli-
cations. It employs language representations pre-
trained on large unannotated data and fine-tuned
on a relatively small amount of annotated data for
a specific downstream task. The language repre-
sentations that we tested include: BERT (Bidirec-
tional Encoder Representations from Transformers)
models (Devlin et al., 2018), trained on a general-
domain corpus of 3.3B words; BioBERT model
(Lee et al., 2019), trained on the BERT corpus and
a biomedical corpus of 18B words; and SciBERT
models (Beltagy et al., 2019), trained on the BERT
corpus and a scientific corpus of 3.1B words. For
each task, we chose the best-performing model.

Details about the annotated datasets that we used
and the tested approaches can be found below. The
best results for each task are summarised in Table 1.

5.2.1 Identification of sections in the abstract
For identifying sections within the abstract (in par-
ticular, Results and Conclusions), we used the
PubMed 200k dataset introduced in Dernoncourt
and Lee (2017). This dataset contains approxi-
mately 200,000 abstracts of RCTs with 2.3 million
sentences. Each sentence is annotated with one of
the following classes, corresponding to the sections
of the abstract: background, objective, method, re-
sult, or conclusion. We used the train-dev-test split
provided by the developers of the dataset.

We compared a rule-based approach and BERT,
SciBERT and BioBERT models, fine-tuned for the
sentence classification task on the PubMed 200k
dataset. The best performance was shown by the
fine-tuned BioBERT model.

5.2.2 Outcome extraction
The outcome extraction task includes two subtasks:
extracting primary and reported outcomes. For
each subtask, we annotated a separate corpus. For
primary outcome extraction, we annotated a cor-
pus of 2,000 sentences, coming from 1,672 articles.
The sentences were selected randomly, from both
abstracts and full texts, without restriction to a par-
ticular medical domain. A total of 1,694 primary
outcomes was annotated (Koroleva, 2019a). For re-
ported outcome extraction, we annotated reported
outcomes in the abstracts of articles for which we
annotated the primary outcomes. The corpus con-
tains 1,940 sentences from 402 articles, with a total
of 2,251 reported outcomes (Koroleva, 2019a).

We compared a rule-based system and several
machine learning algorithms for primary and re-
ported outcome extraction. Details about the an-
notated datasets and the methods that we tested
can be found in Koroleva et al. (EasyChair, 2020).
We selected the best performing approach to be
included in our tool

For primary outcomes extraction, the best perfor-
mance was demonstrated by the BioBERT model
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fine-tuned for named entity recognition task on our
corpus of 2,000 sentences annotated for primary
outcomes. For reported outcomes extraction, the
best performance was achieved by the SciBERT
model fine-tuned for named entity recognition task
on our corpus of 1,940 sentences annotated with
reported outcomes.

5.2.3 Assessment of semantic similarity of
outcomes

To annotate semantic similarity between outcomes,
we used pairs of sentences from our corpora of
outcomes: the first sentence in each pair comes
from the corpus of primary outcomes, the second
sentence comes from the corpus of reported out-
comes, and both sentences are from the same arti-
cle. We assigned a binary label of similarity (sim-
ilar/dissimilar) to each pair of outcomes in each
sentence pair. The corpus contains 3,043 pairs of
outcomes (Koroleva, 2019b).

We tested several semantic similarity measures
(string-based, lexical, vector-based) and the BERT,
SciBERT and BioBERT models, fine-tuned for sen-
tence pair classification task on the corpus of out-
come pairs. Details on the corpus annotation and
on the methods tested can be found in Koroleva
et al. (2019). The best performance was shown by
the fine-tuned BioBERT model.

5.2.4 Extraction of the relation between
reported outcomes and statistical
significance levels

To annotate the relation between reported outcomes
and statistical significance levels, we selected sen-
tences containing markers of statistical significance
from the corpus annotated with reported outcomes.
We annotated the pairs of outcomes and signifi-
cance levels with a binary label (“positive”: the
significance level is related to the outcome; “neg-
ative”: the significance level is not related to the
outcome). The final corpus contains 663 sentences
with 2,552 annotated relations (Koroleva, 2019c).

We tested several machine learning algorithms
and the BERT, SciBERT and BioBERT model fine-
tuned for the relation extraction task on the anno-
tated corpus. The details on the corpus and the
method can be found in Koroleva and Paroubek
(2019). The best result for this task was achieved
by the fine-tuned BioBERT model.

6 Interface

Our prototype system allows the user to load a
text (with or without annotations), run algorithms,
visualize their output, correct, add or remove anno-
tations. The expected input is an article reporting
an RCT in the text format, including the abstract.

Figure 1 shows the interface with an example of
a processed text.

The main items of the drop-down menu on the
top of the page are Annotations, allowing to visu-
alize and manage the annotations, and Algorithms,
allowing to run the described algorithms to detect
potential spin and the related information. The text
fragments identified by the algorithms can be high-
lighted in the text. When running the algorithms,
a report is generated that contains the extracted
information and its analysis by the tool (e.g. a
mismatch between the outcomes in the text and
in the trial registry; absence of the declared pri-
mary outcome among the reported outcomes in
the abstract). The report is saved into the Meta-
data section of Annotations menu, which can be
accessed through the interface, and can be exported
to a file via the Generate report item of the Algo-
rithms menu. Human experts can use this report
to check the extracted information and the analysis
performed by the tool, and to make a final decision
on the presence/absence of a given type of spin.

7 Results and conclusions

The current functionality, methods in use, anno-
tated datasets and the best achieved results are out-
lined in Table 1. Performance is assessed per-token
for outcome and significance level extraction and
per-unit for other tasks.

In this paper, we presented a first prototype tool
for assisting authors and reviewers to detect spin
and related information in abstracts of articles re-
porting RCTs. The employed algorithms show op-
erational performance in complex semantic tasks,
even with relatively low volume of available an-
notated data. We envisage two possible applica-
tions of our system: as an authoring aid or as peer-
reviewing tool. The authoring aid version can be
further developed into an educational tool, explain-
ing the notion of spin and its types to the user.

Possible directions for future work include: im-
proving the implementation and interface (adding
prompts for interaction with the user; facilitating
installation process), algorithms (improving cur-
rent performance, adding detection of new spin
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Figure 1: Example of a processed text

types), application (promoting the tool among the
target audience; encouraging users to submit their
manually annotated data, to be used to improve the
algorithms), and optimization (parallel processing
of multiple input text files). Our system can be
easily incorporated into other text processing tools.

Another interesting yet challenging direction for
the future work is detecting spin/distorted reporting
in texts belonging to scientific domains other than
biomedicine. First of all, a qualitative study of spin
is needed to define and classify spin in each scien-
tific domain (similar to the work of Boutron et al.
(2010) and Lazarus et al. (2015) for clinical trials).
To our best knowledge, there have been no attempts
to conduct such a study for non-biomedical texts.
It is therefore difficult to hypothesise whether spin-
detection algorithms developed for texts reporting
clinical trials could be applicable for other domains.
It appears that the definition and the types of spin
are domain-specific (e.g. outcome-related types of

spin, prevalent in the biomedical domain, would
not be relevant in domains that do not use the no-
tion of outcome). Hence, we suppose that spin-
detection algorithms are domain-specific as well
and cannot be applied to other domains.

8 Availability

The proposed prototype tool and associated models
are available at:
https://github.com/aakorolyova/DeSpin.
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Randolph G. Bias, Byron Wallace, and Iain J. Mar-
shall. 2019. Machine learning to help researchers
evaluate biases in clinical trials: A prospective, ran-
domized user study. BMC Medical Informatics and
Decision Making, 19.

Francisco E. Vera-Badillo, Marc Napoleone, Monika K.
Krzyzanowska, Shabbir M.H. Alibhai, An-Wen
Chan, Alberto Ocana, Bostjan Seruga, Arnoud J.
Templeton, Eitan Amir, and Ian F. Tannock. 2016.
Bias in reporting of randomised clinical trials in on-
cology. European Journal of Cancer, 61:29 – 35.
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