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Abstract
Identifying the reasons for antibiotic adminis-
tration in veterinary records is a critical compo-
nent of understanding antimicrobial usage pat-
terns. This informs antimicrobial stewardship
programs designed to fight antimicrobial resis-
tance, a major health crisis affecting both hu-
mans and animals in which veterinarians have
an important role to play. We propose a docu-
ment classification approach to determine the
reason for administration of a given drug, with
particular focus on domain adaptation from
one drug to another, and instance selection to
minimize annotation effort.

1 Introduction

Microorganisms — such as bacteria, fungi, and
viruses — were a major cause of death until the
discovery of antibiotics (Demain and Sanchez,
2009). However, antimicrobial resistance (“AMR”)
to these drugs has been detected since their intro-
duction to clinical practice (Rollo et al., 1952), and
risen dramatically over the last decade to be con-
sidered an emergent global phenomenon and major
public health problem (Roca et al., 2015). Com-
panion animals are capable of acquiring and ex-
changing multidrug-resistant pathogens with hu-
mans, and may serve as a reservoir of AMR (Lloyd,
2007; Guardabassi et al., 2004; Allen et al., 2010;
Graveland et al., 2010). In addition, AMR is asso-
ciated with worse animal health and welfare out-
comes in veterinary medicine (Duff et al.; Johnston
and Lumsden). “Antimicrobial Stewardship” is
broadly used to refer to the implementation of a
program for responsible antimicrobial usage, and
has been demonstrated to be an effective means
of reducing AMR in hospital settings (Arda et al.,
2007; Pulcini et al., 2014; Baur et al., 2017; Cis-
neros et al., 2014). A key part of antimicrobial
stewardship is having the ability to monitor antimi-
crobial usage patterns, including which antibiotic

History: Examination: Still extremely
pruritic. There is no frank blood
visible. And does not appear to be
overt inflammation of skin inside EAC.
Laboratory: Assessment: Much im-
proved but still concnered there might
be some residual pain/infection. This
may be exac by persistent oilinesss
from PMP over the last week. Treat-
ment: Cefovecin 1mg/kg sc Owner
will also use advocate; Advised needs
to lose weight. To be 7kg Plan: Owner
may return to recheck in ten days at
completion of cefo duration.

Figure 1: Sample clinical note, in which the indication
of use for cefovecin would be EAR DISORDER

is given and the reason — or “indication” — for
its use. This data is generally captured within free
text clinical records created at the time of consult.
The primary objective of this paper is to develop
text categorization methods to automatically label
clinical records with the indication for antibiotic
use.

We perform this research over the VetCompass
Australia corpus, a large dataset of veterinary clini-
cal records from over 180 of the 3,222 clinical prac-
tices in Australia which contains over 15 million
clinical records and 1.3 billion tokens (McGreevy
et al., 2017). An example of a typical clinical note
is shown in Figure 1. We aim to map the indication
for an antimicrobial into a standardized format such
as Veterinary Nomenclature (VeNom) (Brodbelt,
2019), and in doing so, facilitate population-scale
quantification of antimicrobial usage patterns.

As illustrated in Figure 1, the data is domain
specific, and expert annotators are required to la-
bel the training data. This motivates the use of
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approaches to minimize the amount of annotation
effort required, with specific interest in adapting
models developed for one drug to a novel drug.

Previous analysis of this dataset has focused on
labeling the antibiotic associated with each clini-
cal note (Hur et al., 2020). In that study, it was
found that cefovecin along with amoxycillin clavu-
lanate and cephalexin were the top 3 antibiotics
used. As cefovecin was the most commonly used
antimicrobial with the most critical significance for
the development of AMR, it was targeted for addi-
tional studies to understand the specific indications
of use. The indication of use was manually labeled
in 5,008 records. However, there were still over
79,000 clinical records with instances of cefovecin
administration that did not have labels, in addition
to over 1.1 million other clinical records involving
other antimicrobial drug administrations missing
labels.

Having only a single type of antimicrobial agent
labeled causes challenges for training a model to
classify the indication of use for other antimicro-
bials, as antimicrobials vary in how and why they
are used, with the form of drug administration
(oral, injected, etc.) and different indications of
use creating distinct contexts that can be seen as
sub-domains. Therefore, models that allow for the
transfer of knowledge between the sub-domains
of the various antimicrobials are required to effec-
tively label the indication of use.

To explore the interaction between learning
methods and the resource constraints on labeling,
we develop models using the complete set of labels
we had available, but also models derived using
only labels that can be created within two hours,
following the paradigm of Garrette and Baldridge
(2013).

Specifically, our work explores methods to im-
prove the performance of classifying the indica-
tion for an antibiotic administration in veterinary
records of dogs and cats. In addition to classi-
fying the indication of use, we explore how data
selection can be used to improve the transfer of
knowledge derived from labeled data of a single
antimicrobial agent to the context of other agents.
We also release our code, and select pre-trained
models used in this study at: https://github.

com/havocy28/VetBERT.

2 Related Work

Clinical coding of medical documents has been
previously done with a variety of methods (Kir-
itchenko and Cherry, 2011; Goldstein et al., 2007;
Li et al., 2018a). Additionally, classifying dis-
eases and medications in clinical text has been ad-
dressed in shared tasks for human texts (Uzuner
et al., 2010). Previous methods have also been ex-
plored for extracting the antimicrobials used, out
of veterinary prescription labels, associated with
the clinical records (Hur et al., 2019), and labeling
of diseases in veterinary clinical records (Zhang
et al., 2019; Nie et al., 2018) as well exploring
methods for negation of diseases for addressing
false positives (Cheng et al., 2017; Kennedy et al.,
2019). Our work expands on this work by link-
ing the indication of use to an antimicrobial being
administered for that diagnosis.

Contextualized language models have recently
gained much popularity due to their ability to
greatly improve the representation of texts with
fewer training instances, thereby transferring more
efficiently between domains (Devlin et al., 2018;
Howard and Ruder, 2018). Pre-training these lan-
guage models on large amounts of text data spe-
cific to a given domain, such as clinical records
or biomedical literature, has also been shown to
further improve the performance in biomedical do-
mains with unique vocabularies (Alsentzer et al.,
2019; Lee et al., 2019). These models can also
accomplish many tasks in an unsupervised man-
ner. For example, Radford et al. (2019) showed
that free text questions could be fed through a lan-
guage model and generate the correct answer in
many cases. In our experiments, we demonstrate
the usefulness of contextualized language models
by pre-training BERT on a large set of veterinary
clinical records, and further explore its usefulness
for domain adaptation through instance selection.

Domain adaptation is a task which has a long
history in NLP (Blitzer et al., 2006; Jiang and Zhai,
2007; Agirre and De Lacalle, 2008; Daumé III,
2007). There has been further work demonstrat-
ing the usefulness of reducing the covariance be-
tween domains through adversarial learning (Li
et al., 2018b). More recently, it has been shown
that domain adversarial training can be effectively
done using contextualized models, such as BERT,
through using a two-step domain-discriminative
data selection (Ma et al., 2019). We adapt these
methods to our task to create a more generalizable

https://github.com/havocy28/VetBERT
https://github.com/havocy28/VetBERT
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Figure 2: Distribution of labels from the SOURCE and TARGET domains (log scale). The Top-3 labels are noted
below each chart.

model that can adapt between domains more effec-
tively.

Previous experiments have used active learning
to improve clinical concept extraction with weak
supervision (Kholghi et al., 2016). Our work ex-
pands on this work through combining approaches
to domain adaptation and the effective use of a
small number of labels through the development of
additional instance selection methods.

3 Dataset

3.1 Creating a set of terms

Standardized terminologies such as VeNom and
SNOMED (NIH, 2019) have been created for med-
ical diagnosis codes. While SNOMED has a vet-
erinary extension, VeNom was created specifically
for veterinary clinical text and can be mapped back
to SNOMED, and is also part of the Unified Medi-
cal Language System (UMLS) (Bodenreider, 2004)
used widely within human medicine. Therefore,
VeNom codes are used here to create labels for the
indication of drug administration (Brodbelt, 2019).

The VeNom codes we adopt are not fully com-
prehensive; they are a subset of the codes used by
(O’Neill et al., 2019) which map specific VeNom
codes to more generalized codes. These codes
were provided by the Royal College of Veterinary
Medicine for this study. In this subset of terms,
specific labels such as EXTRACTION OF UPPER

LEFT PREMOLAR 4 are simply mapped to DENTAL

DISORDER. There were a total of 52 of these terms,

of which 38 actually occur in our target dataset.

3.2 Data sub-domains
We consider the individual antibiotic agents in our
dataset to be sub-domains, as they are adminis-
tered differently (e.g. orally vs. injectable), and
in response to different indications. In our experi-
ments, we target cefovecin (injectable), amoxycillin
clavulanate (oral or injectable), and cephalexin
(oral). In addition, cefovecin and amoxycillin clavu-
lanate are used broadly for many indications, while
cephalexin is primarily used for skin infections.

3.3 Extracting and labeling the data
A corpus of 5,008 clinical records, where patients
had been given cefovecin, were sourced from Vet-
Compass Australia using methods previously de-
scribed in Hur et al. (2019). The indication of use
for cefovecin was then labeled by a veterinarian.

A subset of 100 of these annotations were la-
beled by another veterinarian and used to calculate
agreement, which was measured as Cohen’s Kappa
= 0.78, with raw agreement of 0.80. An additional
105 and 104 records were randomly selected for
each of cephalexin and amoxycillin clavulanate,
respectively, and annotated by the same two veteri-
narians.

The variance between the distribution of indi-
cations for cefovecin, cephalexin, and amoxycillin
clavulanate is presented in Figure 2.

An additional set of 3000 unannotated clinical
notes was sampled, comprising 1000 clinical notes
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for each of the three antibiotics of interest. We
use these to train a domain classification filter (to
identify which antimicrobial is administered), and
for data selection. Any notes with fewer than 5
tokens were removed from the corpus.

3.4 Training and development sets
The training of the indication-of-use classifier was
performed using the dataset pertaining to cefovecin,
based on a 90:10 split of train and development
data. In evaluation, we will refer to the develop-
ment set as “SOURCE”.

The labeled datasets for amoxycillin clavulanate
and cephalexin are used to test cross-domain ac-
curacy, and are referred to as “TARGET Y” for
cephalexin and “TARGET Z” for amoxycillin clavu-
lanate. The test data used for “TARGET Y” and
“TARGET Z” were fixed in all tests and strictly dis-
joint from any training.

The estimated number of records that could be
annotated within two hours was 250, based on the
annotation of the three datasets. To assess the set-
ting of having only two hours of annotation time, a
subset of 250 records was sampled and annotated
for for training and taken only from the “SOURCE”
data according to one of the various instance selec-
tion methods described in the Approach section.

4 Approach

In this section we detail our approach, as illustrated
in Figure 3.

Pretraining
In order to fine-tune our model to veterinary clini-
cal notes, we took ClinicalBERT (Alsentzer et al.,
2019) and repeated the pretraining steps as de-
scribed by Devlin et al. (2018) using the entire cor-
pus of 15 million clinical notes from VetCompass
Australia. We refer to this model as “VetBERT”.

Training classifiers
A baseline classifier for indication of antibiotic ad-
ministration was trained using an LSTM (“LSTM”:
Gers et al. (1999)) with a 100 dimension embed-
ding layer with 0.3 dropout, implemented in keras
(Chollet et al., 2015). We also use a baseline BERT
model using BERT-Base (“BERT”), in addition to
a model based on VetBERT. Both the BERT and
VetBERT classifiers were trained using an Adam
optimizer, maximum of 512 word pieces, batch
size of 32, softmax loss, and Learning Rate of 2e-
5. Models trained on the full training set were
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Figure 3: Outline of the proposed approach.

trained for 3 epochs, while models based on lim-
ited training data (see Section 4.3) were trained for
60 epochs. All models were tested with 5 different
random seeds, and results averaged across them.

Table 1 shows the performance of VetBERT
and the two baseline methods both in-domain
(“SOURCE”), and for the two out-of-domain an-
timicrobials using the training data from SOURCE.

While the performance of VetBERT exceeded
the interannotator agreement of 78% in-domain,
the out-of-domain performance over TARGET Z in
particular was substantially less, at 65.4% accuracy.
To improve cross-domain performance, we add in-
stance selection and dataset manipulation methods,
as described below.

4.1 Instance selection
We hypothesize that filtering out training data that
is dissimilar to the target domain will improve per-
formance, despite the lower volume of training data.
To this end, we experiment with domain-based in-
stance selection.

We model domain similarity using a domain clas-
sification model, trained on the domain (i.e. ad-
ministered antimicrobial) associated with a given
medical record. Note that this is directly avail-
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SOURCE TARGET Y TARGET Z

LSTM 51.5±3.5 47.4±3.4 29.2±5.0
BERT 73.4±1.1 71.0±1.3 58.1±1.4
VetBERT 80.1±0.7 81.5±2.1 65.4±1.5
VetBERT+A 80.9±0.6 83.4±1.5 68.1±2.1
VetBERT+M 80.5±0.6 80.2±1.3 65.8±2.6
VetBERT+M+A 81.2±0.6 82.1±1.8 66.5±1.7
VetBERT+D 78.3±0.7 79.1±2.6 66.7±1.5
VetBERT+D+A 80.5±0.5 83.1±1.4 68.5±2.2
VetBERT+D+M 78.5±0.8 78.3±3.5 66.7±0.9
VetBERT+D+M+A 80.3±0.4 82.7±2.1 67.5±2.2

Table 1: Predictive accuracy (%) of reason for antimicrobial administration in the SOURCE and TARGET domains,
trained on all available source-domain training data. Notation: +D = domain-based instance selection, +M =
mention boundary tagging, +A = data augmentation

able as an artefact of the dataset construction, and
doesn’t require any manual annotation. Specifi-
cally, we identify instances of source domain X
(cefovecin) for which we have labeled data, which
are most similar to instances from target domains Y
and Z, i.e., records in which cephalexin or amoxy-
cillin clavulanate, respectively, were administered.
Determination of similarity is based on the proba-
bilistic output of a domain classifier over the three
domains. In Figure 3, we label this subset of the
training data “X′

YZ”, reflecting the fact that it is a
subset of X similar to Y and Z. This subset of X is
then used to train a second classifier focused on the
primary task, namely the reason for administering
an antibiotic.

To build the domain classification model, we
follow the procedure of Ma et al. (2019), first train-
ing a domain classifier for 1 epoch, based on the
datasets of 1000 instances each of the three do-
mains. We used the same model architecture as
the VetBERT model, with a softmax classification
layer. This model was then applied to the 5,008
training instances for cefovecin, which were sorted
in increasing score over domain X (i.e. in decreas-
ing order of similarity to the target domains), the
Top-1000, 2000, 3000, or 4000 records were se-
lected, and the VetBERT model was trained over
that subset of the training data. The best results
were found to occur for 3000 samples. Models
with domain-based instance selection are indicated
with “+D” in Table 1.

The domain classifier filtering method results in
an improvement for TARGET Z (66.7%), but drop
in accuracy for TARGET Y (79.1%).

4.2 Automated dataset manipulation
We also explore the use of dataset manipulation, in
two forms: (1) mention boundary tagging; and (2)
data augmentation.

4.2.1 Mention Boundary Tagging
To sensitize the model to the specific drug of inter-
est, we add special learnable embedding vectors to
the start and end of each antibiotic mention, based
on the findings of Logeswaran et al. (2019) and
Wu et al. (2019). Similar to Wu et al. (2019), we
used special tokens to mark the boundaries of the
tokens that contained a partial string match for the
antibiotic of interest. This allows for the model
to attend to these tokens at every layer of the net-
work while training the classifier, and ideally bet-
ter generalize across antimicrobials. The partial
string matches were created by identifying strings
that contained the prefixes clav or amoxyclav for
amoxycillin clavulanate, ceph, rilex or kflex for
cephalexin, and conv or cefov for cefovecin. These
prefixes were sourced from a previous study explor-
ing mention detection of antimicrobials (Hur et al.,
2019). We signal the use of mention boundary
embeddings with “+M” in the results tables.

4.2.2 Data augmentation
Synonym-based data augmentation has been suc-
cessfully applied to contexts including word sense
disambiguation (Leacock and Chodorow, 1998),
sentiment analysis (Li et al., 2017), text classifica-
tion (Wei and Zou, 2019), and argument analysis
(Joshi et al., 2018).

We perform data augmentation on clinical notes
by replacing synonyms using WordNet (Fellbaum,
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SOURCE TARGET Y TARGET Z

VetBERT+rank[linear] 74.3±0.2 76.6±3.0 66.9±2.2
VetBERT+rank[linear]+A 75.8±1.3 81.0±2.6 63.7±1.4
VetBERT+rank[linear]+M 73.4±0.9 77.1±1.9 65.9±2.4
VetBERT+rank[linear]+M+A 75.7±0.8 81.0±2.8 63.8±3.5
VetBERT+rank[exp] 68.3±2.1 66.5±2.1 58.1±1.5
VetBERT+rank[exp]+A 76.6±0.3 76.7±2.4 65.4±1.0
VetBERT+rank[exp]+M 68.9±2.0 66.7±1.5 57.9±2.1
VetBERT+rank[exp]+M+A 76.9±0.2 77.3±2.3 64.4±1.5
VetBERT+rank[rand] 73.5±1.8 75.4±2.3 61.9±2.8
VetBERT+rank[rand]+A 74.8±1.3 78.9±3.1 64.2±2.5
VetBERT+rank[rand]+M 73.9±1.2 76.2±2.8 62.1±1.1
VetBERT+rank[rand]+M+A 74.9±0.4 80.6±1.3 63.1±2.6

Table 2: Predictive accuracy (%) of reason for antimicrobial administration over the SOURCE and TARGET do-
mains, trained on 2-hours’ worth of labeled data with the three domain similarity selection methods over the top-
3000 from X′

YZ of random sampling (“+rank[rand]”), modified exponential sampling (“+rank[exp]”), and linear
step-wise sampling (“+rank[linear]”).

SOURCE TARGET Y TARGET Z

VetBERT+rand 70.9±1.5 76.2±1.6 58.0±2.0
VetBERT+rand+A 69.7±0.4 75.8±1.1 59.6±0.0
VetBERT+rand+M 70.5±0.1 77.4±0.6 57.4±2.4
VetBERT+rand+M+A 69.9±0.9 77.4±0.6 59.6±1.7
VetBERT+rank[linear] 74.3±0.2 76.6±3.0 66.9±2.2
VetBERT+rank[linear]+A 75.8±1.3 81.0±2.6 63.7±1.4
VetBERT+rank[linear]+M 73.4±0.9 77.1±1.9 65.9±2.4
VetBERT+rank[linear]+M+A 75.7±0.8 81.0±2.8 63.8±3.5
VetBERT+cluster 73.4±1.1 68.6±1.3 63.0±2.1
VetBERT+cluster+A 73.9±0.1 75.2±2.7 67.8±0.7
VetBERT+cluster+M 73.3±0.5 66.2±0.7 62.5±1.4
VetBERT+cluster+M+A 72.8±0.6 75.2±0.0 63.5±5.4

Table 3: Predictive accuracy (%) of reason for antimicrobial administration in the SOURCE and TARGET do-
mains, trained on 2-hours’ worth of labeled data, with random selection (“+rand”), linear step-wise sampling
(“+rank[linear]”; results duplicated from Table 2), and clustering (“+cluster”).

2012), based on random sampling. In this way, we
create up to two additional training instances1 in
addition to the original instance, potentially tripling
the amount of training data. We signal the use of
data augmentation with “+A” in the results tables.

4.2.3 Results for dataset augmentation
methods

Mention boundary tagging and data augmentation
generally led to improvements in results both in-

1In the instance of there being no synonym substitutes for
any words in the original clinical note, no additional training
instances are generated.

and out-of-domain, as seen in Table 1. The highest
accuracy over the source domain 81.2% was ob-
tained with both mention boundary tagging and
data augmentation (without instance selection),
while the best out-of-domain results were obtained
with data augmentation (with or without instance
selection).

4.3 Instance selection under two
annotation-hour constraint

All results to date have been based on the gener-
ous supervision setting of 3000 instances, or ap-
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proximately 24 hours’ annotation time. One natu-
ral question, inspired by the work of Garrette and
Baldridge (2013) in the context of part-of-speech
tagging in low-resource languages, is whether sim-
ilar results can be achieved with a more realistic
budget of expert annotation time. Specifically, we
assume access to only 2 hours of expert annota-
tor time, which translates to the annotation of 250
clinical notes. We propose three approaches to in-
stance selection under this constraint: (1) domain
similarity selection; and (2) clustering. We contrast
these with a random selection baseline (“+rand” in
our results tables).

4.3.1 Domain similarity selection
Our first approach is based on the instance selection
method from Section 4.1, except that we now select
only 250 instances from SOURCE for annotation,
based on their similarity with the target domain (as
distinct from the top-3000 instances in Table 1).
That is, we take the top-3000 instances from X′

YZ
and perform additional sub-sampling, in the form
of: (a) random sampling (“+rank[rand]”);2 (b) mod-
ified exponential sampling (“+rank[exp]”); or (c)
linear step-wise sampling (“+rank[linear]”).

Modified exponential sampling is implemented
by mapping 3000 onto an exponential scale of 250
steps over the 3000 results, rounding to the near-
est integer, and additionally rounding up in the
case that there is a collision with a value earlier
in the series. That is, instead of the (rounded) se-
ries being 0, 0, 0, ..., 2879, 2938, 2999 it becomes
0, 1, 2, ..., 2879, 2938, 2999.

Linear step-wise sampling involves separating
the domain space evenly, and taking every nth sam-
ple where n = blen(N)/xc where x is the number
of labeled instances (= 250) and N is the total num-
ber of samples (= 3000).

Results for the different instance selection meth-
ods are presented in Table 2. The best-performing
method is step-wise sampling, achieving out-of-
domain accuracy which is competitive with the
results from Table 1 over 12 times the amount of
training data.

4.3.2 Clustering-based instance selection
Our second approach is based on the intuition that
the diversity in the training data will optimize per-
formance. We achieve this by clustering the source

2Note that this differs from +rand in that it is over the
top-3000 instances, whereas +rand is over all 5008 annotated
instances.

domain instances, and selecting prototypical in-
stances from each cluster.

First, we generate a representation of each
source-domain clinical note using the pretrained
VetBERT model, based on the [CLS] token in
the second-last layer of the model. Next, we cluster
the instances into 250 clusters using k-means++
(Arthur and Vassilvitskii, 2006), and select the in-
stance closest to the centroid for each cluster. This
method is labeled “+cluster” in Table 3.

Clustering results in the highest accuracy for
TARGET Z of 67.8%, but weaker results for TAR-
GET Y.

5 Discussion

5.1 Pretraining Improvements

Pretraining BERT to the veterinary domain us-
ing the VetCompass Australia corpus showed the
most dramatic improvement in our experiments.
This was demonstrated by marked improvement
over other baselines, without any additional steps
(Table 1: VetBERT vs. BERT and LSTM). How-
ever, even with the pretraining used to create
VetBERT, there was significant degradation in per-
formance across the domains where there were
fewer training instances (VetBERT in Table 1 vs.
VetBERT+rand in Table 3).

5.2 Sub-domain transfer performance

The relative performance over TARGET Z as
compared to TARGET Y when transferring from
SOURCE was generally poor (Tables 1 and 3). This
could be due to TARGET Y sharing more similar-
ities with SOURCE, along with the more skewed
class distribution in TARGET Y (Figure 2), poten-
tially making it an easier classification task. More
analysis is needed to understand this effect.

5.3 Optimizing for two hours of annotation
time

When optimizing for two hours of annotation time,
there were consistent improvements with the in-
stance selection methods, compared to random se-
lectin (Table 3: VetBERT+rand vs. others).

5.4 Dataset manipulation methods

The results for data augmentation and the ad-
dition of mention boundary embeddings were
not as clear, in that they sometimes resulted in
improvements and sometimes did not (Table 2
and 3: +A and +M vs. others). The clustering
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method generally performed better with data
augmentation and worst with mention boundary
embeddings (Table 3: VetBERT+cluster+A
vs. VetBERT+cluster+M+A and
VetBERT+cluster+M).

5.5 Limitations

The primary limiting factor was also the motivation
of this study, namely the difficulty in obtaining suf-
ficient high-quality annotations to perform accurate
analysis of the model performance. We were also
limited in that the instance selection was performed
retrospectively over the 5008 annotated instances,
and we were limited to the instances provided for
the SOURCE domain, rather than a larger sample
that could be obtained from VetCompass. There are
also additional domains of data within this corpus
that should be evaluated, such as records from spe-
cialty practices vs. records from general practices.
This was shown to result in significant degrada-
tion of performance by Nie et al. (2018), and is a
potential area for future research.

6 Conclusions and future work

In conclusion, we proposed a range of methods to
transfer knowledge derived from labeled data for
one antimicrobial agent to other agents, consider-
ing the additional constraint of a limited annotation
resource time of two hours. While the in-domain
accuracy of 83% exceeds the raw inter-annotator
agreement of 80% (Cohen’s Kappa = 0.78) on the
source domain, transfer to other classes is still sub-
stantially lower with an average of 76% between
the two classes. This shows that while the accuracy
on classifying diseases is on par with human clas-
sifications for a single disease, there is still room
for improvement on transferability to new data sub-
domains.

The primary question is whether the labels cre-
ated are good enough to report the reason for an-
tibiotic administration in epidemiological reporting
and antimicrobial stewardship guidelines. While
the labels for why cefovecin was administered were
better than the current standard of using expert an-
notations, our results indicate that accuracy varies
substantially depending on the antibiotic being ad-
ministered, and testing of the accuracy for each
individual antibiotic should be evaluated prior to
reporting the results based on labels generated by
any model.

In future research, these methods could be im-

proved through utilization of available resources
such as UMLS or Drugbank to identify clinical use
guidelines for antibiotics, to allow for training or
adapting a model with few or no annotations. Ad-
ditionally, further work is required to apply these
models into a data pipeline to create labels for Vet-
Compass data to enable analysis of the key reasons
for antimicrobial administration in veterinary hos-
pitals across Australia.
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