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Abstract

Research on analyzing reading patterns of
dyslectic children has mainly been driven by
classifying dyslexia types offline. We contend
that a framework to remedy reading errors in-
line is more far-reaching and will help to fur-
ther advance our understanding of this impair-
ment. In this paper, we propose a simple and
intuitive neural model to reinstate migrating
words that transpire in letter position dyslexia,
a visual analysis deficit to the encoding of
character order within a word. Introduced by
the anagram matrix representation of an input
verse, the novelty of our work lies in the ex-
pansion from one to a two dimensional con-
text window for training. This warrants words
that only differ in the disposition of letters to
remain interpreted semantically similar in the
embedding space. Subject to the apparent con-
straints of the self-attention transformer archi-
tecture, our model achieved a unigram BLEU
score of 40.6 on our reconstructed dataset of
the Shakespeare sonnets.

1 Introduction

Dyslexia is a reading disorder that is perhaps the
most studied of learning disabilities, with an esti-
mated prevalence rate of 5 to 17 percentage points
of school-age children in the US (Shaywitz and
Shaywitz, 2005; Made by Dyslexia, 2019). Counter
to popular belief, dyslexia is not only tied to the vi-
sual analysis system of the brain, but also presents
a linguistic problem and hence its relevance to natu-
ral language processing (NLP). Dyslexia manifests
itself in several forms as this work centers on Letter
Position Dyslexia (LPD), a selective deficit to en-
coding the position of a letter within a word while
sustaining both letter identification and character
binding to words (Friedmann and Gvion, 2001).

A growing body of research advocates hetero-
geneity of dyslexia causes to poor non-word and
irregular-word reading (McArthur et al., 2013).

Along the same lines Kezilas et al. (2014) suggest
that character transposition effects in LPD are most
likely caused by a deficit specific to coding the
letter position and is evidenced by an interaction
between the orthographic and visual analysis stages
of reading. To this end, more recently Marcet et al.
(2019) managed to significantly reduce migration
errors by either altering letter contrast or presenting
letters to the young adult sequentially.

To dyslectic children not all letter positions are
equally impaired as medial letters in a word are by
far more vulnerable to reading errors compared to
the first and last characters of the word (Friedmann
and Gvion, 2001). Children with LPD have high
migration errors where the transposition of letters
in the middle of the word leads to another word,
for example, slime–smile or cloud–could. On the
other hand, not all reading errors in cases of se-
lective LPD are migratable and are evidenced by
words read without a lexical sense e.g., slime–silme.
Intriguingly, increasing the word length does not
elevate the error rate, and moreover, shorter words
that have lexical anagrams are prone to a larger
proportion of migration errors compared to longer
words that possess no-anagram words. A key ob-
servation for LPD is that although words read may
share all letters in most of the positions, they still
remain semantically unrelated.

Machine learning tools to classify dyslexia use
a large corpus of reading errors for training and
mainly aim to automate and substitute diagnostic
procedures expensively managed by human experts.
Lakretz et al. (2015) used both LDA and Naive
Bayes models and showed an area under curve
(AUC) performance of about 0.8 that exceeded the
quality of clinician-rendered labels. In their study,
Rello and Ballesteros (2015) proposed a statisti-
cal model that predicts dyslectic readers using eye
tracking measures. Employing an SVM-based bi-
nary classifier, they achieved about 80% accuracy.
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Instead, our approach applies deep learning to
the task of restoring LPD inline that we further for-
mulate as a sequence transduction problem. Thus,
given an input verse that contains shuffled-letter
words identified as transpositional errors, the objec-
tive of our neural model is to predict the originat-
ing unshuffled words. We use language similarity
between predicted verses and ground-truth target
text-sequences to quantitatively evaluate our model.
Our main contribution is a concise representation
of the input verse that scales up to moderate an
exhaustive set of LPD permutable data.

2 Anagram Matrix

Using a colon notation, we denote an input verse to
our model as a text sequence w1:n = (w1, . . . , wn)
of n words interchangeably with n collections of
letters l1:n = (l

(1)
1:|w1|, . . . , l

(n)
1:|wn|). We generate mi-

grated word patterns synthetically by anchoring
the first and last character of each word and ran-
domly permuting the position of the inner letters
(l
(1)
2:|w1|−1, . . . , l

(n)
2:|wn|−1). Thus given a word with

a character length |l(i)|, the number of possible
unique transpositions for each word follows t1:n =
(|l(1)|!, . . . , |l(n)|!). Next, we extract a migration
amplification factor k = argmaxni=1 ti that we ap-
ply to each word in an input verse independently
and form the sequence m1:k = (m1, . . . ,mk).
Word length commonly used in experiments of pre-
vious LPD studies averages five letters and ranges
from four to seven letters long, hence migrating
to feasible 2, 6, 24, and 120 letter substitutions,
respectively. We note that words with 1, 2, or 3
letters are held intact and are not migratable.

when forty winters shall besiege thy brow

wehn fotry wenitrs sahll bseeige thy borw
when froty winrtes slhal begseie thy borw
wehn fotry wrenits slahl begisee thy borw
when forty wtenirs shall begeise thy brow
when froty wtneirs shall bigeese thy brow
when ftory weinrts sahll bgiesee thy borw
wehn frtoy wirtens slhal bisgeee thy borw
wehn froty wterins slahl beeisge thy brow
when froty wtiners shlal beesgie thy borw
wehn frtoy wnetris shall beisege thy borw

Table 1: A snapshot of letter-position migration pat-
terns in the form of an anagram matrix. The unedited
version of the text sequence is highlighted on top.

To address the inherent semantic unrelatedness
between transpositioned words, we define a two-
dimensional migration-verse array in the form of an

anagram matrix A = [m
(1)
1:k; , . . . , ;m

(n)
1:k ] ∈ Rk×n,

where m(i) are column vectors, [·; ·] is column-
bound matrix concatenation, and k and n are the
transposition and input verse dimensions, respec-
tively. In Table 1, we render a subset of an anagram
matrix drawn from a target verse with a maximal
word length of seven letters. The anagram matrix
founds an effective context structure for a two-pass
embedding training, and our training dataset thus
reconstructs on the basis of a collection of anagram
matrices with varying dimensions.

3 LPD Embeddings

Models for learning word vectors train locally on a
one-dimensional context window by scanning the
entire corpus (Mikolov et al., 2013). Through eval-
uation on a word analogy task, these models cap-
ture linguistic regularities as linear relationships be-
tween word embeddings. Mikolov et al. (2013) pro-
posed the skip-gram and continuous-bag-of-words
(CBOW) neural architectures with the objective to
predict the context of the target word and the target
word given its context, respectively. Notably LPD
migrating words tend mostly outside the English
vocabulary and thus pretrained word embeddings
on large corpora are of limited use in our system. 1
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Figure 1: A two-dimensional context window of size
two drawn from outside context cells of an anagram ma-
trix. The center words are shown in gray for both the
normal by-row {wt,t−2, . . . , wt,t+2} and transposed
column-wise {wt−2,t, . . . , wt+2,t} forms of feeding
our neural network.

While the essence of our task is formalized as
verse simplification, mending LPD relies on robust
discovery of word similarities along both the mi-
gration and verse axes of the anagram matrix. To
this extent, we reshape the context window to train
word embeddings from one to a two-dimensional
array. In Figure 1, we show a bi-dimensional con-

1https://nlp.stanford.edu/projects/glove/
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text window of size two that is a visible subset
drawn from outside context cells of an anagram ma-
trix. Learning word vectors for LPD is a two-pass
process in our model. First, the context window
W feeds our neural network row-by-row for each
transpositioned verse, and then follows by iterating
migration vectors m(i) in W T as inputs.

4 Model

Our task is inspired by recent advances in neural
machine translation (NMT). NMT architectures
have shown state-of-the-art results in both the form
of a powerful sequence model (Sutskever et al.,
2014; Cho et al., 2014; Bahdanau et al., 2015) and
more recently, the cross-attention ConvS2S (El-
bayad et al., 2018) and the self-attention based
transformer (Vaswani et al., 2017) networks. Given
an unintelligible diction of shuffled-letter words,
our model aims to output a verse that preserves the
semantics of the input, and uses the transformer
that outperforms both recurrent and convolutional
configurations on many language translation tasks.

ଶଵ  ଶଵ 

word embeddings

feed-forward network

shared self-attention

softmax

ଶଵ 

Figure 2: Transformer architecture overview (encoder
path shown in blue, decoder in brown).

Stacked with several network layers, the trans-
former architecture only relies on attention mech-
anisms and entirely dispensing with recurrence
(Hochreiter and Schmidhuber, 1997; Chung et al.,
2014). In Figure 2, we show a synoptic rendition
of the transformer. Its inputs consist of a source
verse with potentially letter-transpositioned words
xi, and a ground-truth target verse of words with
unshuffled letters yi. The transformer encoder and
decoder modules largely operate in parallel and
provide for a source-to-target attention communi-
cation, and a softmax layer operates on the decoder
hidden-state outputs to produce predicted words ŷi.
In LPD, source and target verses are consistently of
the same word count n, however, copying tokens
from the source over to predictions is inconsequen-

tial to the quality of repairing reading errors due to
extensive out-of-vocabulary non-migrating words.

5 Setup

To quantitatively evaluate our LPD transduction ap-
proach, we chose to mainly report n-gram BLEU
precision (Papineni et al., 2002) that defines the lan-
guage similarity between a predicted text sequence
and the ground-truth reference verse. In the BLEU
metric, higher scores indicate better performance.

5.1 Corpus

Rather than clinical reading tests, we used the Son-
nets by William Shakespeare (Shakespeare, 1997).
This is motivated by the apostrophe-rich data that
forces left-out letters. The raw dataset comprises
2,154 verses that range from four to fifteen word
sequences. In Figure 3, we show the distribution
of word length across the dataset, as 18,858 unique
tokens are of up to seven-letter long inclusive and
take about 62 percentage points of the entire corpus
words. To conform to preceding LPD research, we
conducted a cleanup step that removes all words of
eight letters or more from the dataset. We hypoth-
esize that evaluating LPD on a single word basis
lets us perform this step without loss of generality.

0
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Figure 3: Distribution of word letter count across
unique tokens of the Shakespeare Sonnets dataset.

We then transform each verse of the Sonnets to
an anagram matrix representation A. The verse
word with the maximal letters has a set of distinct
traspositions while words of lesser letters are shuf-
fled with repetition (Table 1). In Figure 4, we show
the distribution of anagram matrices across the en-
tire Shakespeare Sonnets dataset, with a migration
amplification factor k ∈ {1, 2, 6, 24, 120} and a
cleaned up verse that spans two to thirteen words.
Evidently most prominent tiles are of words with
seven letters and consist of verse sizes between
seven to nine words. Concatenating the rows of all
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the anagram matrices presents a sixtyfold extended
shape of our LPD training dataset that has 130,021
text sequences, along with source and target vocab-
ularies of 173,575 and 3,147 tokens, respectively.
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Figure 4: Distribution of anagram matrices across the
verse collection of the Shakespeare Sonnets dataset.

5.2 Training

We used PyTorch (Paszke et al., 2017) version 1.0
as our deep learning platform for training and in-
ference. PyTorch supports the building of effective
neural architectures for NLP task development.
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Figure 5: Aided by using our anagram matrix approach,
migrated and non-migrated embeddings shown to pre-
serve unedited input similarity. Presented in seven clus-
ters produced by k-means (R Core Team, 2013).

We incorporated in our framework the annotated
PyTorch implementation of the transformer (Rush,
2018) and modified it to accommodate our LPD
dataset. Multi-head attention was configured with
h = 8 layers and a model size dmodel = 512, and
the query, key, and value vectors were set uniformly
to dmodel/h = 64. The inner layer of the encoder
and the decoder had dimensionality dff = 2, 048.
In Figure 5, we show permuted embeddings retain-
ing input semantics by using our anagram matrix

concept. The presence of replicated words in vector
space owes to the transformer built-in learned po-
sitions of input embeddings. We chose the Adam
optimizer (Kingma and Ba, 2014) with a varied
learning rate and a fixed model dropout of 0.1, us-
ing cross-entropy loss and label smoothing for regu-
larization. Figure 6 reviews epoch-loss progression
in training and validating our model.
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Figure 6: Epoch-loss progression in training and vali-
dation. Loss descent subsides near the seventh epoch.

6 Results

We ran our model inference on a split test set that
comprises randomly selected rows sampled from
the entire collection of anagram matrices and fur-
ther excluded from the train set. We postulate that
the use of matrix columns along the migration axis
are only beneficial for embedding training.

Context Window BLEU-1 BLEU-2 BLEU-3 BLEU-4

one-dimensional 36.8 20.9 13.0 8.3
two-dimensional 40.6 23.7 14.7 8.9

Table 2: Model performance using n-gram BLEU mea-
sures at a corpus level on our augmented Sonnets test-
set for repairing letter transpositions. Scores shown are
contrasted between the use of one and two dimensional
context window for training word embeddings.

In Table 2, we report corpus-level n-gram BLEU
scores of our transformer-based model for inline
transduction of LPD reading patterns. Uniformly a
two-dimensional context window for training em-
beddings boosts our performance by about ten per-
centage points on average compared to the one-
dimensional window. As expected, BLEU scores
decline exponentially when we increase n-gram,
from 40.6 for BLEU-1 down to 8.9 for BLEU-4.

While BLEU scores the output by counting n-
gram matches with the reference, we also evaluated
our model using SARI (Xu et al., 2016), a novel
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metric that correlates with human judgments and
designed to specifically analyze text simplification
models. SARI principally compares system output
against both the reference and input verse and re-
turns an arithmetic average of n-gram precisions
and recalls of addition, copy, and delete rewrite
operations. 2 Table 3 summarizes SARI and aver-
age BLEU measures of our model. Scores appear
fairly correlated with a slight edge in favor of SARI
that correctly rewards models like ours which make
changes that simplify input verses.

Context Window SARI BLEU

one-dimensional 21.2 19.8
two-dimensional 23.7 22.0

Table 3: Model performance using automatic evalua-
tion measures of SARI and BLEU at a corpus level on
our augmented Sonnets test-set. Scores are contrasted
between the use of one and two dimensional context
window for training word embeddings.

The transformer is known to be bound by a fixed-
length context and thus tends to split a long context
to segments that often ignore semantic boundaries.
This led to the conjecture that context fragmenta-
tion may impact our model performance adversely.
The novel transformer-xl network (Dai et al., 2019)
that learns dependencies across subsequences using
recurrence, might be the more effective architecture
to perform our task.

7 Discussion

To conduct a baseline evaluation of our model, we
hand curated a corpus made of LPD screening tests.
Targeted screeners are brief performance measures
intended to classify at-risk individuals. To the ex-
tent of our knowledge, Lakretz et al. (2015) used
for their experiments the largest known screener
dataset to date that consisted of 196 loose target
words in Hebrew. Correspondingly, we assembled
a screening corpus of 196 English words that are
prone to erroneous reading. In our system, these
words are recast into a set of anagram matrices,
each however reduced to a vector ∈ Rk×1. Further
downstream, we represented context-less words as
one-hot vectors. As expected, on the task of rein-
stating screener data our sequence model achieved
a fairly low 1-gram BLEU score of 9.2. Counter to
nearly 4.4X improvement on the Sonnets dataset,
when trained using a 2D context window.

2https://github.com/cocoxu/simplification

Compared to almost two orders of magnitude
larger Sonnets dataset, the screening corpus was
too small and thus overfitting our transformer-
based neural model. In addition, to effectively ex-
ploit our proposed anagram matrix representation,
rather than disjoint words we require to train our
sequence model on a dataset comprised of verses or
sentences that provides essential context for learn-
ing embeddings.

In a practical application framework, our pro-
posed model is rated on successful recovery from
LPD reading errors that transpire in a text sequence.
We envision our model already pretrained on mul-
tiple corpora, each extended to a collection of ana-
gram matrices. Every editing instance follows with
a dyslectic individual who reads and utters a verse
at a time from a text document. Fed to the network,
the verse is then inferred by our model that returns
an amended text sequence the user can compare
side-by-side on his display. It is key for the system
we presented to perform responsively.

8 Conclusions

In this paper, we presented word-level neural sen-
tence simplification to aid letter-position dyslectic
children. We modeled the task after a monolingual
machine translation and showed the representation
effectiveness of a two-dimensional context window
to boost our model performance. Future avenues
of research include using our model in real-world
restoration scenarios of LPD, and exploring the ef-
ficacy of the transformer-xl architecture to a non
language modeling task like ours. We look forward
to leverage the exceptional ability of transformer-xl
to perform character-level language modeling and
improve mending LPD.
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