
Proceedings of the 15th Workshop on Innovative Use of NLP for Building Educational Applications, pages 198–208
July 10, 2020. c©2020 Association for Computational Linguistics

198

A Comparative Study of Synthetic Data Generation Methods for
Grammatical Error Correction

Maxwell White and Alla Rozovskaya
Department of Computer Science

Queens College, City University of New York
maxwell.white94@qmail.cuny.edu,arozovskaya@qc.cuny.edu

Abstract

Grammatical Error Correction (GEC) is con-
cerned with correcting grammatical errors in
written text. Current GEC systems, namely
those leveraging statistical and neural machine
translation, require large quantities of anno-
tated training data, which can be expensive or
impractical to obtain. This research compares
techniques for generating synthetic data uti-
lized by the two highest scoring submissions
to the restricted and low-resource tracks in the
BEA-2019 Shared Task on Grammatical Error
Correction.

1 Introduction

Grammatical Error Correction (GEC) is the task
of automatically correcting grammatical errors in
written text. More recently, significant progress
has been made, especially in English GEC, within
the framework of statistical machine translation
(SMT) and neural machine translation (NMT)
approaches (Susanto et al., 2014; Yuan and
Briscoe, 2016; Hoang et al., 2016; Chollampatt
et al., 2016; Junczys-Dowmunt and Grundkiewicz,
2016; Mizumoto and Matsumoto, 2016; Jianshu
et al., 2017; Chollampatt and Ng, 2018). The suc-
cess of these approaches can be partially attributed
to the availability of several large training sets.

In the most recent Building Educational Appli-
cations (BEA) 2019 Shared Task (Bryant et al.,
2019), which continued the tradition of earlier
GEC competitions (Dale et al., 2012; Ng et al.,
2014), all of the 24 participating teams applied
NMT and/or SMT approaches. One of the goals
of BEA-2019 was to re-evaluate the field after
a long hiatus, as recent GEC systems have be-
come difficult to evaluate given a lack of stan-
dardised experimental settings: Although signifi-
cant progress has been made since the end of the
last CoNLL-2014 shared task, recent systems have

been trained, tuned and tested on different combi-
nations of metrics and corpora. The BEA-2019
Shared Task also introduced a new dataset that
represents a diverse cross-section of English lan-
guage levels and domains (Bryant et al., 2019),
and separate evaluation tracks, namely the Re-
stricted, Unrestricted and Low Resource tracks.
The Unrestricted track allowed the use of any re-
sources; the Restricted track limited the use of
learner corpora to those that are publicly available,
while the Low Resource track significantly limited
the use of annotated data, to encourage develop-
ment of systems that do not rely on large quantities
of human-annotated data.

The two top scoring systems in the Restricted
and Low Resource tracks, UEDIN-MS (Grund-
kiewicz et al., 2019) and Kakao&Brain (Choe
et al., 2019), outperformed the other teams by a
large margin in both tracks; furthermore, both sys-
tems made use of artificial data for training their
NMT systems, but they generated artificial data
in different ways. Interestingly, in the Restricted
Track, both of the systems scored on par, while
in the Low Resource Track Kakao&Brain exhib-
ited a larger gap in performance (a drop of more
than 10 points compared to the Restricted track)
vs. 4 points for UEDIN-MS. While both teams
used the same model architecture, transformer-
based neural machine translation (NMT) (Vaswani
et al., 2017), in addition to the differences in the
data generation methods, the systems used differ-
ent training scenarios, hyperpameter values, and
training corpora of native data.

The goal of this paper is to compare the tech-
niques for generating synthetic data used by the
UEDIN-MS and Kakao&Brain systems. The
method used in the UEDIN-MS system utilizes
confusion sets generated by a spellchecker, while
the Kakao&Brain method relies on learner pat-
terns extracted from a small annotated sample and



199

on POS-based confusions. Henceforth, we refer
to these as Inverted Spellchecker method and Pat-
terns+POS method, respectively. To ensure a fair
comparison of the methods, we control for the
other variables, such as model choice, hyperpa-
rameters, and the choice of native data. We train
NMT systems and evaluate our models on two
learner corpora, the W&I+LOCNESS corpus in-
troduced in BEA-2019, and the FCE corpus (Yan-
nakoudakis et al., 2011). Using the automatic error
type tool ERRANT (Bryant et al., 2017), we also
show performance evaluation by error type on the
two corpora.

The paper makes the following contributions:
(1) we provide a fair comparison of two methods
for generating synthetic parallel data for GEC, us-
ing two evaluation datasets; (2) we find that the
two methods train different complementary sys-
tems and target different types of errors: while
the Inverted Spellchecker approach is good at
identifying spelling errors, the Patterns+POS ap-
proach is better at correcting errors relating to
grammar, such as noun number, verb agreement,
and verb tense; (3) overall, the Patterns+POS
method exhibits stronger results, compared to the
Inverted Spellchecker method in multiple training
scenarios that include only synthetic parallel data,
synthetic data augmented with in-domain learner
data, and synthetic data augmented with out-of-
domain learner data; (4) adding an off-the-shelf
spellchecker is beneficial, and is especially help-
ful for the Patterns+POS approach.

In the next section, we discuss related
work. Section 3 gives an overview of the
W&I+LOCNESS and FCE learner datasets. Sec-
tion 4 describes the error generation methods. Ex-
periments are presented in section 5. Section 6 an-
alyzes the results. Section 7 concludes the paper.

2 Related Work

Progress in English GEC Earlier GEC ap-
proaches focused on English as a Second Lan-
guage Learners and made use of linear machine
learning algorithms and developed classifiers for
specific error types, such as articles, prepositions,
or noun number (Gamon, 2010; Rozovskaya and
Roth, 2010, 2014; Dahlmeier and Ng, 2012). The
classifiers can be trained on native English data,
learner data, or a combination thereof.

The CoNLL shared tasks on English grammar
correction provided a first large annotated corpus

of learner data for training (NUCLE, (Ng et al.,
2014)), as well as two test sets. All the data
was produced by learners of English studying at
the National University of Singapore (majority of
which were native speakers of Chinese). The sta-
tistical machine translation approach was shown
to be successful in the CoNLL-2014 competition
for the first time (Junczys-Dowmunt and Grund-
kiewicz, 2014). Since then, the state-of-the-art
results on the CoNLL datasets were obtained us-
ing SMT and NMT approaches. The systems are
typically trained on a combination of NUCLE and
the English part of the Lang-8 corpus (Mizumoto
et al., 2012), even though the latter is known to
contain noise, as it is only partially corrected.
Minimally-Supervised and Data-Augmented
GEC There has been a lot of work on generating
synthetic training data for GEC. The approaches
can be broken down into those that attempt to
make use of additional resources (e.g. Wikipedia
edits) or noisify correct English data via artificial
errors. Boyd (2018) augmented training data with
edits extracted from Wikipedia revision history in
German. The edits were classified and only those
relating to GEC were kept. Wikipedia edits are
extracted from the revision history using Wiki Ed-
its (Grundkiewicz and Junczys-Dowmunt, 2014).
The contribution of the resulting edits is demon-
strated using a multilayer convolutional encoder-
decoder neural network model that we also use
in this work. Mizumoto et al. (2011) extracted
a Japanese learners corpus from the revision log
of Lang-8 (about 1 million sentences) and im-
plemented a character-based machine-translation
model.

The other approach of generating parallel data
creates artificial errors in well-formed native data.
This approach was shown to be effective within
the classification framework (Rozovskaya and
Roth, 2011; Dahlmeier and Ng, 2011; Felice and
Yuan, 2014).

3 The Learner Datasets

We make use of two publicly-available datasets of
learner texts for evaluation – the W&I+LOCNESS
and the FCE – described below.

The BEA-2019 Shared Task introduced a
new parallel corpus designed to represent a
wide range of English proficiency levels. The
W&I+LOCNESS corpus consists of hand-
annotated data drawn from two sources. The
Cambridge English Write & Improve (W&I) data



200

W&I+LOCNESS
FCE (all) Training Dev

Type % % %
ADJ 1.36 1.52 1.48
ADJ:FORM 0.28 0.24 0.21
ADV 1.94 1.51 1.51
CONJ 0.67 0.51 0.58
CONTR 0.32 0.30 0.39
DET 10.86 11.25 10.43
MORPH 1.90 1.85 2.07
NOUN 4.57 4.36 4.30
NOUN:INFL 0.50 0.12 0.13
NOUN:NUM 3.34 4.05 3.29
NOUN:POSS 0.51 0.60 0.87
ORTH 2.94 4.77 4.61
OTHER 13.26 12.76 12.84
PART 0.29 0.84 0.79
PREP 11.21 9.79 9.70
PRON 3.51 2.64 2.33
PUNCT 9.71 17.16 19.37
SPELL 9.59 3.74 5.07
UNK 3.13 2.59 2.24
VERB 7.01 5.86 5.27
VERB:FORM 3.55 3.56 3.09
VERB:INFL 0.19 0.04 0.07
VERB:SVA 1.52 2.23 1.94
VERB:TENSE 6.04 6.07 6.20
WO 1.82 1.64 1.25
Total Edits 52,671 63,683 7,632

Table 1: Error distributions by type.

comes from a web-based platform that provides
feedback for non-native English students around
the world to improve their writing. LOCNESS
was compiled by researchers at the Centre for
English Corpus Linguistics at the University of
Louvain, and consists of essays written by native
English students.

W&I+LOCNESS contains 3,700 texts, consist-
ing of 43,169 sentences or 801,361 tokens. 34,308
sentences were made available for training and
4,384 for development.

To provide an additional benchmark for eval-
uation, we also evaluate on the test dataset from
the FCE corpus (Yannakoudakis et al., 2011). The
First Certificate in English (FCE) corpus is a sub-
set of the Cambridge Learner Corpus (CLC) that
contains 1,244 written answers to the FCE exam,
which assesses English at an upper-intermediate
level. FCE was originally annotated according
to a different error type framework, but was re-
annotated automatically using ERRANT for use in

the shared task.
A breakdown of error types for the

W&I+LOCNESS and FCE corpora can be
seen in Table 1. The W&I+LOCNESS and
the FCE datasets have a similar percentage of
some of the most common errors: determiner,
preposition, noun and noun number, verb, verb
form, and verb tense. Two notable exceptions are
punctuation errors (9.71% of all errors in the FCE
corpus, and between 17.16% and 19.37% in the
W&I+LOCNESS training and development data);
and spelling errors; almost 10% of all errors in
FCE, and between 3.74-5.05 in W&I+LOCNESS.

4 Synthetic Data Generation Methods

In this section, we describe the two methods to
generate synthetic parallel data for training.

4.1 The Inverted Spellchecker Method

The method for generating unsupervised paral-
lel data utilized in the system submitted by the
UEDIN-MS team is characterized by usage of
confusion sets extracted from a spellchecker. This
artificial data is then used to pre-train a Trans-
former sequence-to-sequence model.
Noising method overview The Inverted
Spellchecker method utilizes the Aspell
spellchecker to generate a list of suggestions
for a given word. Suggestions are sorted by
weighted edit distance of the proposed word to
the input word and the distance between their
phonetic equivalents. The system then chooses
the top 20 suggestions to act as the confusion set
for the input word.

For each sentence, a number of words to change
is determined based on the word error rate of the
development data set. For each chosen word, one
of the following operations is performed. With
probability 0.7, the word is replaced with a word
randomly chosen from the confusion set. With
probability 0.1, the word is deleted. With prob-
ability 0.1, a random word is inserted. With prob-
ability 0.1, the word’s position is swapped with
an adjacent word. Additionally, the above op-
erations are performed at the character level for
10% of words to introduce spelling errors. It
should be emphasized that although the Inverted
Spellchecker method uses confusion sets from a
spellchecker, the idea of the method is to generate
synthetic noisy data for training a general-purpose
GEC system to correct various grammatical errors.



201

Training specifics The UEDIN-MS system gen-
erated parallel artificial data by applying the In-
verted Spellchecker method to 100 million sen-
tences sampled from the WMT News Crawl cor-
pus. This data was used to pre-train transformer
models in both the Restricted track and the Low-
Resource track; the models differed primarily in
the data sets used for fine-tuning.

In the Restricted track, all of the available an-
notated data from FCE, Lang-8, NUCLE, and
W&I+LOCNESS train was used for fine-tuning.
In the Low-Resource track, a subset of the WikiEd
corpus was used. The WikiEd corpus consists
of 56 million parallel sentences automatically ex-
tracted from Wikipedia revisions. The hand an-
notated W&I+LOCNESS training data was used
as a seed corpus to select 2 million sentence pairs
from the WikiEd corpus that best match the do-
main. These 2 million sentences were then used to
fine-tune the models that were pre-trained on syn-
thetic data.

4.2 The Patterns+POS Method

The Kakao&Brain system generates artificial data
by introducing two noising scenarios: a token-
based approach (patterns) and a type-based ap-
proach (POS). Similar to the UEDIN-MS system,
artificial data is then used to pre-train a trans-
former model.
Noising method overview The method first uses a
small learner sample from W&I+LOCNESS train-
ing data to extract error patterns, i.e. the edits
that occurred and their frequency. Edit informa-
tion is used to construct a dictionary of commonly-
used edits. This dictionary is then used to gener-
ate noise by applying edits in reverse to grammat-
ically correct sentences.

For any token in the native training data that is
not found in the edit pattern dictionary, a type-
based noising scenario is applied. In the type-
based approach, noise is added based on parts-of-
speech (POS). Here, only prepositions, nouns, and
verbs are noisified, with probability 0.15 for an in-
dividual token, as follows: a noun may be replaced
with its singular/plural version; a verb may be re-
placed with its morphological variant; a preposi-
tion may be replaced with another preposition.
Training specifics Artificial data for the
Kakao&Brain system was generated by ap-
plying the Patterns+POS method to native
English data from the Gutenberg dataset (Lahiri,

Sentences Tokens
News Crawl 2,060,499 50,000,109
W&I+L train 34,308 628,720
FCE-train 28,350 454,736
NUCLE 57,151 1,161,567
Lang-8 1,037,561 11,857,938
W&I+L dev 4,384 86,973
FCE-test 2,695 41,932

Table 2: Corpora statistics.

2014), the Tatoeba dataset1, and the WikiText-103
dataset (Merity et al., 2016). The final pre-training
data set was a collection of 45 million sentence
pairs, with the noising approach applied multiple
times to each dataset (1x Gutenberg, 12x Tatoeba,
and 5x WikiText-103) to approximately balance
data from each source. In both the Restricted
track and the Low Resource track, these 45
million sentence pairs were used to pre-train
weights. The respective systems for these tracks
primarily differed in the data sets then used for
additional training. In the Restricted track, all of
the available annotated data from FCE, Lang-8,
NUCLE, W&I+LOCNESS train was used in the
training step. In the Low Resource track, training
was done on a subset of 3 thousand sentences
sampled from the W&I+LOCNESS development
data.

5 Experiments

To compare the Inverted Spellchecker and Pat-
terns+POS noising methods, we present a series of
experiments that should provide evidence for the
efficacy of the noising methods separate from the
implementation of the systems as a whole.

5.1 Experimental Setup

We implement the approach described in Chol-
lampatt and Ng (2018), which is a neural ma-
chine translation approach that uses Convolu-
tional Encoder-Decoder Neural Network architec-
ture (CNN). More specifically, we train a CNN
model with reranking. We use the same hyperpa-
rameters specified by the authors in the paper. The
reranking is performed using edit operations (EO)
and language model (LM) (see the paper for more
detail). We present results for an ensemble of four
models trained with different initializations; re-
sults are averaged). We additionally attempted an

1https://tatoeba.org/eng/downloads



202

approach using a transformer architecture, but in
preliminary results it did not outperform the CNN.
The language model (LM) is a 5-gram LM trained
on the publicly available WMT News Crawl cor-
pus (233 million sentences), using the KenLM
toolkit (Heafield et al., 2013). We also use an
off-the-shelf speller (Flor, 2012; Flor and Futagi,
2012) as a pre-processing step (prior to running
the grammar correction system). We include re-
sults with and without the use of the speller.

Most of the experiments (except experiment
1, as shown below) are performed using 2 mil-
lion sentences (50 million tokens) from the WMT
News Crawl corpus. We use this data to cre-
ate artificially noised source data with the nois-
ing techniques described above. For the Inverted
Spellchecker method, we use the same error rate
of 0.15 used by the authors in their original sys-
tem (the error rate is chosen to simulate the er-
ror rate of the learner data). The same probabil-
ities for word-level and character-level modifica-
tions are used as well (probability 0.7 to replace
a token with another from the confusion set, and
0.1 each to delete, insert, or swap with an adjacent
token). For the Patterns+POS method, we use a
sample of 2,000 sentences from W&I+LOCNESS
train for the token-based portion of the noising
method. We also use the same error rates as the
authors in their original system: probability 0.9 to
apply an edit in reverse if it appears in the edit dic-
tionary, and probability 0.10 to apply a POS-based
noising scenario. For all models, the same 2,000
sentences from W&I+LOCNESS train are used to
train the reranker.

All of the results are reported on the devel-
opment section of the W&I+LOCNESS dataset
and on the test section of the FCE corpus (the
W&I+LOCNESS test data set has not been pub-
licly released and the task participants were evalu-
ated via CodaLab).

We address the following research questions:

• How do the two data generation methods com-
pare on the FCE and W&I+LOCNESS evalua-
tion datasets?

• How does the performance improve when the
synthetically-generated parallel data is aug-
mented with parallel learner data from in-
domain and out-of-domain?

• How do the two methods perform on different
error types?

Experiments vary by the sources of additional

annotated learner data that were added to the
artificially-generated data. Our goal in combining
synthetic data with learner data is to evaluate to
contribution of synthetic data (generated in differ-
ent ways) in various scenarios with in-domain and
out-domain learner data available. The additional
learner training data comes from the publicly-
available learner corpora of various sizes and vari-
ous sources of data: the W&I+LOCNESS and the
FCE training partitions (treated as in-domain for
the respective evaluation datasets), the Lang-8 cor-
pus (Mizumoto et al., 2012), and the NUCLE cor-
pus from the CoNLL-2014 shared task (Dahlmeier
et al., 2013) (both treated as out-of-domain for the
two datasets). These learner corpora were also al-
lowed for use in the Restricted track. Statistics for
the amounts of data can be seen in Table 2.

The first experiment trains models on 50M to-
kens of artificial data generated by each nois-
ing method. The second experiment adds
W&I+LOCNESS training data to the artificial
data. Experiment 3 adds the FCE training set to
the artificial data. In the fourth experiment, we
add the entirety of the annotated training corpora
(FCE, Lang-8, and NUCLE) consisting of 13.5
million tokens to the initial artificially-generated
training set, excluding W&I+LOCNESS training
dataset. Finally, the fifth experiment modifies
the fourth by also including the W&I+LOCNESS
training dataset.
Experiment 1: Artificial data only For the first
experiment, only artificial data generated by either
respective noising method is used to train models.
The results can be viewed in Table 3.

Two observations can be made here. First,
without adding the spellchecker, the Patterns+POS
outperforms the Inverted Spellchecker method by
more than 2 points on the W&I+LOCNESS cor-
pus; however, on the FCE dataset, the Inverted
Spellchecker method is superior (6 point differ-
ence). Since the Patterns+POS method uses data
from W&I+LOCNESS train to generate a token
edit dictionary, this may explain the relatively
improved results of this method on in-domain
W&I+LOCNESS evaluation data. To explore
this hypothesis, we analyze these models’ perfor-
mance with respect to ERRANT error types in
Section 6.

We also note that, when a spellchecker is added,
performance is improved substantially for the Pat-
terns+POS methods (5 and 7 points, respectively,
on W&I+LOCNESS and FCE datasets). In con-



203

W&I+L dev FCE test
Noising method P R F0.5 P R F0.5
Inverted Spellchecker 30.55 10.71 22.29 39.88 13.65 28.81
Patterns+POS 33.93 12.24 25.05 32.43 10.05 22.43
Inverted Spellchecker* 30.12 11.85 23.02 40.72 15.87 31.01
Patterns+POS* 37.04 16.77 29.83 37.04 16.77 29.83

Table 3: Experiment 1 results: Ensemble of 4 models trained on 50 million tokens of artificial data and tuned with
a sample of 2 thousand sentences from W&I+LOCNESS train (*speller applied during pre-processing).

W&I+L dev FCE test
Noising method P R F0.5 P R F0.5
Inverted Spellchecker 32.78 15.68 26.91 35.94 18.07 30.01
Patterns+POS 41.56 15.41 31.03 35.57 12.46 25.95
Inverted Spellchecker* 31.30 16.24 26.41 35.31 19.48 30.37
Patterns+POS* 42.96 20.00 34.94 41.55 19.94 34.15

Table 4: Experiment 1 results continued: Ensemble of 4 models trained on 500 million tokens of artificial data
(*speller applied during pre-processing).

W&I+L dev FCE test
Noising method P R F0.5 P R F0.5
Inverted Spellchecker 39.63 19.50 32.85 39.25 19.26 32.50
Patterns+POS 42.57 22.07 35.90 38.88 18.84 32.06
Inverted Spellchecker* 38.45 20.71 32.83 38.89 21.13 33.29
Patterns+POS* 43.42 26.51 38.50 42.86 25.65 37.79

Table 5: Experiment 2 results: Ensemble of 4 models trained on 50 million tokens of artificial data with 600,000
tokens from W&I+LOCNESS train added (*speller applied during pre-processing).

W&I+L dev FCE test
Noising method P R F0.5 P R F0.5
Inverted Spellchecker 33.38 13.89 26.06 44.88 20.73 36.40
Patterns+POS 39.30 15.48 30.05 44.64 18.49 34.80
Inverted Spellchecker* 32.34 14.76 26.12 44.57 22.47 37.24
Patterns+POS* 40.51 19.54 33.35 47.09 23.68 39.32

Table 6: Experiment 3 results: Ensemble of 4 models trained on 50 million tokens of artificial data with 450,000
tokens from FCE train added (*speller applied during pre-processing).

W&I+L dev FCE test
Noising method P R F0.5 P R F0.5
Inverted Spellchecker 44.80 22.97 37.65 52.43 31.02 46.07
Patterns+POS 46.36 25.06 39.62 50.96 29.72 44.59
Inverted Spellchecker* 42.65 23.64 36.74 50.16 31.81 44.97
Patterns+POS* 45.78 28.13 40.68 50.44 32.69 45.50

Table 7: Experiment 4 results: Ensemble of 4 models trained on 50 million tokens of artificial data with 13.5
million tokens from FCE train, Lang-8, and NUCLE (*speller applied during pre-processing).



204

W&I+L dev FCE test
Noising method P R F0.5 P R F0.5
Inverted Spellchecker 46.76 26.34 40.48 50.02 31.94 44.93
Patterns+POS 48.35 28.01 42.22 50.31 30.16 44.38
Inverted Spellchecker* 44.75 27.42 39.73 48.43 33.15 44.34
Patterns+POS* 47.68 31.03 43.06 49.56 33.06 45.06

Table 8: Experiment 5 results: Ensemble of 4 models trained on 50 million tokens of artificial data with 14 million
tokens of additional annotated data from W&I+LOCNESS, FCE train, Lang-8, and NUCLE (*speller applied
during pre-processing).

trast, the Inverted Spellchecker method benefits by
less than one point and by 2 points on the respec-
tive evaluation sets.

To gauge the effect of using a larger synthetic
data set, we repeat experiment 1 with 500M tokens
of synthetic data (approximately 20M sentences).
Results can be viewed in Table 4. We note that the
gap between the two methods increases by about
2 points on W&I+LOCNESS, with Patterns+POS
outperforming the Inverted Spellchecker. Further,
the Patterns+POS now also outperforms the In-
verted Spellchecker method on FCE by 4 points
(with a spellchecker added). It is worth noting
that although both methods use 2,000 training sen-
tences from W&I+LOCNESS for tuning, the Pat-
terns+POS method also uses the 2,000 sentences
to generate patterns, which seems to benefit more
the W&I+LOCNESS data, compared to the FCE
data.
Experiment 2: Adding W&I+LOCNESS train-
ing data In this experiment, W&I+LOCNESS
training data (with the exception of 2,000 tokens
used to train the reranker) is added to the 50 mil-
lion native data. The results can be viewed in Ta-
ble 5.

The addition of annotated learner data to the
training impacts the performance of each nois-
ing method similarly, showing a significantly
larger improvement evaluated on the in-domain
W&I+LOCNESS dataset, compared to results of
experiment 1. Both methods improve by almost 10
points, with and without a spellchecker is added.
Further, although both methods make use of the
in-domain training data, the Patterns+POS ap-
proach still outperforms the Inverted Spellchecker
method. This suggests that the generated synthetic
errors provide additional knowledge to the model
that is not present in the learner parallel data.

Interestingly, on FCE, Patterns+POS shows a
similar jump in performance compared to exper-
iment 1, while improvements are more modest for

the Inverted Spellchecker method. Overall, com-
paring the best results on FCE that include the
spellchecker, the Inverted Spellchecker improves
by 2 points, while the Patterns+POS method im-
proves by 8 points.

Overall, adding in-domain training data for
W&I+LOCNESS benefits the W&I+LOCNESS
more than the FCE test set, and helps both syn-
thetic data methods. Improvements are smaller
when a spellchecker is added; the smallest im-
provements are attained on the FCE dataset. The
Patterns+POS method is superior on both datasets.
Experiment 3: FCE training data added In this
experiment, FCE training data is added to the 50
million artificial tokens for training. The results
can be viewed in Table 6.

Compared to the addition of W&I+LOCNESS
data in experiment 2, the addition of FCE data
results in a larger improvement when evalu-
ated on FCE test: 6 and 10 points (with a
spellchecker added) for the Inverted SpellChecker
and Patterns+POS, respectively. Improvements
are modest on the W&I+LOCNESS dataset and
very similar for the two methods (3-4 points).
Here, as before, the Patterns+POS method out-
performs the Inverted Spellchecker method on the
W&I+LOCNESS dataset, and on FCE when the
spellchecker is applied. In general, it can be seen
that the Patterns+POS methods takes advantage
of the 2,000 training sentences to a greater ex-
tent than the Inverted Spellchecker method. As
a result, the Patterns+POS method is always su-
perior on the in-domain W&I+LOCNESS data.
However, the addition of a spellchecker is ex-
tremely helpful and substantially improves the
performance of the method also on out-of-domain
FCE data.
Experiment 4: Out-of-domain annotated train-
ing data added In experiment 4, all annotated
data, with the exception of W&I+LOCNESS, is
added. This experiment considers the effect of



205

out-of-domain learner data (out-of-domain rela-
tive to the W&I+LOCNESS dataset). Results are
in Table 7. Even though all of the datasets in-
clude ESL data and most of them contain student
essays, we consider these data sets out-of-domain
relative to the W&I+LOCNESS set since they con-
tain texts written on a different set of topics and by
learners of different proficiency levels .

Significant improvements over the previous
experiments can be observed, due to the vol-
ume of additional data added. The Inverted
Spellchecker method improves by 15 points on
W&I+LOCNESS dev and 17 points on FCE test,
compared to only using artificial data. The Pat-
terns+POS method improves by 15 points on
W&I+LOCNESS and 12 points on FCE test.
We observe that the two methods are very close
on FCE , while the Patterns+POS method still
outperforms the Inverted Spellchecker method
on W&I+Locness (by 2 and 4 points with and
without the spellchecker added, respectively).
This is interesting and suggests that the Pat-
terns+POS method is especially useful when there
is no in-domain training data available, even
though large amounts of out-of-domain learner
data are available. It should also be noted that
adding a spellchecker does not improve Inverted
Spellchecker models, while it is still useful for the
Patterns+POS models.
Experiment 5: All annotated training data
added In experiment 5, all available annotated
data including the W&I+LOCNESS training data
(approximately 14 million tokens) is added to the
artificially generated data. Results can be viewed
in Table 8. This model produces the best results on
the W&I+LOCNESS data, improving by 3 points
compared to experiment 4, while on the FCE
dataset there is no additional improvement. The
two methods perform similarly on the FCE test,
and the Patterns+POS method outperforms the In-
verted Spellchecker method on W&I+LOCNESS
data.

6 Discussion and Error Analysis

Results in the previous section indicate that the
Patterns+POS method outperforms the Inverted
Spellchecker method on W&I+LOCNESS, both
when used on its own, and when additional
learner training data is available, with and with-
out a spellchecker. on the FCE dataset, the
Patterns+POS method is superior only when a
spellchecker is added. In general, the Pat-

terns+POS method benefits more from the addi-
tion of a spellchecker in all experiments. Adding
an off-the-shelf spellchecker to a GEC system is
a common pre-processing step: a spellchecker
is developed to specifically target spelling errors,
so a GEC system, which is typically more com-
plex, can focus on other language misuse. The
greater gap in performance between the methods
on W&I+LOCNESS, compared to FCE, can be at-
tributed to the utilization of in-domain data as part
of the Patterns+POS noising approach.
Evaluation by Error Type To examine the dis-
crepancies in performance between the two nois-
ing methods across the two evaluation datasets,
we present an evaluation of performance by ER-
RANT error type. Type-based evaluation results
for the top 10 most common error types for each
respective evaluation dataset can be seen in Ta-
bles 9 and 10 (note that these results do not in-
clude the off-the-shelf spellchecker). The Inverted
Spellchecker method significantly outperforms the
Patterns+POS method on spelling errors on both
datasets. As spelling errors make up approxi-
mately 10% of errors in the FCE test set (dou-
ble the relative frequency of spelling errors in
W&I+LOCNESS), this may explain the improved
performance of the Inverted Spellchecker method
when evaluated on FCE, compared to its own per-
formance on W&I+LOCNESS.

In contrast, the Patterns+POS method outper-
forms the Inverted Spellchecker method on verb
tense errors and noun number errors. This makes
sense, since the POS-based confusion sets produce
errors that reflect misuse of these grammatical cat-
egories. On the most common and notoriously dif-
ficult errors – articles and prepositions – the two
methods exhibit similar performance. Finally, the
Patterns+POS method outperforms the Inverted
Spellchecker method by 25 points on punctuation
errors on the W&I+LOCNESS data, but is outper-
formed by 2 points on FCE. This may be due to
the fact that the Patterns+POS method utilizes in-
domain data as part of its noising process.
Comparison with BEA-2019 results The high-
est score achieved on W&I+LOCNESS data is
F0.5 43.49 (experiment 5), obtained by the Pat-
terns+POS method with all of the annotated data
added to training, combined with the spellchecker
(see Table 8). The model that only uses 2,000
sentences for reranking and to generate the pat-
terns table (experiment 1, Table 3) obtains a
score of 28.06 on W&I+LOCNESS and 30.98 on



206

Inverted Spellchecker Pattern+POS
Type Error count % P R F0.5 P R F0.5
PUNCT 1478 19.81 42.72 12.72 28.87 43.16 26.69 38.13
OTHER 980 13.13 12.46 4.42 8.84 6.40 0.56 2.07
DET 796 10.67 36.02 12.41 25.98 33.33 13.63 25.53
PREP 740 9.92 27.66 6.25 16.37 22.07 7.50 15.54
VERB:TENSE 473 6.34 14.77 2.48 7.34 29.12 10.36 20.14
VERB 402 5.39 6.39 2.30 4.57 8.40 0.38 1.57
SPELL 387 5.19 64.96 58.01 63.37 16.62 2.00 6.69
ORTH 352 4.72 66.33 5.54 20.34 61.50 3.41 13.91
NOUN 328 4.40 5.41 4.04 4.95 7.91 0.91 3.12
NOUN:NUM 251 3.36 41.85 3.88 13.19 71.74 7.76 26.12
Overall 7461 100 27.30 10.24 20.37 31.54 12.39 23.87

Table 9: Type-based results on experiment 1 (50M tokens artificial data only) on W&I+LOCNESS Dev.

Inverted Spellchecker Pattern+POS
Type Error count % P R F0.5 P R F0.5
DET 625 13.74 52.79 15.04 35.12 47.81 15.16 33.12
OTHER 580 12.75 20.62 6.59 14.04 0.00 0.00 0.00
PREP 477 10.49 29.11 5.61 15.80 25.47 8.33 17.75
PUNCT 471 10.35 25.70 12.85 21.21 18.80 18.20 18.61
SPELL 452 9.94 67.15 52.16 63.36 25.10 3.15 10.33
VERB 243 5.34 9.22 2.68 6.09 6.62 0.31 1.29
VERB:TENSE 232 5.10 21.50 2.91 9.34 24.49 7.00 15.27
NOUN 202 4.44 8.97 5.95 7.82 5.42 0.75 2.39
NOUN:NUM 174 3.83 21.39 46.71 23.75 35.97 54.60 38.29
VERB:FORM 166 3.65 35.29 29.77 33.77 45.34 26.36 39.51
Overall 4549 100 36.26 12.88 26.51 29.74 10.02 21.26

Table 10: Type-based results on experiment 1 (50M tokens artificial data only) on FCE test.

FCE. Choe et al. (2019) report results of 53.00
and 52.79, respectively, which is likely due to
the difference in amount of artificial data uti-
lized. The UEDIN-MS system used the Inverted
Spellchecker method to generate 100 million sen-
tences of artificial data, while the Kakao&Brain
system used the Pattern+POS method to generate
45 million sentences, while we used 2 million na-
tive sentences. We note, however, that our exper-
iments using larger training sets (20 million sen-
tences, shown in Table 4) suggest that our findings
carry over to models trained on larger datasets.

7 Conclusions and Future Work

In this paper, we conduct a fair comparison of two
methods for generating synthetic parallel data for
grammatical error correction – using spellchecker-
based confusion sets and using learner patterns
and POS-based confusions. Our models are eval-
uated on two benchmark GEC English learner
datasets. We show that the methods are better-
suited for different types of language misuse.
In general, the Patterns+POS methods demon-
strated stronger performance than the Inverted
Spellchecker methods.

For future work, we will investigate how these
noising approaches complement each other. This
can be done by training models on a mixture of

synthetic data generated from both approaches
independently, or by utilizing a hybrid noising
method that combines the character-level per-
turbation method of the Inverted Spellchecker
method with the Pattern+POS method in order to
generate additional artificial spelling errors. We
will also perform experiments with larger train-
ing sets. It would also be interesting to examine
how these noising scenarios perform for languages
other than English.

Acknowledgments

We thank the anonymous reviewers for their in-
sightful comments. We thank Michael Flor for his
help with running the ConSpel spellchecker on our
data.

References

A. Boyd. 2018. Using wikipedia edits in low resource
grammatical error correction. In Proceedings of
the 4th Workshop on Noisy User-generated Text (W-
NUT.

C. Bryant, M. Felice, Ø. Andersen, and T. Briscoe.
2019. The BEA-19 shared task on grammatical er-
ror correction. In Proceedings of the ACL Workshop
on Innovative Use of NLP for Building Educational
Applications (BEA-19).



207

C. Bryant, M. Felice, and T. Briscoe. 2017. Auto-
matic annotation and evaluation of error types for
grammatical error correction. In Proceedings of the
55th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
793–805, Vancouver, Canada. Association for Com-
putational Linguistics.

Y. J. Choe, J. Ham, K. Park, and Y. Yoon. 2019. A
neural grammatical error correction system built on
better pre-training and sequential transfer learning .
In Proceedings of the ACL Workshop on Innovative
Use of NLP for Building Educational Applications
(BEA-19).

S. Chollampatt and H. T. Ng. 2018. A multilayer
convolutional encoder-decoder neural network for
grammatical error correction. In Proceedings of the
AAAI. Association for the Advancement of Artificial
Intelligence.

S. Chollampatt, K. Taghipour, and H. T. Ng. 2016.
Neural network translation models for grammatical
error correction. In IJCAI.

D. Dahlmeier and H. T. Ng. 2011. Grammatical er-
ror correction with alternating structure optimiza-
tion. In Proceedings of ACL.

D. Dahlmeier and H. T. Ng. 2012. A beam-search de-
coder for grammatical error correction. In Proceed-
ings of EMNLP-CoNLL.

D. Dahlmeier, H. T. Ng, and S. M. Wu. 2013. Build-
ing a large annotated corpus of learner english: The
nus corpus of learner english. In Proceedings of
the Eighth Workshop on Innovative Use of NLP
for Building Educational Applications, pages 22–
31, Atlanta, Georgia. Association for Computational
Linguistics.

R. Dale, I. Anisimoff, and G. Narroway. 2012. A report
on the preposition and determiner error correction
shared task. In Proceedings of the NAACL Workshop
on Innovative Use of NLP for Building Educational
Applications.

M. Felice and Z. Yuan. 2014. Generating artifi-
cial errors for grammatical error correction. In
Proceedings of the Student Research Workshop at
EACL, Gothenburg, Sweden. Association for Com-
putational Linguistics.

M. Flor. 2012. Four types of context for automatic
spelling correction. Traitement Automatique des
Langues (TAL), 53(3):61–99.

M. Flor and Y. Futagi. 2012. On using context for auto-
matic correction of non-word misspellings in student
essays. In Proceedings of the 7th Workshop on Inno-
vative Use of NLP for Building Educational Appli-
cations. Association for Computational Linguistics.

M. Gamon. 2010. Using mostly native data to cor-
rect errors in learners’ writing. In Proceedings of
NAACL.

R. Grundkiewicz and M. Junczys-Dowmunt. 2014.
The Wiked error corpus: A corpus of corrective
wikipedia edits and its application to grammatical
error correction. In Advances in Natural Language
Processing – Lecture Notes in Computer Science,
volume 8686, pages 478–490. Springer.

R. Grundkiewicz, M. Junczys-Dowmunt, and
K. Heafield. 2019. Neural grammatical error
correction systems with unsupervised pre-training
on synthetic data. In Proceedings of the ACL
Workshop on Innovative Use of NLP for Building
Educational Applications (BEA-19).

K. Heafield, I. Pouzyrevsky, J. H. Clark, and P. Koehn.
2013. Scalable modified Kneser-Ney language
model estimation. In ACL.

D.-T. Hoang, S. Chollampatt, and H.-T. Ng. 2016. Ex-
ploiting n-best hypotheses to improve an SMT ap-
proach to grammatical error correction. In IJCAI.

J. Jianshu, Q. Wang, K. Toutanova, Y. Gong, S. Truong,
and Jianfeng J. Gao. 2017. A nested attention neural
hybrid model for grammatical error correction. In
ACL.

M. Junczys-Dowmunt and R. Grundkiewicz. 2014.
The AMU system in the CoNLL-2014 shared task:
Grammatical error correction by data-intensive and
feature-rich statistical machine translation. In Pro-
ceedings of the Eighteenth Conference on Computa-
tional Natural Language Learning: Shared Task.

M. Junczys-Dowmunt and R. Grundkiewicz. 2016.
Phrase-based machine translation is state-of-the-art
for automatic grammatical error correction. In
EMNLP.

S. Lahiri. 2014. Complexity of Word Collocation Net-
works: A Preliminary Structural Analysis. In Pro-
ceedings of the Student Research Workshop at the
14th Conference of the European Chapter of the As-
sociation for Computational Linguistics.

S. Merity, C. Xiong, J. Bradbury, and R. Socher.
2016. Pointer sentinel mixture models. CoRR,
abs/1609.07843.

T. Mizumoto, Y. Hayashibe, M. Komachi, M. Nagata,
and Y. Matsumoto. 2012. The effect of learner cor-
pus size in grammatical error correction of esl writ-
ings. In COLING.

T. Mizumoto, M. Komachi, M. Nagata, and Y. Mat-
sumoto. 2011. Mining revision log of language
learning SNS for automated japanese error correc-
tion of second language learners. In IJCNLP.

T. Mizumoto and Y. Matsumoto. 2016. Discriminative
reranking for grammatical error correction with sta-
tistical machine translation. In NAACL.

H. T. Ng, S. M. Wu, T. Briscoe, C. Hadiwinoto, R. H.
Susanto, and C. Bryant. 2014. The conll-2014

https://doi.org/10.18653/v1/P17-1074
https://doi.org/10.18653/v1/P17-1074
https://doi.org/10.18653/v1/P17-1074
http://www.aclweb.org/anthology/W13-1703
http://www.aclweb.org/anthology/W13-1703
http://www.aclweb.org/anthology/W13-1703
http://www.atala.org/IMG/pdf/Flor-TAL53-3.pdf
http://www.atala.org/IMG/pdf/Flor-TAL53-3.pdf
http://arxiv.org/abs/1609.07843
http://www.aclweb.org/anthology/W14-1701


208

shared task on grammatical error correction. In Pro-
ceedings of the Eighteenth Conference on Compu-
tational Natural Language Learning: Shared Task,
pages 1–14, Baltimore, Maryland. Association for
Computational Linguistics.

A. Rozovskaya and D. Roth. 2010. Training paradigms
for correcting errors in grammar and usage. In Pro-
ceedings of NAACL.

A. Rozovskaya and D. Roth. 2011. Algorithm selec-
tion and model adaptation for ESL correction tasks.
In Proceedings of ACL.

A. Rozovskaya and D. Roth. 2014. Building a State-of-
the-Art Grammatical Error Correction System. In
Transactions of ACL.

R. H. Susanto, P. Phandi, and H. T. Ng. 2014. Sys-
tem combination for grammatical error correction.
In EMNLP.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit,
L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin.
2017. 2017. Attention is all you need. In I. Guyon,
U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S.
Vishwanathan, and R. Garnett, editors, Advances in
Neural Information Processing Systems.

H. Yannakoudakis, T. Briscoe, and B. Medlock. 2011.
A new dataset and method for automatically grading
esol texts. In Proceedings of the 49th Annual Meet-
ing of the Association for Computational Linguis-
tics: Human Language Technologies, pages 180–
189, Portland, Oregon, USA. Association for Com-
putational Linguistics.

Z. Yuan and T. Briscoe. 2016. Grammatical error cor-
rection using neural machine translation. In NAACL.

http://www.aclweb.org/anthology/W14-1701
http://www.aclweb.org/anthology/P11-1019
http://www.aclweb.org/anthology/P11-1019

