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Abstract

The tasks of automatically scoring either tex-
tual or algebraic responses to mathematical
questions have both been well-studied, albeit
separately. In this paper we propose a method
for automatically scoring responses that con-
tain both text and algebraic expressions. Our
method not only achieves high agreement with
human raters, but also links explicitly to the
scoring rubric – essentially providing explain-
able models and a way to potentially provide
feedback to students in the future.

1 Introduction

In this paper we present work on automatically
scoring student responses to constructed-response
mathematics items where the response should con-
tain both text and mathematical equations or ex-
pressions. Existing work on automated scoring of
mathematics items has largely focused on items
where either only text is required (c.f. related work
on automated short-answer-scoring (Galhardi and
Brancher, 2018; Burrows et al., 2015)) or only an
expression or equation is required (Drijvers, 2018;
Fife, 2017; Sangwin, 2004). This is the first work,
to our knowledge, that attempts to automatically
score responses that contain both.

Items that elicit such responses could be algebra,
trigonometry, or calculus items that ask the student
to solve a problem and/or provide an argument.
Items at levels much below algebra most likely
would not require the student to include an equation
– at least one that requires an equation editor for
proper entry – in the text, and items at a higher
level might require the student to include abstract
mathematical expressions that would themselves
present automated scoring difficulties. These kinds
of items are quite common on paper-and-pencil
algebra exams. However, they are less common
on computer-delivered exams, primarily because

the technology of calling up an equation editor to
insert equations in text is new and not generally
used.

The challenge with automatically scoring these
kinds of responses, in a construct-valid way, is
that the system needs to be able to interpret the
correctness of the equations and expressions in the
context of the surrounding text.

Our goal is not just to achieve accurate scoring
but to also have explainable models. Explainable
models have a number of advantages including (i)
giving users evidence that the models are fair and
unbiased; (ii) the ability to leverage the models
for feedback; and (iii) compliance with new laws,
e.g. the General Data Protection Regulation (EU)
2016/679 (GDPR) which requires transparency and
accountability of any form of automated process-
ing of personal data. In this paper we present an
approach that not only achieves high agreement
with human raters, but also links explicitly to the
scoring rubric – essentially providing explainable
models and a way to potentially provide feedback
to students in the future.

2 Data

In this paper we use data from 3 pilot-study items
that elicited responses containing both textual ex-
planations as well as equations and expressions.
An example item is given in Figure 1, and a sample
response (awarded 2 points on a 0-3 point scale) is
given in Figure 2.1 The pilot was administered as
part of a larger project in four high schools located
in various regions of the United States. The items
assumed one year of algebra and involved writing
solutions to algebra problems, similar to what a stu-
dent would be expected to write on a paper-based
classroom test. Responses were collected digitally;

1This item corresponds to Item 2 in our dataset. The scor-
ing rubric is given in Appendix A.1.



187

Explain, using words and equations, how
you would use the quadratic formula to
find two values of x for which

195 = −2x2 + 40x.
You may also use the on-screen
calculator.

Figure 1: Sample item that elicits textual explanations
as well as equations and mathematics.

x =
−40+

√
402−4(−2)(−195)

2(−2)

To solve this you must first put your
equation in standard form, which gives
you y=-2x+40x-195. You then plug your
a, b, and c values into the quadratic
formula. To start finding your x
value, you must first multiply all your
values in parentheses. You must then
simplify the square root you get from
multiplying. With your new equation,
you make two more equations, one adding
your simplified square root and one
subtracting it. The two answers you get
from those equations are your two values
of x.

Figure 2: Sample response to the item in Figure 1 (2-
point response). The student has put the equation into
standard form with a slight error. −2x2 has become
−2x; the student was not using the equation editor and
could not type the exponent. The student does not ex-
plicitly give the values of a, b, and c, but correctly sub-
stitutes these values into the formula, so we may as-
sume that the student has determined these values cor-
rectly. We may also assume that the student has cor-
rected the missing exponent in the standard form. The
student talks about “two answers” but only gives one
root, however, so this response is worth 2 points.

students used an interface that included an optional
equation editor. The responses were captured as
text, with the equations captured as MathML en-
closed in <math> tags. Two of the items involved
quadratic functions, requiring the student to use
the equation editor to properly format equations in
their responses. Nonetheless, many students did
not use the equation editor consistently. In fact
only 60% of all students used the equation editor.
Of all equations entered by the students, only 34%
were entered via the equation editor since most of
the students preferred to write simple equations as
regular text.2

There were over 1,000 responses collected for
each item, however some responses were blank

2This presents obvious challenges for automatically scor-
ing the mathematical components of the responses, since the
first step is to even identify them (see Section 3.2 for how we
address this).

Item Total % 0 % 1 % 2 % 3
1 924 49.35 19.37 6.93 24.35
2 889 70.97 12.49 11.59 4.95
3 859 77.65 3.49 3.26 15.6

Table 1: Descriptive Statistics for the 3 items, including
the total number of responses per item, as well as the
percentage of responses at each score point.

and therefore not included in this study. Table 1
gives some descriptive statistics for the final data
used in this study. Items 2 and 3 were somewhat
difficult for this pilot student population, with 71%
and 78% of students receiving a score of 0 for those
items. All responses were scored by two trained
raters; the quadratic-weighted kappa values for the
human-human agreement on the three items ranged
from 0.91 to 0.95, indicating that humans were able
to agree very well on the assignment of scores.

3 Methods

3.1 Automatically scoring equations and
expressions

We use m-rater, an automated scoring engine devel-
oped by Educational Testing Service (Fife, 2013,
2017) to automatically score the equations and
mathematical expressions in our data. M-rater uses
SymPy3, an open-source computer algebra system,
to determine if the student’s response is mathemat-
ically equivalent to the intended response. M-rater
can process standard mathematical format, with
exponents, radical signs, fractions, and so forth.
M-rater is a deterministic system, and as such has
100% accuracy, given well-formed input.

If, as in this study, the responses consist of a
mixture of text and equations or mathematical ex-
pressions, m-rater can evaluate the correctness (or
partial correctness) of the equations and expres-
sions, but it cannot evaluate text.

3.2 Automatically identifying equations and
expressions in text

While the students had access to an equation editor
as part of the delivery platform, many did not use
it consistently. This means that we cannot rely on
the MathML encoding to identify all of the equa-
tions and mathematical expressions in the text. For
example, a student may have wanted to enter the
equation: 2x2 − 40x + 195 = 0. They may use
the equation editor to enter the entire equation, or

3https://www.sympy.org/en/index.html
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some of it (e.g. the piece after the = sign, or after
the exponent expression), or none of it. This leads
to construct-irrelevant variations in representations.

Therefore, we develop a regular-expression
based system for automatically identifying equa-
tions and expressions in responses where all data
from the equation editor has been rendered as plain
text. Our processing includes the following as-
sumptions which are appropriate for our dataset:

• Variables can only consist of single letters;

• We only detect simple functions (square root,
absolute and very basic trigonometric func-
tions);

• Equations containing line breaks are treated
as two different equations.

We processed all responses to the three pilot
items with this script and all identified equations
and expressions were manually checked by a con-
tent expert. In almost all cases, the system correctly
identified the equations or expressions. There were
9 incorrectly identified equations in total (out of
2,672). Mis-identifications were usually due to in-
correct spacing in the equation – either too much
space between characters in the equation or no
space between the equation and subsequent text. A
few students used the letter x to denote multiplica-
tion, which was read by the system as the variable
x.

It is possible to convert the m-rater evaluations of
the individual equations and expressions contained
in a response into features. This is done by auto-
matically extracting the equations and expressions
and using m-rater to match each one to an element
in the scoring rubric (also called concepts). These
features encode a binary indicator of whether a par-
ticular concept is present or not in a response. Note
that some concepts represent known or expected
misconceptions in student responses. For exam-
ple, the set of six binary features instantiated for
each response to Item 2 are as follows: (i) has the
equation been correctly transformed into standard
form (rubric element 1); (ii) did the student answer
a=2 (rubric element 2); (iii) did the student answer
b=40 (rubric element 2); (iv) did the student answer
c=195 (rubric element 2); (v) did the student find
solution 1 (rubric element 3); (vi) did the student
find solution 2 (rubric element 3).

3.3 Automatically scoring short texts for
correctness

We use 4 approaches for automatically scoring
short texts with mathematical expressions. The
baseline system (LinRegm) is an ordinary Linear
Regression on the math features automatically ex-
tracted from m-rater evaluations and does not in-
clude any textual context. System 2 (SVRcsw) is a
feature-based Support Vector Regressor (SVR) that
encodes (1) key words and phrases (in the form of
word ngrams); (2) character-ngrams as well as (3)
key syntactic relationships in the text as binary fea-
tures. Note that system 2 does not take any explicit
math features into account, and the mathematical
expressions are assumed to be captured through
character level features. System 3 (SVRmsw) is a
feature-based SVR taking into account both tex-
tual context (through word-ngrams and syntactic
dependencies) as well as explicit math features,
but no character-level ngrams. Our final system is
a recurrant neural network (RNN) system. The
RNN model uses pre-trained word embeddings
encoded by a bidirectional gated recurrent unit
(GRU). The hidden states of the GRU are aggre-
gated by a max pooling mechanism (Shen et al.,
2018). The output of the encoder is aggregated in
a fully-connected feedforward layer with sigmoid
activation to predict the score of the response. This
architecture has achieved state-of-the-art perfor-
mance on the ASAP-SAS benchmark dataset (Ri-
ordan et al., 2019). Additional information about
steps to replicate the system can be found in the
Appendix.

4 Experiments

We conduct a set of experiments to answer the
following research questions:

1. How important is textual context for responses
involving mathematical expressions with re-
spect to automated scoring? (Comparing Exp
0 and Exp 1)

2. Do character level features capture mathemat-
ical expressions? (Exp 0)

3. Can explainability be included in scoring mod-
els without severely compromising accuracy?
(Comparing Exp 0 to Exp 1–3)

For our baseline experiment (Exp 0), student
responses are taken with all equations and expres-
sions converted to plain text. For this experiment,
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System Item 1 Item 2 Item 3
LinRegm 0.506 0.457 0.587
SVRcsw 0.870 0.789 0.933
SVRmsw 0.897 0.797 0.935

Word RNN 0.887 0.835 0.923

Table 2: Quadratically-weighted kappa results for Exp 0 (plain text, no expression replacement)

System Exp 1 Exp 2 Exp 3
Item 1 Item 2 Item 3 Item 1 Item 2 Item 3 Item 1 Item 2 Item 3

SVRmsw 0.888 0.783 0.897 0.891 0.776 0.889 0.894 0.781 0.894
SVRcsw 0.788 0.593 0.664 0.827 0.689 0.867 0.882 0.776 0.891

Word RNN 0.767 0.649 0.725 0.842 0.75 0.887 0.901 0.829 0.888

Table 3: Quadratically-weighted kappa results for explainability experiments

we use all 4 systems as described in Section 3.3.
Subsequently, we perform 3 experiments where all
expressions and equations (as identified by m-rater)
are converted to pre-defined tokens with increasing
degree of explainability:

Exp 1 All equations and expressions automatically
identified and converted to a single token
(@expression@)

Exp 2 All equations and expressions automatically
identified and converted to one of @correct@
or @incorrect@. The correctness of an equa-
tion is determined automatically by matching
against the scoring rubric using m-rater (see
Section 3.1).

Exp 3 All equations and expressions automati-
cally identified and converted to one of @cor-
rect N@ or @incorrect@, where N indicates
the set of concept numbers from the scoring
rubric and is automatically identified using
m-rater.

For each pair of system and response variant,
we conduct a 10-fold nested cross validation ex-
periment. We split our data into 80% train, 10%
dev and 10% test. For each fold, we train on the
train+dev portions and make predictions on the
held-out test portion, having tuned the hyperparam-
eters on the dev set. There are no overlapping test
folds. For evaluation, we pool predictions on test
sets from all folds and compute agreement statistics
between the rater 1 score and the machine predic-
tions.

5 Results

Table 2 gives the results of all models used for the
baseline experiment where all responses are con-
verted to plain text. Even without pre-processing
the mathematical expressions, textual context is
very important, as we see by the poor performance
of the Linear Regression model on purely mathe-
matical features (LinRegm). It can also be seen
that character level features, while partially captur-
ing mathematical expressions, do not perform as
well as the SVR model with explicit math features
(comparing SV Rcsw to SV Rmsw). The difference,
however, is not statistically significant for any item
(details given in Appendix A.3). Another interest-
ing result is that the RNN model without character
level OR explicit math information performs well,
being a close second to the SVRmsw model and
the differences between them are not statistically
significant.

Table 3 gives the results for the explainability
experiments i.e. Exp 1 to 3 where mathematical
expressions and equations were pre-identified and
replaced in the response text. Comparing these with
the results for the experiment on the original text
responses (Table 2), it can be seen that the replace-
ment that includes the mappings to rubric concepts
(Exp 3) not only increases explainability but is also
competitive in performance to models with explicit
math features but no expression replacement (out-
performing them on Item 1). Models SVRcsw and
WordRNN are not significantly different on any
item for any of the 3 explainability experiments
(Exp 1 to 3).

Coming back to our original research questions:

1. How important is textual context for responses
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involving mathematical expressions with re-
spect to automated scoring?
Context is important for automatically scor-
ing responses that integrate text and algebraic
information. Evaluating the mathematical ex-
pressions alone does not perform well (Exp
0). Additionally, Exp 1 has no context for the
mathematical expressions, and we see lower
results for the system that still includes math-
ematical information as independent features,
but out of context (SV Rmsw), compared to
systems that encode the mathematical infor-
mation in some way in context.

2. Do character level features capture mathemat-
ical expressions?
Character level features certainly do capture
a large portion of mathematical expressions.
We see that in the Exp 0 results, where there is
no interpretation of the mathematical expres-
sions, that systems perform almost as well as
the systems that do explicit interpretation.

3. Can explainability be included in scoring mod-
els without severely compromising accuracy?

Yes, we can include model interpretability
without compromising scoring accuracy. The
differences between the best models from Exp
0 and Exp3 ranged from -0.004 to +0.041).
By explicitly linking aspects of the rubric to
each response, we yield interpretable models
that perform comparably to systems without
this interpretative layer. Although the over-
all results are lower, they are not statistically
significantly lower.

6 Conclusion

To summarize, this work presented a hybrid scoring
model using a deterministic system for evaluating
the correctness (or partial correctness) of mathe-
matical equations, in combination with text-based
automated scoring systems for evaluating the appro-
priateness of the textual explanation of a response.

We contribute the following:

1. Systems that produce extremely high agree-
ment between an automated system and hu-
man raters for the task of automatically scor-
ing items that elicit both textual and algebraic
components

2. A method for linking rubric information to
the automated scoring system, resulting in
an more interpretable model than one based
purely on the raw response
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A Appendices

A.1 Scoring Rubric for Item 2
• 1 pt. for writing the equation as 2x2 − 40x+
195 = 0 or −2x2 + 40x − 195 = 0. It’s
acceptable to just write the expression 2x2 −
40x+195 = 0 or−2x2+40x−195 = 0. It’s
also acceptable to say something like “Move
195 to the other side of the equation” if they
find the correct values for a, b, and c (with
correct signs).

• 1 pt. for determining the values of a, b, and
c. a = 2, b = 40, c = 195 OR a = 2,
b = 40, c = 195 0 pts. if they mix the values
up (e.g., a = 2, b = 40, c = 195). 1 pt. if
they implicitly complete this step by correctly
substituting the correct values for a, b, and c
into the quadratic formula in the next step.

• 1 pt. for substituting the values of a, b,
and c into the quadratic formula and ob-
taining two solutions. Students do not
need to simplify the answers. Students
can write any equivalent expressions for
the two values of x, including x =
40+
√
402−4∗2∗195
2∗2 and x = 40−

√
402−4∗2∗195
2∗2

OR x = −40+
√
402−4∗−2∗−195
2∗−2 and x =

−40−
√
402−4∗−2∗−195
2∗−2 . It’s also acceptable

for students to write x = 40±
√
402−4∗2∗195
2∗2

to mean both solutions. Or students may write
that the two values of x are x = 11.5811. . . and
x = 8.4188. . . , correct to at least one decimal
place, provided they arrive at these numbers
through the quadratic formula and not by solv-
ing the equation numerically.

• Max 2/3 for finding one correct solution.

• Max 2/3 for writing the two correct solutions
with no explanation of where the values of a,
b, and c come from.

• 1/3 if the student provides an outline of the
solution without actually carrying out any of
the steps.

A.2 Additional information for training the
RNN model

The text is preprocessed with the spaCy tokenizer
with some minor postprocessing to correct tok-
enization mistakes on noisy data. On conversion to
tensors, responses are padded to the same length
in a batch; these padding tokens are masked out
during model training. Prior to training, responses
are scaled to [0, 1] to form the input to the net-
works. The scaled scores are converted back to
their original range for evaluation. Word tokens
are embedded with GloVe 100 dimension vectors
and fine-tuned during training. Word tokens not
in the embeddings vocabulary are each assigned
a unique randomly initialized vector. The GRUs
were 1 layer with a hidden state of size 250. The
network was trained with mean squared error loss.
We optimized the network with RMSProp with
hyperparameters set as follows: learning rate of
0.001, batch size of 32, and gradient clipping set
to 10.0. An exponential moving average of the
model’s weights is used during training (Adhikari
et al., 2019).

A.3 Additional details on significance testing
of results

Although nested cross-validation gives a fairly un-
biased estimate of true error as shown by Varma
and Simon (2006), we performed statistical signif-
icance testing to pair-wise compare 4 models for
Exp 0: no expression replacement and 2 mod-
els for Exp 3: expressions replaced with incor-
rect/correct along with concept numbers.

Friedman’s test as suggested by Demšar (2006)
is run to compare 6 models (corresponding to
treatments) across multiple repeated measures (10
folds) for each item individually. Note that such a
setup of comparing multiple models across 10 folds
on a dataset has to be regarded as non-independent
data as even though the test folds will be distinct,
the training data for each fold may partially over-
lap. Hence Friedman’s test is appropriate here to

https://doi.org/10.18653/v1/P18-1041
https://doi.org/10.18653/v1/P18-1041
https://doi.org/10.18653/v1/P18-1041
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0 SVRcsw 0 SVRmsw 0 WordRNN 3 SVRcsw 3 WordRNN
0 LinRegm 1 / 3 2 / 3 3 / 3 1 / 3 2 / 3
0 SVRcsw - 0 0 0 0
0 SVRmsw - 0 0 0
0 WordRNN - 1 / 3 0
3 SVRcsw - 0

Table 4: Pair-wise Comparisons of Models with fraction of datasets with significant difference between models

test whether any pair of models are statistically
different.

Following Friedman’s test, we do pair-wise
post-hoc testing through Nemenyi’s test (Nemenyi,
1963). Note that this testing is per-item and we
report the fraction of times the differences were
significant in table 4.


