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Abstract

With the widespread adoption of the Next
Generation Science Standards (NGSS), sci-
ence teachers and online learning environ-
ments face the challenge of evaluating stu-
dents’ integration of different dimensions of
science learning. Recent advances in represen-
tation learning in natural language processing
have proven effective across many natural lan-
guage processing tasks, but a rigorous evalua-
tion of the relative merits of these methods for
scoring complex constructed response forma-
tive assessments has not previously been car-
ried out. We present a detailed empirical inves-
tigation of feature-based, recurrent neural net-
work, and pre-trained transformer models on
scoring content in real-world formative assess-
ment data. We demonstrate that recent neural
methods can rival or exceed the performance
of feature-based methods. We also provide
evidence that different classes of neural mod-
els take advantage of different learning cues,
and pre-trained transformer models may be
more robust to spurious, dataset-specific learn-
ing cues, better reflecting scoring rubrics.

1 Introduction

The Next Generation Science Standards (NGSS)
call for the integration of three dimensions of
science learning: disciplinary core ideas (DCIs),
cross-cutting concepts (CCCs), and science and
engineering practices (SEPs) (NGSS Lead States,
2013). Science teachers can promote knowledge
integration of these dimensions using constructed
response (CR) formative assessments to help their
students build on productive ideas, fill in knowl-
edge gaps, and reconcile conflicting ideas. How-
ever, the time burden associated with reading and
scoring student responses to CR assessment items
often leads to delays in evaluating student ideas.
Such delays potentially make subsequent instruc-
tional interventions less impactful on student learn-

ing. Effective automated methods to score student
responses to NGSS-aligned CR assessment items
hold the potential to allow teachers to provide in-
struction that addresses students’ developing under-
standings in a more efficient and timely manner and
can increase the amount of time teachers have to fo-
cus on classroom instruction and provide targeted
student support.

In this study, we describe a set of CR forma-
tive assessment items that call for students to ex-
press and integrate ideas across multiple dimen-
sions of the NGSS. We collected student responses
to each item in multiple middle school science
classrooms and trained models to automatically
score the content of responses with respect to a
set of rubrics. This study explores the effective-
ness of three classes of models for content scor-
ing of science explanations with complex rubrics:
feature-based models, recurrent neural networks,
and pre-trained transformer networks. Specifically,
we investigate the following questions:

(1) What is the relative effectiveness of automated
content scoring models from different model
classes on scoring science explanations for
both (a) holistic knowledge integration and
(b) NGSS dimensions?

(2) Do highly accurate model classes capture sim-
ilar or different aspects of scoring rubrics?

2 Methods

2.1 Background
We focus on constructed response (CR) items for
formative assessments during science units for mid-
dle school students accessed via an online class-
room system (Gerard and Linn, 2016; Linn et al.,
2014). In past research, items that assessed NGSS
performance expectations (PEs) were scored with
a single knowledge integration (KI) rubric (Liu
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et al., 2016). KI involves a process of building
on and strengthening science understanding by in-
corporating new ideas and sorting out alternative
perspectives using evidence. The KI rubric used
to score student short essays rewards students for
linking evidence to claims and for adding multiple
evidence-claim links to their explanations (Linn
and Eylon, 2011). In this study, we develop items
that solicit student reasoning about two or more
NGSS dimensions of DCIs, CCCs, and SEPs. We
score each item for KI and NGSS “subscores” re-
lating to the DCIs, CCCs, and practices.

3 Scoring item and rubric design

In this section we describe the design of the CR
items that comprise the datasets for the content
scoring models. The CR items formatively assess
student understanding of multiple NGSS dimen-
sions, namely, using SEPs while demonstrating
integrated understanding of DCIs and CCCs.

We designed formative assessment items and
associated rubrics for four units currently used in
the online classroom system: Musical Instruments
(MI), Photosynthesis and Cellular Respiration (PS),
Solar Ovens (SO), and Thermodynamics Challenge
(TC).

Musical Instruments and the Physics of Sound
Waves (MI). The Musical Instruments unit engages
students in testing and refining their ideas about
the properties of sound waves (wavelength, fre-
quency, amplitude, and pitch) and guides them in
applying what they learn to design and build their
own instrument, a water xylophone. The CR item
we designed aligns with the NGSS PE MS-PS4-
2 PE and assesses students’ understanding of the
relationship of pitch and frequency (DCI) and the
characteristics of a sound wave when transmitted
through different materials (CCC). Students are
prompted to distinguish how the pitch of the sound
made by tapping a full glass of water compares to
the pitch made by tapping an empty glass. In their
answer, they are asked to explain why they think
the pitch of the sound waves generated by striking
the two glasses will be the same or different.

Photosynthesis and Cellular Respiration (PS).
This unit engages students in exploring the pro-
cesses of photosynthesis and cellular respiration by
interacting with dynamic models at the molecular
level. We designed a CR item that aligns with
NGSS performance expectation MS-LS1-6 that
asks students to express an integrated explanation

of how photosynthesis supports the survival of both
plants and animals. This item explicitly solicits stu-
dents’ ideas related to the CCC of matter cycling
(i.e. change) and energy flow (i.e. movement):
“Write an energy story below to explain your ideas
about how animals get and use energy from the
sun to survive. Be sure to explain how energy and
matter move AND how energy and matter change.”
Successful responses demonstrate proficiency in
the SEP of constructing a scientific argument and
reflect the synthesis of the DCIs and CCCs.

Solar Ovens (SO). The Solar Ovens unit asks
students to collect evidence to agree or disagree
with a claim made by a fictional peer about the
functioning of a solar oven. Students work with an
interactive model where they explore how different
variables such as the size and capacity of a solar
oven affect the transformation of energy from the
sun. We designed a CR item that addresses NGSS
PE MS-PS3-3 and assesses students for both the
CCC of energy transfer and transformation and
the SEP of analyzing and interpreting data. Af-
ter working with the interactive model, students
respond to the CR item with the prompt: “Explain
why David’s claim is correct or incorrect using the
evidence you collected from the model. Be sure to
discuss how the movement of energy causes one
solar oven to heat up faster than the other.”

Thermodynamics Challenge (TC). The Thermo-
dynamics Challenge unit asks students to determine
the best material for insulating a cold beverage us-
ing an online experimentation model. We designed
a CR item that aligns with the NGSS PE MS-PS3-3
and assesses student performance proficiency with
the targeted DCIs in the PE, understanding of the
SEP of planning and carrying out an investigation,
and the integration of both of these to construct
a coherent and valid explanation. The CR item
prompts students to explain the rationale behind
their experiment plans with the model, using both
key conceptual ideas as well as their understanding
of experimentation as a scientific practice: “Ex-
plain WHY the experiments you [plan to test] are
the most important ones for giving you evidence to
write your report. Be sure to use your knowledge
of insulators, conductors, and heat energy transfer
to discuss the tests you chose as well as the ones
you didn’t choose.”

We designed three scoring rubrics for each item
corresponding to two “subscores” representing the
degree to which the written responses expressed
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PE-specific ideas, concepts, and practices and one
KI score that represents how the responses inte-
grated these elements.

NGSS subscore rubrics. To evaluate the writ-
ten responses for the presence of the DCIs, CCCs,
and SEPs, we designed subscore rubrics for two
of the three dimensions (Table 1). Specifically, we
synthesized the ideas, concepts, and practices de-
scribed in the “evidence statement” documents of
each targeted performance expectation to develop
the evaluation criteria. We assigned each response
a score on a scale of 1 to 3, corresponding to the
absence, partial presence, or complete presence of
the ideas, concepts, or practices.

KI score rubrics. The ideas targeted by the KI
scoring rubrics aligned with subsets of the ideas
described in the evidence statements. For example,
the KI scoring rubrics for the Photosynthesis item
evaluated written responses for the presence and
linkage of five science ideas related to energy and
matter transformation during photosynthesis. KI
rubrics used a scale of 1 to 5.

3.1 Data collection

Participants were middle school students from 11
schools. Students engaged in the science units and
contributed written responses to the CR items as
part of pre- and post-tests. Across schools, 44% of
students received free or reduced price lunch and
77% were non-white.

All items were scored by two researchers using
the item-specific subscore and KI and rubrics de-
scribed above. To ensure coding consistency, both
researchers coded at least 10% of the items indi-
vidually and resolved any disagreements through
discussion. After the inter-rater reliability reached
greater than 0.90, all of the remaining items were
coded by one researcher (cf. the procedure in Liu
et al. (2016))1.

Table 2 displays the dataset sizes and mean
words per response for the KI scores and NGSS
subscores, and Figure 1 depicts the respective score
distributions. Among the holistic KI scores, the
highest score of 5 had relatively fewer responses
than other score levels. By examining the shape
of the distributions of scores across the NGSS sub-
scores, we can see that students’ expression of dif-
ferent aspects of NGSS performance expectations
differed across items. For the Musical Instruments

1Datasets are not publicly available because of the IRB-
approved consent procedure for participants (minors) in this
research.

Item PE DCI CCC SEP

Musical Instruments MS-PS4-2 • •
Photosynthesis MS-LS1-6 • •
Solar Ovens MS-PS3-3 • •
Thermodynamics
Challenge MS-PS3-3 • •

Table 1: NGSS performance expectations (PE) and tar-
geted components: disciplinary core idea (DCI), cross-
cutting concept (CCC), and science and engineering
practices (SEP) targeted by each item.

Item Type Responses
Mean

words per
response

MI KI 1306 25.40
PS KI 1411 54.57
SO KI 1740 31.87
TC KI 994 31.73

MI CCC
DCI 1306 25.40

PS CCC
DCI 553 70.40

SO SEP: eng
CCC: sci 605 32.62

TC SEP: exp
DCI: sci 583 31.43

Table 2: Descriptive statistics for each item’s dataset.

and Photosynthesis items, students expressed the
disciplinary core ideas less than the cross-cutting
concepts. For both the Solar Ovens and Thermo-
dynamics Challenge items, students often did not
explicitly articulate science concepts. The Thermo-
dynamics Challenge item was particularly challeng-
ing, as many students did not express the targeted
science or experimentation concepts.

3.2 Content scoring models
Content scoring models were built for each item
and score type (knowledge integration and two
NGSS dimensions). Models for each score type
were trained independently on data for each item.
In this way, the three models for an item formed
different “perspectives” on the content of each re-
sponse. Human-scored training data for the NGSS
dimension models comprised either a subset of or
overlapped with the training data for the KI models.

The models were trained to predict an ordinal
score from each response’s text, without access
to expert-authored model responses or data aug-
mentation. This type of “instance-based” model
(cf. Horbach and Zesch (2019)) is effective when
model responses are not available and can score re-
sponses of any length without additional modeling
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Figure 1: Score distributions for (a) knowledge integration scores and (b) NGSS subscores.

complexity. As we focus on content scoring, the
models do not consider grammatical or usage errors
that do not relate to the content of each response.

The feature-based model is a nonlinear support
vector regression (SVR) model. The model is
trained on a feature set of binarized word n-grams
with n in {1, 2}.

The RNN model uses a simple architecture with
pre-trained word embeddings and pooling of hid-
den states. Pre-trained word embeddings are pro-
cessed by a bidirectional GRU encoder. The hidden
states of the GRU are aggregated by a max pooling
mechanism (Shen et al., 2018). The output of the
encoder is aggregated in a fully-connected feedfor-
ward layer with sigmoid activation that computes
a scalar output for the predicted score. Despite its
simplicity, this architecture has achieved state-of-
the-art performance on benchmark content scoring
datasets (Riordan et al., 2019).

For the pre-trained transformer model, we used a
standard instance of the BERT model (Devlin et al.,
2019). BERT is a bidirectional transformer model
trained on the tasks of masked token prediction and
next sentence prediction across very large corpora
(BooksCorpus and English Wikipedia). During
training, a special token ‘[CLS]’ is added to the
beginning of each input sequence. To make predic-
tions, the learned representation for this token is
processed by an additional layer with nonlinear ac-
tivation, outputting a score prediction. The model
was ‘fine-tuned’ by training the additional layer’s
weights on each item’s dataset.

3.3 Data preparation, model training, and
hyperparameter optimization

SVR model. The SVR models used an RBF kernel.
Hyperparameters C and gamma were tuned on the
validation sets and were optimized by root mean
squared error.

RNN model. Word tokens were embedded with
GloVe 100 dimension vectors (Pennington et al.,
2014) and fine-tuned during training. Word tokens
that were not found in the embeddings vocabulary
were mapped to a randomly initialized UNK em-
bedding. On conversion to tensors, responses were
padded to the same length in a batch; these padding
tokens are masked out during model training. Prior
to training, responses were scaled to [0, 1] to form
the input to the networks. The scaled scores were
converted back to their original range for evalua-
tion.

The GRUs were 1 layer with a hidden state of
size 250. The RNN models were trained with a
mean squared error loss. For this investigation, the
RNN was optimized with RMSProp with ρ of 0.9,
learning rate 0.001, batch size 32, and gradient
clipping (10.0). We used an exponential moving
average of the model’s weights for training (decay
rate = 0.999) (Adhikari et al., 2019). In the tuning
phase, models were trained for 50 epochs.

Pretrained transformer model. We used the bert-
base-uncased pre-trained model (Wolf et al., 2019)
and the Adam optimizer. On the Photosynthesis
dataset, due to memory requirements, training re-
quired a batch size of 8; all other datasets were
trained with a batch size 16. The learning rate
was tuned individually for each dataset with a grid
of {2e-5, 3e-5, 5e-5}. Matching the RNN model,
an exponential moving average over the model’s
weights was employed during training. Hyperpa-
rameters were tuned for 20 epochs.

For all experiments, we trained models with
10-fold cross validation with train/validation/test
splits, evaluating on pooled (concatenated) predic-
tions across folds. We split the data into 80% train,
10% validation, and 10% test. For hyperparameter
tuning, we trained on each train split and evalu-
ated performance on the validation split, retaining
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Item Model Corr QWK MSE Sig.

MI
SVR 0.7804 0.7045 0.3298
RNN 0.7989 0.7642 0.3058
PT 0.8134 0.7733 0.2956

PS
SVR 0.8296 0.7851 0.2098 R
RNN 0.8215 0.7550 0.2285
PT 0.8459 0.8246 0.1997 S,R

SO
SVR 0.7491 0.6690 0.2737
RNN 0.7612 0.7116 0.2619
PT 0.7691 0.7127 0.2608 S,R

TC
SVR 0.6856 0.6156 0.4777
RNN 0.7106 0.6732 0.4465 S
PT 0.7286 0.6791 0.4266 S

Table 3: Human-machine agreement for Knowledge
Integration (KI) score models. QWK = quadratic-
weighed kappa, MSE = mean squared error. SVR =
support vector regression, RNN = recurrent neural net-
work, PT = pre-trained Transformer. Sig. = signifi-
cance by bootstrap replicability analysis; see main text
for details.

the predictions from the best performance across
epochs and the epoch on which that performance
was observed. We pooled the predictions from
all folds on the validation sets, evaluated perfor-
mance, and selected the best-performing configura-
tion of hyperparameters. For final model training,
we trained models on combined train and valida-
tion splits, again with 10-fold cross-validation, to
the median best epoch across folds from the hy-
perparameter tuning phase. Final performance was
evaluated on the pooled predictions from the test
splits. This training and evaluation procedure im-
proves the stability of estimates of performance
during both the tuning and final testing phases and
makes use of more data for training and evaluat-
ing the final models, providing better estimates of
model performance.

3.4 Evaluation metrics

To evaluate the agreement of human scores and
machine scores, we report Pearson’s correlation,
quadratic weighted kappa (QWK), and mean
squared error (MSE). QWK is a measure of agree-
ment that ranges between 0 and 1 and is motivated
by accounting for chance agreement (Fleiss and
Cohen, 1973). Correlation and MSE are computed
over real-valued model predictions, while QWK is
computed over rounded predictions.

Item Sub-
score Model Corr QWK MSE Sig.

MI CCC
SVR .7008 .6314 .3185
RNN .7685 .7322 .2561 S
PT .7730 .7542 .2557 S

MI DCI
SVR .7505 .7110 .1261
RNN .7908 .7392 .1088
PT .8230 .7970 .0953

PS CCC
SVR .6992 .6050 .3102
RNN .7379 .7187 .2772
PT .7188 .6607 .2997 S

PS DCI
SVR .7410 .6956 .2245
RNN .7795 .7471 .1955
PT .8044 .7701 .1826

SO eng
SVR .6957 .5915 .2684
RNN .7484 .7112 .2503
PT .7662 .7263 .2428 S

SO sci
SVR .5789 .4770 .1744
RNN .6872 .5408 .1623
PT .6480 .6038 .1834

TC exp
SVR .5323 .4705 .1926
RNN .5916 .4675 .1724
PT .6067 .5445 .1661

TC sci
SVR .5038 .0000 .2262
RNN .5090 .3897 .1835 S
PT .5303 .4182 .1779 S

Table 4: Human-machine agreement for NGSS sub-
score models. Sig. = significance by bootstrap repli-
cability analysis; see main text.

4 Results

4.1 Human-machine agreement
The models for the KI scores showed mostly good
agreement with human scores (Table 3). QWK
for the Musical Instruments, Photosynthesis, and
Solar Ovens items was substantially higher than
the standard 0.7 recommended for human-machine
agreement in real-word automated scoring applica-
tions (Williamson et al., 2012).

For NGSS subscore models (Table 4), those with
more balanced score distributions (cf. Figure 1)
showed good human-machine agreement, while
the models trained on the most skewed data dis-
tributions showed lower levels of human-machine
agreement. Specifically, Solar Ovens-Science and
the Thermodynamics Challenge subscore models
were trained on data where about 80% of responses
had the lowest score. Each of these models’ agree-
ment with the human-scored data was relatively
low and significantly below the 0.7 QWK thresh-
old.

Across both KI score models and NGSS sub-
score models, the pre-trained transformer mod-
els showed higher human-machine agreement than
both the SVR and RNN models in almost all cases.
On the KI score datasets, the performance improve-
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ment from the PT models was relatively modest, ex-
cept for the Photosynthesis dataset, where a larger
improvement was observed. On the NGSS sub-
score datasets, the improvement from the PT mod-
els was often larger. This may be the result of
stronger representations from the pretrained mod-
els compensating from the smaller training dataset
sizes. At the same time, RNN models also per-
formed well on data-impoverished datasets such as
Photosynthesis-CCC and Solar Ovens-science.

The cross-validation training and evaluation pro-
cedure employed here poses a challenge to statis-
tically estimating the strengths of the differences
between methods since the folds are not indepen-
dent. Here we employ replicability analysis for
multiple comparisons (Reichart et al., 2018; Dror
et al., 2017). We use bootstrap-based significance
testing on each fold for the final model on each
dataset and then perform K-Bonferonni replicabil-
ity analysis. We define significance as rejecting
the null hypothesis of no difference for at least
half of the folds. The results of these hypothesis
tests are shown in Tables 3 and 4. For example, S
indicates the model in that row (PT) performed sig-
nificantly better than the SVR model (similarly for
the RNN models). Although this hypothesis testing
framework is conservative, the results support the
conclusion that the pre-trained transformer models’
performance was strong.

5 Error analysis

In this section, we explore the differences in the
two neural models (RNN and PT) in more detail by
looking at patterns of errors. We focus on instance-
level saliency maps – gradient-based methods that
identify the importance of tokens to the model by
examining the gradient of the loss. For each dataset,
we sample 100 responses and generate saliency
maps for each. We use the simple gradient method
(Simonyan et al., 2014) via AllenNLP (Wallace
et al., 2019). The item developers manually an-
alyzed the generated saliency maps for each re-
sponse and model.

We analyzed two sets of cases:

1. One neural model accurately predicted the
human score while the other did not. How do
the error patterns in these cases illustrate how
the models each learned differently from the
training data?

2. Both models incorrectly predicted the human

score, and moreover predicted the same incor-
rect score. Do the models make the wrong
prediction for the same or different reasons?

In the following, due to space constraints, we
focus on error analysis for the scoring model for
the Musical Instruments knowledge integration
dataset.

One correct, one incorrect. Cases where one
model accurately predicted the human score while
the other did not illuminated several differences in
the two neural models.

The RNN model tended to ignore or de-
emphasize some keywords, while overemphasizing
high frequency and function words. For example,
Figure 2a shows a simple example where the RNN
fails to emphasize the keyword pitch. The BERT
model accurately registers this word as salient, and
predicts the correct score. Similarly, in Figure 2b,
the RNN misses the keyphrase full glass while the
BERT model catches it. In Figure 2c, the RNN
spuriously treats the function words when and you
as salient and over-predicts the score.

For its part, the BERT model may de-emphasize
many high frequency words but at the same time
may regard discourse markers as salient. An exam-
ple is in Figure 3a, where the BERT model empha-
sizes because since, and this may in part help the
model reach the correct prediction.

If the BERT model is able to better learn im-
portant keywords (while ignoring more function
words), it may sometimes “overlearn” the impor-
tance of those tokens, leading to over-prediction
of scores. There are several examples where the
model uses the word piece ##brate to overpredict a
score (Figure 3b).

Both incorrect with the same prediction. In many
cases, the models made the same incorrect predic-
tions for different reasons. An example is Figure
3c, where the RNN emphasizes deeper and dense
while the BERT model focuses on because and cup.
Overall, the same differences in the models identi-
fied above held for these cases of making the same
incorrect prediction.

In general, although there was some variability
across models, both models correctly identified the
keywords necessary for scoring responses correctly,
leading to good human-machine agreement. The
RNN model may be more sensitive to tokens that
are good indicators of the score in the training data
(either high or low) but not in language in general,
such as high frequency and function words, while
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148053 score=3 prediction=2
the pitch gets a lot lower
148053 score=3 prediction=3
[CLS] the pitch gets a lot lower [SEP]

(a)
207529 score=3 prediction=2
The tap of a full glass is more low pitched and an empty glass is more
high pitched because there is no bellow
207529 score=3 prediction=3
[CLS] the tap of a full glass is more low pitched and an empty glass is
more high pitched because there is no bell ##ow [SEP]

(b)
147925 score=2 prediction=3
When you tap on a full glass the pitch stays the same as if you were
tapping on an empty glass because you are still tapping on a glass that
is going to make a high pitched sound no matter if it is full or not .
147925 score=2 prediction=2
[CLS] when you tap on a full glass the pitch stays the same as if you
were tapping on an empty glass because you are still tapping on a glass
that is going to make a high pitched sound no matter if it is full or not
. [SEP]

(c)

Figure 2: Error analysis: RNN model trends. In each example, the RNN model’s saliency map appears on top.

237142 score=3 prediction=2
The pitch of the tapped full glass is lower than the pitch of the tapped
empty glass because since there is water inside you are not going to be
able to hear it as much .
237142 score=3 prediction=3
[CLS] the pitch of the tapped full glass is lower than the pitch of the
tapped empty glass because since there is water inside you are not going
to be able to hear it as much . [SEP]

(a)
148661 score=3 prediction=3
The one taht is full will vibrate less so it will be higher than the one
that is empty .
148661 score=3 prediction=4
[CLS] the one ta ##ht is full will vi ##brate less so it will be higher
than the one that is empty . [SEP]

(b)
176754 score=4 prediction=3
the cup with water has a deeper sound because its changing through
the dense water but the cup with no water stays the same because the
sound wave does n’t have to go through anything or change anything .
176754 score=4 prediction=3
[CLS] the cup with water has a deeper sound because its changing
through the dense water but the cup with no water stays the same
because the sound wave doesn ’ t have to go through anything or change
anything . [SEP]

(c)

Figure 3: Error analysis: Pre-trained transformer model trends. In each example, the pre-trained transformer
model’s saliency map appears on the bottom.
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BERT’s pre-training regime may equip it to reduce
any reliance on such tokens.

Notably, however, while the models usually
made good use of keyword evidence to arrive at
correct scores, when the models made inaccurate
predictions, it was often because the response had
the right vocabulary but the wrong science. For ex-
ample, in the Musical Instruments item, a response
might contain pitch, lower, density, and vibrations,
but the response might attribute the lower pitch to
the empty glass. At least two issues were observed
in cases of model mis-prediction: (1) students used
anaphoric it to refer to key concepts (e.g., full glass
or empty glass), but the models do not incorpo-
rate anaphora resolution capabilities; (2) models
fail to associate the right keywords with the right
concepts, in the way that human raters did.

6 Related work

The task of automated content scoring has recently
gained more attention (Kumar et al., 2017; Riordan
et al., 2017; Burrows et al., 2015; Shermis, 2015).
Our work is similar to Mizumoto et al. (2019), who
developed a multi-task neural model for assigning
an overall holistic score as well as content-based
analytic subscores. We leave a multi-task formula-
tion of our application setting for future work.

Sung et al. (2019) demonstrated state-of-the-art
performance for similarity-based content scoring
on the SemEval benchmark dataset (Dzikovska
et al., 2016). In this work, we use pre-trained trans-
former models for instance-based content scoring
(cf. Horbach and Zesch (2019)). That is, we use
whole responses as training data and fine-tune pre-
trained representations for response tokens on the
content score prediction task.

Recently, methods have been introduced to incor-
porate “saliency” directly into the model training
process (Ghaeini et al., 2019). The current work
focuses on interpreting the predictions of mod-
els trained without additional annotations (for an
overview of interpretability in NLP, see Belinkov
and Glass (2019). Exploring the contribution of
augmented datasets and training algorithms is fu-
ture work. To our knowledge, our work is the first
to to explore the relevance of the saliency in the pre-
dictions of neural methods for the content scoring
task.

7 Conclusion

We described a set of constructed response items
for middle-school science curricula that simulta-
neously assess students on expression of NGSS
Disciplineary Core Ideas (DCIs), Cross-Cutting
Concepts (CCCs), and Science and Engineering
Practices (SEPs), and the integrative linkages be-
tween each, as part of engaging in scientific expla-
nations and argumentation. We demonstrated that
human and automated scoring of such CRs for the
NGSS dimensions (via independent subscores) and
the integration of knowledge (via Knowledge Inte-
gration scores) is feasible. We demonstrated that
automated scoring can be developed with promis-
ing accuracy.

Comparing feature-based, RNN, and pre-trained
transformer models on these datasets, we observed
that the pre-trained transformer models obtained
higher rates of human-machine agreement on most
holistic KI score and NGSS subscore datasets.
While the RNN models were often competitive
with the pre-trained transformer models, an anal-
ysis of the different kinds of errors made by each
model type indicated that the pre-trained trans-
former models may be more robust to strong
dataset-specific, but spurious, cues to score pre-
diction.

Results showed that, in the formative setting
targeted by the online science learning environ-
ment used in this study, students often scored at the
lowest levels of all three rubrics, which increased
skewness in the datasets and likely contributed to
reduced model accuracy. Future research will ex-
plore more robust methods for learning scoring
models from less data in formative settings, es-
pecially from highly skewed score distributions,
while continuing to provide accurate scoring.

Our findings demonstrate the ability to both de-
velop and automatically score NGSS-aligned CR
assessment items. With further refinement, we can
provide teachers with both the instructional and
technological assistance they need to effectively
and efficiently support their students to demonstrate
the multidimensional science learning called for by
the NGSS.
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