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Abstract

We consider the problem of automatically sug-
gesting distractors for multiple-choice cloze
questions designed for second-language learn-
ers. We describe the creation of a dataset in-
cluding collecting manual annotations for dis-
tractor selection. We assess the relationship
between the choices of the annotators and fea-
tures based on distractors and the correct an-
swers, both with and without the surrounding
passage context in the cloze questions. Sim-
ple features of the distractor and correct an-
swer correlate with the annotations, though we
find substantial benefit to additionally using
large-scale pretrained models to measure the
fit of the distractor in the context. Based on
these analyses, we propose and train models to
automatically select distractors, and measure
the importance of model components quantita-
tively.

1 Introduction

Multiple-choice cloze questions (MCQs) are
widely used in examinations and exercises for lan-
guage learners (Liang et al., 2018). The quality of
MCQs depends not only on the question and choice
of blank, but also on the choice of distractors, i.e.,
incorrect answers. Distractors, which could be
phrases or single words, are incorrect answers that
distract students from the correct ones.

According to Pho et al. (2014), distractors tend
to be syntactically and semantically homogeneous
with respect to the correct answers. Distractor se-
lection may be done manually through expert cura-
tion or automatically using simple methods based
on similarity and dissimilarity to the correct answer
(Pino et al., 2008; Alsubait et al., 2014). Intuitively,
optimal distractors should be sufficiently similar
to the correct answers in order to challenge stu-
dents, but not so similar as to make the question
unanswerable (Yeung et al., 2019). However, past

work usually lacks direct supervision for training,
making it difficult to develop and evaluate auto-
matic methods. To overcome this challenge, Liang
et al. (2018) sample distractors as negative sam-
ples for the candidate pool in the training process,
and Chen et al. (2015) sample questions and use
manual annotation for evaluation.

In this paper, we build two datasets of MCQs
for second-language learners with distractor selec-
tions annotated manually by human experts. Both
datasets consist of instances with a sentence, a
blank, the correct answer that fills the blank, and a
set of candidate distractors. Each candidate distrac-
tor has a label indicating whether a human annota-
tor selected it as a distractor for the instance. The
first dataset, which we call MCDSENT, contains
solely the sentence without any additional context,
and the sentences are written such that they are
understandable as standalone sentences. The sec-
ond dataset, MCDPARA, contains sentences drawn
from an existing passage and therefore also sup-
plies the passage context.

To analyze the datasets, we design context-free
features of the distractor and the correct answer,
including length difference, embedding similari-
ties, frequencies, and frequency rank differences.
We also explore context-sensitive features, such
as probabilities from large-scale pretrained models
like BERT (Devlin et al., 2018). In looking at the
annotations, we found that distractors are unchosen
when they are either too easy or too hard (i.e., too
good of a fit in the context). Consider the examples
in Table 1. For the sentence “The large automobile
manufacturer has a factory near here.”, “beer” is
too easy and “corporation” is too good of a fit, so
both are rejected by annotators. We find that the
BERT probabilities capture this tendency; that is,
there is a nonlinear relationship between the dis-
tractor probability under BERT and the likelihood
of annotator selection.
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dataset context with correct answer distractor label

MCDSENT

How many people are planning to attend the party? contribute T
The large automobile manufacturer has a factory near here. beer F
The large automobile manufacturer has a factory near here. corporation F
The large automobile manufacturer has a factory near here. apartment T

MCDPARA

Stem cells are special cells that can divide to produce many different kinds of cells.
When they divide, the new cells may be the same type of cell as the original cell....

plastic F

...These circumstances made it virtually impossible for salmon to mate. Therefore, the
number of salmon declined dramatically.

thousands T

Table 1: Example instances from MCDSENT and MCDPARA. Contexts are shown and correct answers are bold
and underlined. Part of the paragraph contexts are replaced by ellipses.

We develop and train models for automatic dis-
tractor selection that combine simple features with
representations from pretrained models like BERT
and ELMo (Peters et al., 2018). Our results show
that the pretrained models improve performance
drastically over the feature-based models, leading
to performance rivaling that of humans asked to
perform the same task. By analyzing the models,
we find that the pretrained models tend to give
higher score to grammatically-correct distractors
that are similar in terms of morphology and length
to the correct answer, while differing sufficiently
in semantics so as to avoid unaswerability.

2 Datasets

We define an instance as a tuple 〈x, c, d, y〉 where
x is the context, a sentence or paragraph containing
a blank; c is the correct answer, the word/phrase
that correctly fills the blank; d is the distractor
candidate, the distractor word/phrase being consid-
ered to fill the blank; and y is the label, a true/false
value indicating whether a human annotator se-
lected the distractor candidate.1 We use the term
question to refer to a set of instances with the same
values for x and c.

2.1 Data Collection

We build two datasets with different lengths of con-
text. The first, which we call MCDSENT (“Multi-
ple Choice Distractors with SENTence context”),
uses only a single sentence of context. The sec-
ond, MCDPARA (“Multiple Choice Distractors
with PARAgraph context”), has longer contexts
(roughly one paragraph).

1Each instance contains only a single distractor candidate
because this matches our annotation collection scenario. An-
notators were shown one distractor candidate at a time. The
collection of simultaneous annotations of multiple distractor
candidates is left to future work.

Our target audience is Japanese business people
with TOEIC level 300-800, which translates to pre-
intermediate to upper-intermediate level. There-
fore, words from two frequency-based word lists,
the New General Service List (NGSL; Browne
et al., 2013) and the TOEIC Service List (TSL;
Browne and Culligan, 2016), were used as a base
for selecting words to serve as correct answers in in-
stances. A proprietary procedure was used to create
the sentences for both MCDSENT and MCDPARA

tasks, and the paragraphs in MCDPARA are ex-
cerpted from stories written to highlight the target
words chosen as correct answers. The sentences
are created following the rules below:

• A sentence must have a particular minimum and
maximum number of characters.
• The other words in the sentence should be at an

equal or easier NGSL frequency level compared
with the correct answer.
• The sentence theme should be business-like.

All the MCDSENT and MCDPARA materials were
created in-house by native speakers of English,
most of whom hold a degree in Teaching English
to Speakers of Other Languages (TESOL).

2.2 Distractor Annotation
We now describe the procedure used to propose
distractors for each instance and collect annotations
regarding their selection.

A software tool with a user interface was created
to allow annotators to accept or reject distractor
candidates. Distractor candidates are sorted auto-
matically for presentation to annotators in order
to favor those most likely to be selected. The dis-
tractor candidates are drawn from a proprietary
dictionary, and those with the same part-of-speech
(POS) as the correct answers (if POS data is avail-
able) are preferred. Moreover, the candidates that
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have greater similarity to the correct answers are
preferred, such as being part of the same word
learning section in the language learning course
and the same NGSL word frequency bucket. There
is also preference for candidates that have not yet
been selected as distractors for other questions in
the same task type and the same course unit.2 After
the headwords are decided through this procedure,
a morphological analyzer is used to generate multi-
ple inflected forms for each headword, which are
provided to the annotators for annotation. Both the
headwords and inflected forms are available when
computing features and for use by our models.

Six annotators were involved in the annotation,
all of whom are native speakers of English. Out
of the six, four hold a degree in TESOL. Select-
ing distractors involved two-step human selection.
An annotator would approve or reject distractor
candidates suggested by the tool, and a different
annotator, usually more senior, would review their
selections. The annotation guidelines for MCD-
SENT and MCDPARA follow the same criteria.
The annotators are asked to select distractors that
are grammatically plausible, semantically implausi-
ble, and not obviously wrong based on the context.
Annotators also must accept a minimum number
of distractors depending on the number of times
the correct answer appears in the course. Table 1
shows examples from MCDSENT and MCDPARA

along with annotations.

2.3 Annotator Agreement

Some instances in the datasets have multiple anno-
tations, allowing us to assess annotator agreement.
We use the term “sample” to refer to a set of in-
stances with the same x, c, and d. Table 2 shows the
number of samples with agreement and disagree-
ment for both datasets.3 Samples with only one
annotation dominate the data. Of the samples with
multiple annotations, nearly all show agreement.

2.4 Distractor Phrases

While most distractors are words, some are phrases,
including 16% in MCDSENT and 13% in MCD-
PARA. In most cases, the phrases are constructed
by a determiner or adverb (“more”, “most”, etc.)
and another word, such as “most pleasant” or

2More specific details about this process are included in
the supplementary material.

3We are unable to compute traditional inter-annotator
agreement metrics like Cohen’s kappa since we lack infor-
mation about annotator identity for each annotation.

# anno. MCDSENT MCDPARA
agree disagree total agree disagree total

1 - - 232256 - - 734063
2 2553 122 2675 9680 152 9841
3 121 2 123 493 3 496
4 17 0 17 62 0 62
5 10 0 10 12 0 12
6 0 0 0 2 0 2

Table 2: Numbers of samples for which annotators
agree or disagree.

dataset type y train dev test

MCDSENT
questions - 2,713 200 200

instances T 30,737 1,169 1,046
F 191,908 6,420 6,813

MCDPARA
questions - 14,999 1,000 1,000

instances T 49,575 597 593
F 688,804 7,620 8,364

Table 3: Dataset sizes in numbers of questions (a
“question” is a set of instances with the same x and c)
and instances, broken down by label (y) and data split.

“more recently”. However, some candidates show
other patterns, such as noun phrases “South Pole”,
erroneously-inflected forms “come ed” and other
phrases (e.g. “Promises Of”, “No one”).

2.5 Dataset Preparation

We randomly divided each dataset into train, devel-
opment, and test sets. We remind the reader that
we define a “question” as a set of instances with
the same values for the context x and correct an-
swer c, and in splitting the data we ensure that for
a given question, all of its instances are placed into
the same set. The dataset statistics are shown in
Table 3. False labels are much more frequent than
true labels, especially for MCDPARA.

3 Features and Analysis

We now analyse the data by designing features and
studying their relationships with the annotations.

3.1 Features

We now describe our features. The dataset con-
tains both the headwords and inflected forms of
both the correct answer c and each distractor can-
didate d. In defining the features below based on
c and d for an instance, we consider separate fea-
tures for the headword pair and the inflected form
pair. For features that require embedding words,
we use the 300-dimensional GloVe word embed-
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dings (Pennington et al., 2014) pretrained on the 42
billion token Common Crawl corpus. The GloVe
embeddings are provided in decreasing order by
frequency, and some features below use the line
numbers of words in the GloVe embeddings, which
correspond to frequency ranks. For words that are
not in the GloVe vocabulary, their frequency ranks
are |N | + 1, where N is the size of the GloVe
vocabulary. We use the four features listed below:

• length difference: absolute value of length dif-
ference (in characters, including whitespace) be-
tween c and d.

• embedding similarity: cosine similarity of the
embeddings of c and d. For phrases, we average
the embeddings of the words in the phrase.

• distractor frequency: negative log frequency
rank of d. For phrases, we take the max rank of
the words (i.e., the rarest word is chosen).

• freq. rank difference: feature capturing fre-
quency difference between c and d, i.e., log(1 +
|rc − rd|) where rw is the frequency rank of w.

3.2 Label-Specific Feature Histograms

Figure 1 shows histograms of feature values for
each label.4 Since the data is unbalanced, the his-
tograms are “label-normalized”, i.e., normalized
so that the sum of heights for each label is 1. So,
we can view each bar as the fraction of that label’s
instances with feature values in the given range.

The annotators favor candidates that have ap-
proximately the same length as the correct answers
(Fig. 1, plot 1), as the true bars are much higher in
the first bin (length difference 0 or 1). Selected dis-
tractors have moderate embedding similarity to the
correct answers (Fig. 1, plot 2). If cosine similarity
is very high or very low, then those distractors are
much less likely to be selected. Such distractors are
presumably too difficult or too easy, respectively.

Selected distractors are moderately frequent
(Fig. 1, plot 3). Very frequent and very infrequent
distractors are less likely to be selected. Distrac-
tors with small frequency rank differences (those
on the left of plot 4) are more likely to be chosen
(Fig. 1, plot 4). Large frequency differences tend to
be found with very rare distractors, some of which
may be erroneously-inflected forms.

We also computed Spearman correlations be-
tween feature values and labels, mapping the T/F

4We show plots here for the inflected form pairs; those for
headword pairs are included in the supplementary material.

Figure 1: Label-specific feature histograms for MCD-
SENT.

labels to 1/0. Aside from what are shown in the
feature histograms, we find that a distractor with a
rare headword but more common inflected form is
more likely to be selected, at least for MCDSENT.
The supplementary material contains more detail
on these correlations.

3.3 Probabilities of Distractors in Context

We use BERT (Devlin et al., 2018) to compute
probabilities of distractors and correct answers in
the given contexts in MCDSENT. We insert a mask
symbol in the blank position and compute the prob-
ability of the distractor or correct answer at that
position.5 Figure 2 shows histograms for correct
answers and distractors (normalized by label). The

5For distractors with multiple tokens, we mask each posi-
tion in turn and use the average of the probabilities.
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Figure 2: Histograms of BERT log-probabilities of
selected distractors (“T”), unselected distractors (“F”),
and correct answers (“c”) in MCDSENT.

correct answers have very high probabilities. The
distractor probabilities are more variable and the
shapes of the histograms are roughly similar for the
true and false labels. Interestingly, however, when
the probability is very high or very low, the distrac-
tors tend to not be selected. The selected distractors
tend to be located at the middle of the probability
range. This pattern shows that BERT’s distribu-
tions capture (at least partially) the nonlinear rela-
tionship between goodness of fit and suitability as
distractors.

4 Models

Since the number of distractors selected for each in-
stance is uncertain, our datasets could be naturally
treated as a binary classification task for each dis-
tractor candidate. We now present models for the
task of automatically predicting whether a distrac-
tor will be selected by an annotator. We approach
the task as defining a predictor that produces a
scalar score for a given distractor candidate. This
score can be used for ranking distractors for a given
question, and can also be turned into a binary clas-
sification using a threshold. We define three types
of models, described in the subsections below.

4.1 Feature-Based Models

Using the features described in Section 3, we build
a simple feed-forward neural network classifier that
outputs a scalar score for classification. Only in-
flected forms of words are used for features without
contexts, and all features are concatenated and used
as the input of the classifier. For features that use
BERT, we compute the log-probability of the dis-
tractor and the log of its rank in the distribution.
For distractors that consist of multiple subword
units, we mask each individually to compute the
above features for each subword unit, then use the

Figure 3: Illustration of the ELMo-based model MELMo,
where semicolon refers to vector concatenation.

concatenation of mean, min, and max pooling of
the features over the subword units. We refer to
this model as Mfeat.

4.2 ELMo-Based Models
We now describe models that are based on
ELMo (Peters et al., 2018) which we denote
MELMo. Since MCDPARA instances contain para-
graph context, which usually includes more than
one sentence, we denote the model that uses the
full context by MELMo(`). By contrast, MELMo uses
only a single sentence context for both MCDSENT

and MCDPARA. We denote the correct answer
by c, distractor candidate by d, the word sequence
before the blank by wp, and the word sequence af-
ter the blank by wn, using the notation rev(wn) to
indicate the reverse of the sequence wn.

We use GloVe (Pennington et al., 2014) to ob-
tain pretrained word embeddings for context words,
then use two separate RNNs with gated recurrent
units (GRUs; Cho et al., 2014) to output hidden
vectors to represent wp and wn. We reverse wn

before passing it to its GRU, and we use the last
hidden states of the GRUs as part of the classifier
input. We also use ELMo to obtain contextualized
word embeddings for correct answers and distrac-
tors in the given context, and concatenate them to
the input. An illustration of this model is presented
in Figure 3.

A feed-forward network (FFN) with 1 ReLU
hidden layer is set on top of these features to get
the score for classification:

FFN (z) = max(0, zW1 + b1)W2 + b2

where z is a row vector representing the inputs
shown in Figure 3. We train the model as a binary
classifier by using a logistic sigmoid function on
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dataset precision recall F1
A B A B A B

MCDSENT 62.9 48.5 59.5 43.2 61.1 45.7
MCDPARA 32.1 25.0 36.0 24.0 34.0 24.5

Table 4: Results of human performance on distractor
selection for two human judges labeled A and B.

the output of FFN (z) to compute the probability
of the true label. We also experiment with the
following variations:

• Concatenate the features from Section 3 with z.

• Concatenate the correct answer to the input of
the GRUs on both sides (denoted gru+c).

• Concatenate the GloVe embeddings of the cor-
rect answers and distractors with z. We combine
this with gru+c, denoting the combination all.

4.3 BERT-Based Models

Our final model type uses a structure similar to
MELMo but using BERT in place of ELMo when
producing contextualized embeddings, which we
denote by MBERT and MBERT(`) given different
types of context. We also consider the variation of
concatenating the features to the input to the classi-
fier, i.e., the first variation described in Section 4.2.
We omit the gru+c and all variations here because
the BERT-based models are more computationally
expensive than those that use ELMo.

5 Experiments

We now report the results of experiments with train-
ing models to select distractor candidates.

5.1 Evaluation Metrics

We use precision, recall, and F1 score as evaluation
metrics. These require choosing a threshold for the
score produced by our predictors. We also report
the area under the precision-recall curve (AUPR),
which is a single-number summary that does not
require choosing a threshold.

5.2 Baselines

As the datasets are unbalanced (most distractor
candidates are not selected), we report the results of
baselines that always return “True” in the “baseline”
rows of Tables 5 and 6. MCDSENT has a higher
percentage of true labels than MCDPARA.

5.3 Estimates of Human Performance
We estimated human performance on the distractor
selection task by obtaining annotations from NLP
researchers who were not involved in the original
data collection effort. We performed three rounds
among two annotators, training them with some
number of questions per round, showing the an-
notators the results after each round to let them
calibrate their assessments, and then testing them
using a final set of 30 questions, each of which has
at most 10 distractors.

Human performance improved across rounds of
training, leading to F1 scores in the range of 45-
61% for MCDSENT and 25-34% for MCDPARA

(Table 4). Some instances were very easy to reject,
typically those that were erroneous word forms
resulting from incorrect morphological inflection
or those that were extremely similar in meaning
to the correct answer. But distractors that were
at neither extreme were very difficult to predict,
as there is a certain amount of variability in the
annotation of such cases. Nonetheless, we believe
that the data has sufficient signal to train models to
provide a score indicating suitability of candidates
to serve as distractors.

5.4 Modeling and Training Settings
All models have one hidden layer for the feed-
forward classifier. The Mfeat classifier has 50 hid-
den units, and we train it for at most 30 epochs
using Adam (Kingma and Ba, 2014) with learning
rate 1e−3. We stop training if AUPR keeps decreas-
ing for 5 epochs.6 Although our primary metric of
interest is AUPR, we also report optimal-threshold
F1 scores on dev and test, tuning the threshold on
the given set (so, on the test sets, the F1 scores we
report are oracle F1 scores). The threshold is tuned
within the range of 0.1 to 0.9 by step size 0.1.

For MELMo and MELMo(`), we use ELMo (Orig-
inal7) for the model, and BERT-large-cased to com-
pute the BERT features from Section 3 (only ap-
plies to rows with “features = yes” in the tables).
We increase the number of classifier hidden units to
1000 and run 20 epochs at most, also using Adam
with learning rate 1e−3. We stop training if AUPR
does not improve for 3 epochs.

For MBERT and MBERT(`), we applied the same
training settings as MELMo and MELMo(`). We com-

6We also tune by F1 score as another set of settings with
similar trends, which are included in the supplementary mate-
rial.

7https://allennlp.org/elmo

https://allennlp.org/elmo
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model variant development set test set BERT features best thresholdprecision recall F1 AUPR precision recall F1 AUPR epoch

baseline 15.4 100 26.7 - 13.3 100 23.5 - - - - -

33.6 62.9 43.8 36.5 23.7 55.4 33.2 24.6 none yes 28 0.2
Mfeat 44.5 57.1 50.0 46.1 28.2 70.9 40.3 32.4 base yes 25 0.2 (0.3)

36.4 77.8 49.6 47.0 30.0 71.3 42.2 34.5 large yes 22 0.2

none 43.2 87.5 57.8 59.0 41.4 88.0 56.3 54.6 - no 2 0.3
gru+c 44.8 84.4 58.5 57.4 47.6 68.4 56.1 54.1 - no 2 0.3 (0.4)

MELMo
all 47.2 88.9 61.7 61.2 48.3 75.0 58.7 55.8 - no 2 0.3 (0.4)

none 51.7 77.8 62.1 64.6 50.4 76.5 60.8 57.2 large yes 3 0.3
gru+c 55.7 73.3 63.3 65.3 49.1 82.3 61.5 63.1 large yes 5 0.4 (0.3)
all 56.2 74.4 64.0 66.5 49.8 80.8 61.6 58.8 large yes 5 0.4 (0.3)

47.9 78.1 59.4 60.8 44.8 81.0 57.7 55.7 base no 1 0.3

MBERT
49.6 79.3 61.0 64.1 45.3 80.2 57.9 53.4 large no 1 0.3
50.6 83.9 63.2 65.3 44.8 78.5 57.0 53.8 base yes 12 0.1
53.8 73.1 62.0 66.5 49.7 73.9 59.4 56.3 large yes 2 0.4

Table 5: Results for MCDSENT. Boldface indicates the best F1/AUPR on dev/test for each model type. We
include the threshold tuned on the test set in parentheses when it differs from the threshold tuned on dev.

model development set test set BERT features best epoch thresholdprecision recall F1 AUPR precision recall F1 AUPR

baseline 7.3 100 13.5 - 6.6 100 12.4 - - - - -

15.3 63.1 24.6 17.3 14.5 63.6 23.6 15.5 - yes 23 0.1
Mfeat 18.2 69.2 28.9 21.6 16.3 65.6 26.1 19.1 base yes 27 0.1

19.8 64.0 30.2 22.3 16.9 64.2 26.8 18.8 large yes 22 0.1

MELMo
35.4 47.7 40.7 38.4 26.1 75.6 38.8 30.4 - no 5 0.3 (0.2)
37.9 61.3 46.9 46.8 34.6 63.9 44.9 37.6 large yes 7 0.3

MELMo(`)
30.5 61.1 40.7 36.6 29.1 61.6 39.5 33.2 - no 5 0.3
37.1 62.7 46.6 43.7 34.4 65.1 45.0 40.1 large yes 6 0.3

35.4 61.6 45.0 40.9 29.2 58.7 39.0 30.1 base no 2 0.2

MBERT
33.0 63.7 43.5 40.9 29.1 65.1 40.2 32.4 large no 2 0.2
44.3 55.4 49.3 47.3 31.5 73.2 44.0 36.7 base yes 2 0.3 (0.2)
35.6 66.0 46.2 45.0 35.5 54.5 43.0 36.6 large yes 2 0.2 (0.3)

MBERT(`)
33.1 65.3 43.9 39.7 28.8 66.4 40.2 29.8 base no 2 0.2
37.4 67.3 48.1 46.0 31.3 69.1 43.1 37.0 base yes 2 0.2

Table 6: Results for MCDPARA.

pare the BERT-base-cased and BERT-large-cased
variants of BERT. When doing so, the BERT fea-
tures from Section 3 use the same BERT variant as
that used for contextualized word embeddings.

For all models based on pretrained models, we
keep the parameters of the pretrained models fixed.
However, we do a weighted summation of the 3
layers of ELMo, and all layers of BERT except for
the first layer, where the weights are trained during
the training process.

5.5 Results
We present our main results for MCDSENT in Ta-
ble 5 and for MCDPARA in Table 6.

Feature-based models. The feature-based
model, shown as Mfeat in the upper parts of the

tables, is much better than the trivial baseline.
Including the BERT features in Mfeat improves
performance greatly (10 points in AUPR for
MCDSENT), showing the value of using the
context effectively with a powerful pretrained
model. There is not a large difference between
using BERT-base and BERT-large when computing
these features.

ELMo-based models. Even without features,
MELMo outperforms Mfeat by a wide margin.
Adding features to MELMo further improves F1 by
2-5% for MCDSENT and 5-6% for MCDPARA.
The F1 score for MELMo on MCDSENT is close
to human performance, and on MCDPARA the
F1 score outperforms humans (see Table 4). For
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MCDSENT, we also experiment with using the cor-
rect answer as input to the context GRUs (gru+c),
and additionally concatenating the GloVe embed-
dings of the correct answers and distractors to the
input of the classifier (all). Both changes improve
F1 on dev, but on test the results are more mixed.

BERT-based models. For MBERT, using BERT-
base is sufficient to obtain strong results on this task
and is also cheaper computationally than BERT-
large. Although MBERT with BERT-base has higher
AUPR on dev, its test performance is close to
MELMo. Adding features improves performance
for MCDPARA (3-5% F1), but less than the im-
provement found for MELMo. While Mfeat is aided
greatly when including BERT features, the fea-
tures have limited impact on MBERT, presumably
because it already incorporates BERT in its model.

Long-context models. We now discuss results
for the models that use the full context in MCD-
PARA, i.e., MELMo(`) and MBERT(`). On dev,
MELMo and MBERT outperform MELMo(`) and
MBERT(`) respectively, which suggests that the ex-
tra context for MCDPARA is not helpful. However,
the test AUPR results are better when using the
longer context, suggesting that the extra context
may be helpful for generalization. Nonetheless,
the overall differences are small, suggesting that
either the longer context is not important for this
task or that our way of encoding the context is not
helpful. The judges in our manual study (Sec. 5.3)
rarely found the longer context helpful for the task,
pointing toward the former possibility.

5.6 Statistical Significance Tests
For better comparison of these models’ perfor-
mances, a paired bootstrap resampling method is
applied (Koehn, 2004). We repeatedly sample with
replacement 1000 times from the original test set
with sample size equal to the corresponding test set
size, and compare the F1 scores of two models. We
use the thresholds tuned by the development set for
F1 score computations, and assume significance at
a p value of 0.05.

• For MELMo, MELMo(`), MBERT and MBERT(`),
the models with features are significantly better
than their feature-less counterparts (p < 0.01).8

• When both models use features, MELMo(`) is
almost the same as MELMo (p = 0.477). How-
8We only use BERT-base-cased for MBERT(`) due to com-

putational considerations.

ever, when both do not use features, MELMo(`)
is significantly better (p < 0.01).
• When using BERT-base-cased, MBERT(`) is bet-

ter than MBERT, but not significantly so (p = 0.4
with features and 0.173 without features).
• On MCDPARA, switching from BERT-base to

BERT-large does not lead to a significant differ-
ence for MBERT without features (BERT-large
is better with p = 0.194) or MBERT with fea-
tures (BERT-base is better with p = 0.504). For
MCDSENT, MBERT with BERT-large is better
both with and without features (p < 0.2).
• On MCDPARA, MBERT(`) outperforms
MELMo(`) without features but not signifi-
cantly. With features, MELMo(`) is better with
p = 0.052.
• On MCDSENT, MBERT without features (BERT-

large-cased) is better than MELMo without fea-
tures, but not significantly so (p = 0.386). How-
ever, if we add features or use MBERT with
BERT-base-cased, MELMo is significantly better
(p < 0.01).
• On MCDPARA, MELMo is nearly significantly

better than MBERT when both use features (p =
0.062). However, dropping the features for both
models makes MBERT significantly outperform
MELMo (p = 0.044).

5.7 Examples
Figure 4 shows an example question from MCD-
SENT, i.e., “The bank will notify its customers of
the new policy”, and two subsets of its distractors.
The first subset consists of the top seven distractors
using scores from MELMo with features, and the sec-
ond contains distractors further down in the ranked
list. For each model, we normalize its distractor
scores with min-max normalization.9

Overall, model rankings are similar across mod-
els, with all distractors in the first set ranked higher
than those in the second set. The high-ranking
but unselected distractors (“spell”, “consult”, and
“quit”) are likely to be reasonable distractors for
second-language learners, even though they were
not selected by annotators.

We could observe the clustering of distractor
ranks with similar morphological inflected form
in some cases, which may indicate that the model
makes use of the grammatical knowledge of pre-
trained models.

9Given original data x, we use (x−min(x))/(max(x)−
min(x)) to normalize it.
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Figure 4: Ranks of distractors for question “The bank will notify its customers of the new policy.” The colors
represent the normalized scores of the models and the numbers in the cells are the ranks of the candidates.

6 Related Work

Existing approaches to distractor selection use
WordNet (Fellbaum, 1998) metrics (Mitkov and
Ha, 2003; Chen et al., 2015), word embedding sim-
ilarities (Jiang and Lee, 2017), thesauruses (Sumita
et al., 2005; Smith et al., 2010), and phonetic
and morphological similarities (Pino and Eskenazi,
2009). Other approaches consider grammatical cor-
rectness, and introduce structural similarities in an
ontology (Stasaski and Hearst, 2017), and syntac-
tic similarities (Chen et al., 2006). When using
broader context, bigram or n-gram co-occurrence
(Susanti et al., 2018; Hill and Simha, 2016), context
similarity (Pino et al., 2008), and context sensitive
inference (Zesch and Melamud, 2014) have also
been applied to distractor selection.

Based on these heuristic features, Liang et al.
(2018) assemble these features and apply neural
networks, training the model to predict the answers
within a lot of candidates. Yeung et al. (2019)
further applies BERT for ranking distractors by
masking the target word. As we have two manually
annotated datasets that have different lengths of
contexts, we adopt both word pair features and the
context-specific distractor probabilities to build our
feature-based models. Moreover, we build both
ELMo-based and BERT-based models, combining
them with our features and measuring the impact
of these choices on performance.

7 Conclusion

We described two datasets with annotations of dis-
tractor selection for multiple-choice cloze ques-
tions for second-language learners. We designed
features and developed models based on pretrained
language models. Our results show that the task

is challenging for humans and that the strongest
models are able to approach or exceed human per-
formance. The rankings of distractors provided
by our models appear reasonable and can reduce a
great deal of human burden in distractor selection.
Future work will use our models to collect addi-
tional training data which can then be refined in a
second pass by limited human annotation. Other
future work can explore the utility of features de-
rived from pretrained question answering models
in scoring distractors.
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cehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using RNN encoder–decoder

http://www.newgeneralservicelist.org
http://www.newgeneralservicelist.org
http://www.newgeneralservicelist.org
http://www.newgeneralservicelist.org
https://doi.org/10.3115/v1/D14-1179
https://doi.org/10.3115/v1/D14-1179


111

for statistical machine translation. In Proceedings of
the 2014 Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP), pages 1724–
1734, Doha, Qatar. Association for Computational
Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Christiane Fellbaum, editor. 1998. WordNet: An Elec-
tronic Lexical Database. Language, Speech, and
Communication. MIT Press, Cambridge, MA.

Jennifer Hill and Rahul Simha. 2016. Automatic gener-
ation of context-based fill-in-the-blank exercises us-
ing co-occurrence likelihoods and google n-grams.
In Proceedings of the 11th Workshop on Innovative
Use of NLP for Building Educational Applications,
pages 23–30.

Shu Jiang and John Lee. 2017. Distractor generation
for chinese fill-in-the-blank items. In Proceedings
of the 12th Workshop on Innovative Use of NLP for
Building Educational Applications, pages 143–148.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Philipp Koehn. 2004. Statistical significance tests
for machine translation evaluation. In Proceed-
ings of the 2004 Conference on Empirical Meth-
ods in Natural Language Processing, pages 388–
395, Barcelona, Spain. Association for Computa-
tional Linguistics.

Chen Liang, Xiao Yang, Neisarg Dave, Drew Wham,
Bart Pursel, and C Lee Giles. 2018. Distractor gen-
eration for multiple choice questions using learning
to rank. In Proceedings of the thirteenth workshop
on innovative use of NLP for building educational
applications, pages 284–290.

Ruslan Mitkov and Le An Ha. 2003. Computer-
aided generation of multiple-choice tests. In Pro-
ceedings of the HLT-NAACL 03 workshop on Build-
ing educational applications using natural language
processing-Volume 2, pages 17–22. Association for
Computational Linguistics.

Jeffrey Pennington, Richard Socher, and Christopher D.
Manning. 2014. Glove: Global vectors for word rep-
resentation. In Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 1532–1543.

Matthew Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word rep-
resentations. In Proceedings of the 2018 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long Papers), pages
2227–2237, New Orleans, Louisiana. Association
for Computational Linguistics.

Van-Minh Pho, Thibault André, Anne-Laure Ligozat,
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A Supplemental Material

A.1 Dataset

There are some problematic words in the dataset,
such as ‘testing, test’, ‘find s’, ‘find ed’ in MCD-
SENT/MCDPARA candidate words. There are also
some extra spaces (or non-breaking spaces) at the
start or end of words. To keep the words the same
as what the annotators saw, we only remove lead-
ing/trailing white space, and replace non-breaking
spaces with ordinary spaces. By comparing the
percentages of the circumstances where spaces are
included in the string before/after tokenization, we
find the percentage of extra spaces presented in
Table 7. The vocabulary size after tokenization is
presented in Table 8.

% headword(c) c headword(d) d
MCDSENT 0 0 0.0168 0.0332
MCDPARA 0.0160 0.0307 0.0364 0.0622

Table 7: Percentage of extra spaces (excluding those
that are in the middle of words), where headword(c)
denotes headword of correct answer, and d denotes dis-
tractor candidates of inflected forms. .

headword(c) c headword(d) d
MCDSENT 2571 2731 3514 11423
MCDPARA 2683 4174 3582 13749

Table 8: Vocabulary sizes.

A.2 Distractor Annotation

The software tool suggested distractor candidates
based on the following priority ranking:

1. It is in a proprietary dictionary.

2. It has the same part-of-speech (POS) as the cor-
rect answer (if POS data is available) and satis-
fies 1.

3. It is part of a proprietary learnable word list for
the language learning course under considera-
tion, and satisfies 2.

4. It is in the same course as the correct answer
and satisfies 3.

5. It is in the same proprietary study material bun-
dle as the correct answer and satisfies 4.

6. It is in the previous or same study material as
the correct answer and satisfies 5.

7. It is in the same study material as the correct
answer and satisfies 6.

8. It is in the same NGSL frequency word list band
as the correct answer and satisfies 7.

9. It is not used as a distractor for another word
with the same task type in the same material at
the time that the distractor list for quality assur-
ance (QA) is loaded, and satisfies 8.

A.3 Context Position
Sometimes the blank resides at the start or end of
the context, counts of which are shown in Table 9.
The percentage when there is only one sentence as
context in MCDPARA is 0.894%.

% sent start sent end para start para end
FB1 3.058 0.005 - -
FB3 2.640 0.342 18.272 22.165

Table 9: Position of the candidates, where “sent” de-
notes sentence and “para” denotes paragraph. “para
start” mean that the sentence containing the blank is
at the beginning of the paragraph.

A.4 Correlations of Features and
Annotations

The Spearman correlations for these features are
presented in Table 10. The overall correlations
are mostly close to zero, so we explore how the
relationships vary for different ranges of feature
values below. Nonetheless, we can make certain
observations about the correlations:

• Length difference has a weak negative correla-
tion with annotations, which implies that the
probability of a candidate being selected de-
creases when the absolute value of word length
difference between the candidate and correct an-
swer increases. The same conclusion can be
drawn with headword pairs although the correla-
tion is weaker.
• Embedding similarity has a very weak corre-

lation (even perhaps none) with the annota-
tions. However, the correlation for headwords is
slightly negative while that for inflected forms is
slightly positive, suggesting that annotators tend
to select distractors with different lemmas than
the correct answer, but similar inflected forms.
• Candidate frequency also has a very weak corre-

lation with annotations (negative for headwords
and positive for inflected forms). Since the fea-
ture is the negative log frequency rank, a dis-
tractor with a rare headword but more common
inflected form is more likely to be selected, at
least for MCDSENT.
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feature MCDSENT MCDPARA
head infl head infl

length difference -0.116 -0.171 -0.145 -0.173
embedding similarity -0.018 0.026 -0.014 0.016
candidate frequency -0.057 0.113 -0.062 0.028
freq. rank difference -0.048 -0.161 -0.033 -0.091

Table 10: Spearman correlations with T/F choices,
where “head” denotes headword pairs, and “infl” de-
notes inflected form pairs.

• Frequency rank difference has a weak negative
correlation with annotations, and this trend is
more significant with the inflected form pair.
This implies that annotators tend to select distrac-
tors in the same frequency range as the correct
answers.

The correlations are not very large in absolute
terms, however we found that there were stronger
relationships for particular ranges of these feature
values and we explore this in the next section.

A.5 Label-Specific Feature Histograms
Figure 5 shows histograms of the feature values for
each label on headword pairs.

A.6 Results Tuned Based on F1
We report our results tuned based on F1 in Table 11
and 12.

A.7 Supplement for Analysis
The example for MCDPARA is as below, and two
sets of its distractors are shown in Figure 6.

• MCDPARA: A few years have passed since
the Great Tohoku Earthquake occurred. It has
been extremely costly to rebuild the damaged
areas from scratch, with well over $200 billion
dollars provided for reconstruction. However,
the availability of these funds has been limited.
However, a large portion of the money has been
kept away from the victims due to a system
which favors construction companies....

Figure 5: Label-normalized feature histograms for
MCDSENT (headword pairs).
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model variant development set test set BERT features best thresholdprecision recall F1 AUPR precision recall F1 AUPR epoch

baseline 15.4 100 26.7 - 13.3 100 23.5 - - - - -

33.3 64.8 44.0 35.1 23.2 59.1 33.3 25.0 none yes 26 0.2
Mfeat 42.1 67.0 51.7 45.4 31.5 57.4 40.7 32.3 base yes 26 0.2

41.3 67.1 51.1 46.7 32.4 56.6 41.2 33.9 large yes 25 0.3

none 49.0 79.1 60.5 58.5 46.5 75.7 57.6 53.9 - no 6 0.3
gru+c 49.7 77.6 60.6 54.1 46.1 73.3 56.7 53.5 - no 3 0.4

MELMo
all 52.9 75.8 62.3 60.4 48.0 75.9 58.8 57.6 - no 2 0.4

none 51.0 84.0 63.4 63.1 47.7 81.4 60.1 60.6 large yes 3 0.3
gru+c 56.9 72.3 63.7 59.1 50.6 75.9 60.8 58.6 large yes 5 0.4
all 53.5 80.8 64.4 63.4 50.8 75.5 60.8 59.6 large yes 3 0.4

48.8 85.5 62.1 56.6 43.8 82.8 57.3 51.5 base no 4 0.2

MBERT
49.6 80.8 61.5 59.1 45.2 79.7 57.7 54.9 large no 3 0.3
51.5 84.2 63.9 61.7 46.0 78.6 58.0 55.0 base yes 6 0.2
51.4 81.1 62.9 64.7 46.4 79.8 58.7 57.5 large yes 6 0.2

Table 11: Results for MCDSENT tuned based on F1.

model development set test set BERT features best epoch thresholdprecision recall F1 AUPR precision recall F1 AUPR

baseline 7.3 100 13.5 - 6.6 100 12.4 - - - - -

17.1 53.1 25.9 15.9 15.6 51.3 23.9 15.0 - yes 14 0.1
Mfeat 19.5 63.0 29.8 20.4 17.6 61.0 22.3 18.6 base yes 22 0.1

20.4 63.1 30.8 22.3 16.7 62.7 26.4 18.6 large yes 25 0.1

MELMo
35.2 55.4 43.1 37.0 31.2 54.6 39.8 33.9 - no 5 0.3
40.2 61.3 48.5 43.8 34.1 59.4 43.3 35.2 large yes 5 0.3

MELMo(`)
28.7 72.9 41.2 33.8 25.7 71.3 37.7 30.3 - no 2 0.2
36.2 67.3 47.1 40.8 31.0 65.6 42.1 37.3 large yes 7 0.3

35.8 64.2 46.0 39.3 28.9 64.3 39.9 34.5 base no 5 0.2

MBERT
35.2 62.1 45.0 38.3 26.9 60.5 37.3 29.3 large no 6 0.1
44.3 55.4 49.3 47.3 34.6 56.2 42.8 36.7 base yes 2 0.3
37.8 63.3 47.4 44.0 32.7 66.1 43.7 38.1 large yes 3 0.2

MBERT(`)
34.0 64.3 44.5 36.7 29.6 62.1 40.1 32.1 base no 5 0.2
43.3 57.5 49.4 45.4 33.3 60.9 43.1 35.8 base yes 3 0.3

Table 12: Results for MCDPARA tuned based on F1.

Figure 6: Ranks for distractor candidates of MCDPARA question “However, the availability of these funds has
been limited.” along with annotations.


