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Abstract

Autoregressive neural machine translation
(NMT) models are often used to teach non-
autoregressive models via knowledge distilla-
tion. However, there are few studies on im-
proving the quality of autoregressive trans-
lation (AT) using non-autoregressive trans-
lation (NAT). In this work, we propose a
novel Encoder-NAD-AD framework for NMT,
aiming at boosting AT with global informa-
tion produced by NAT model. Specifically,
under the semantic guidance of source-side
context captured by the encoder, the non-
autoregressive decoder (NAD) first learns to
generate target-side hidden state sequence in
parallel. Then the autoregressive decoder
(AD) performs translation from left to right,
conditioned on source-side and target-side hid-
den states. Since AD has global informa-
tion generated by low-latency NAD, it is more
likely to produce a better translation with
less time delay. Experiments on WMT14
En⇒De, WMT16 En⇒Ro, and IWSLT14
De⇒En translation tasks demonstrate that our
framework achieves significant improvements
with only 8% speed degeneration over the au-
toregressive NMT.

1 Introduction

Neural machine translation (NMT) based on
encoder-decoder framework has gained rapid
progress over recent years (Sutskever et al., 2014;
Bahdanau et al., 2015; Wu et al., 2016; Gehring
et al., 2017; Vaswani et al., 2017; Zhang and Zong,
2020). All these high-performance NMT models
generate target languages from left to right in an
autoregressive manner. An obvious limitation of
autoregressive translation (AT) is that the inference
process can hardly be parallelized, and the infer-
ence time is linear with respect to the length of the
target sequence.

To speed up the inference of machine translation,
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Figure 1: Decoding illustration of our proposed
Encoder-NAD-AD framework including an encoder,
non-autoregressive decoder (NAD) and autoregressive
decoder (AD).

non-autoregressive translation (NAT) models have
been proposed, which generate all target tokens
independently and simultaneously (Gu et al., 2017;
Lee et al., 2018; Kaiser et al., 2018; Libovický and
Helcl, 2018). Although NAT is successfully trained
with the help from an AT model as its teacher via
knowledge distillation (Kim and Rush, 2016), there
is no work focusing on improving the quality of
AT using NAT. Therefore, a natural question arises,
can we boost AT with NAT?

In this paper, we propose a novel and effec-
tive Encoder-NAD-AD framework for NMT, in
which the newly added non-autoregressive decoder
(NAD) can provide target-side global information
when autoregressive decoder (AD) translates, as
illustrated in Figure 1. Briefly speaking, the en-
coder is first used to encode the source sequence
into a sequence of vector representations. NAD
then reads the encoder representations and gener-
ates a coarse target sequence in parallel. Given
the source-side and target-side contexts separately
captured by the encoder and NAD, AD learns to
generate final translation token by token.

Our proposed model can fully combine
two major advantages compared to previous
work (Vaswani et al., 2017; Xia et al., 2017). On
the one hand, due to the lower latency during in-
ference of NAT, the decoding efficiency of our
proposed framework is only slightly lower than
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Figure 2: The extended Transformer translation model
that exploits global information produced by NAT. We
omit the residual connection and layer normalization in
each sub-layer for simplicity.

the standard NMT models, as shown in Figure 1.
On the other hand, since AD can asses the global
target-side context provided by NAD, it has the
potential to generate a better translation by fully
exploiting source-side and target-side contexts. We
conduct massive experiments on WMT14 En⇒De,
WMT16 En⇒Ro and IWSLT14 De⇒En transla-
tions tasks. Experimental results demonstrate that
our proposed model achieves substantial improve-
ments with only 8% degradation in decoding effi-
ciency compared to the standard NMT.

2 The Framework

Our goal in this work is to improve autoregres-
sive NMT using the non-autoregressive model with
lower latency during inference. Figure 2 shows
the model architecture of the proposed framework.
Next, we will detail individual components and
introduce an algorithm for training and inference.

2.1 The Neural Encoder

The neural encoder of our model is identical to that
of the dominant Transformer model, which is mod-
eled using the self-attention network. The encoder
is composed of a stack of N identical layers, each
of which has two sub-layers:

h̃l = LN(hl−1 +MHAtt(hl−1, hl−1, hl−1))

hl = LN(h̃l + FFN(h̃l))
(1)

where the superscript l indicates layer depth, hl

denotes the source hidden state of l-th layer, LN is
layer normalization, FFN means feed-forward net-
works, and MHAtt denotes the multi-head attention

mechanism (Vaswani et al., 2017).

2.2 Non-Autoregressive Decoder

We initialize the non-autoregressive decoder inputs
using copied source inputs from the encoder side by
the fertility mechanism (Gu et al., 2017). For each
layer in non-autoregressive decoder, the lowest sub-
layer is the unmasked multi-head self-attention net-
work, and it also uses residual connections around
each of the sublayers, followed by layer normaliza-
tion.

zl1 = LN(zl−1 +MHAtt(zl−1, zl−1, zl−1)) (2)

The second sub-layer is a positional attention. We
follow (Gu et al., 2017) and use the positional en-
coding p as both query and key and the decoder
states as the value:

zl2 = LN(zl1 +MHAtt(zl1, p
l, pl)) (3)

The third sub-layer is Enc-NAD cross-attention
that integrates the representation of corresponding
source sentence, and the fourth sub-layer is a FFN:

zl3 = LN(zl2 +MHAtt(zl2, h
N , hN ))

zl = LN(zl3 + FFN(zl3))
(4)

where hN is the source hidden state of top layer.

2.3 Autoregressive Decoder

For each layer in autoregressive decoder, the lowest
sub-layer is the masked multi-head self-attention
network:

sl1 = LN(sl−1 +MHAtt(sl−1, sl−1, sl−1)) (5)

The second sub-layer is NAD-AD cross-attention
that integrates non-autoregressive sequence context
into autoregressive decoder:

sl2 = LN(sl1 +MHAtt(sl1, z
N , zN )) (6)

In addition, the decoder both stacks Enc-AD cross-
attention and FFN sub-layers to seek task-relevant
input semantics to bridge the gap between the input
and output languages:

sl3 = LN(sl2 +MHAtt(sl2, h
N , hN ))

sl = LN(sl3 + FFN(sl3))
(7)

2.4 Training and Inference

Given a set of training examples {x(z), y(z)}Zz=1,
the training algorithm aims to find the model param-
eters that maximize the likelihood of the training
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# System Architecture En⇒De En⇒Ro De⇒En
Existing NAT Systems

1 (Gu et al., 2017) NAT 17.35 26.22 -
2 (Lee et al., 2018) NAT-IR (adaptive) 18.91 - -
3 (Wang et al., 2019) NAT-AR 20.61 - 23.89

Existing AT Systems
4 (Wu et al., 2016) Google-NMT 24.60 - -
5 (Gehring et al., 2017) ConvS2S 26.36 - -
6 (Vaswani et al., 2017) Transformer 27.30 - -
7 (Xia et al., 2017) Deliberate Network 27.56 33.18 33.95

Our NMT Systems
8

this work
Transformer 27.06 32.28 32.87

9 NAT 21.25 26.60 27.06
10 Our Model 27.65↑ 33.17⇑ 34.01⇑

Table 1: Comparing with existing NMT systems on WMT14 En⇒De, WMT16 En⇒Ro, and IWSLT14 De⇒En
test sets. “↑/⇑” indicates statistically significant (p<0.05/0.01) from the Transformer baseline.

data:

J(θ) =
1

Z

Z∑
z=1

{log P (y
(z)
ad |x

(z), θenc, θnad, θad)

+λ ∗ log P (ỹ
(z)
nad|x

(z), θenc, θnad)}

(8)

where ỹnad is the reference of NAT, which can be
obtained from standard NMT model via sequence-
level knowledge distillation (Gu et al., 2017; Lee
et al., 2018; Wang et al., 2019), and λ is a hyperpa-
rameter used to balance the preference between the
two terms. Once our model is trained, we use the
decoding algorithm shown in Figure 1 to translate
source language with little time wasted over the
autoregressive NMT.

3 Experiments

We use 4-gram NIST BLEU (Papineni et al., 2002)
as the evaluation metric, and sign-test (Collins
et al., 2005) to test for statistical significance.

3.1 Datasets
We conduct experiments on three widely used
public machine translation corpora: WMT14
English-German2 (En⇒De), WMT16 English-
Romanian3 (En⇒Ro), and IWSLT14 German-
English4 (De⇒En), whose training sets consist
of 4.5M, 600K, 153K sentence pairs, respec-
tively. We employ 37K, 40K, and 10K shared
BPE (Sennrich et al., 2016) tokens for En⇒De,
En⇒Ro, and De⇒en respectively. For En⇒De,

2http://www.statmt.org/wmt14/translation-task.html
3http://www.statmt.org/wmt16/translation-task.html.
4https://wit3.fbk.eu/

we use newstest2013 as the validation set and
newstest2014 as the test set. For En⇒Ro, we
use newsdev-2016 and newstest-2016 as
development and test sets. For De⇒En, we use
7K data split from the training set as the valida-
tion set and use the concatenation of dev2010,
tst2010, tst2011, and tst2012 as the test
set, which is widely used in prior works (Bahdanau
et al., 2017; Wang et al., 2019).

3.2 Model Settings

We build the described models modified from the
open-sourced tensor2tensor5 toolkit. For our pro-
posed model, we employ the Adam optimizer with
β1=0.9, β2=0.998, and ε=10−9. For En⇒De and
En⇒Ro, we use the hyperparameter settings of
base Transformer model as Vaswani et al. (2017),
whose encoder and decoder both have 6 layers,
8 attention-heads, and 512 hidden sizes. We fol-
low Gu et al. (2017) to use the same small
Transformer setting for IWSLT14 because of its
smaller dataset. For evaluation, we use argmax de-
coding for NAD, and beam search with a beam
size of k=4 and length penalty α=0.6 for AD.
We also re-implement and compare with delib-
erate network (Xia et al., 2017) based on strong
Transformer, which adopts the two-pass decoding
method and uses the autoregressive decoding man-
ner for the first decoder.

5https://github.com/tensorflow/tensor2tensor
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Models Latency Degeneration
Transformer 251ms 0%
Deliberate Network 422ms 68%
NAT 16ms (16× speedup)
Our Model 271ms 8%

Table 2: Decoding efficiency of different models. La-
tency is computed as average of per sentence decoding
time on the test set of De⇒En.

3.3 Results and Analysis

In this section, we evaluate and analyze the pro-
posed approach on En⇒De, En⇒Ro, and De⇒En
translation tasks.

Model Complexity We first compare the model
parameters and training speed in De⇒En for Trans-
former baseline, deliberate network, and our pro-
posed model, which have 10.3M, 16.3M, and
18.0M parameters, respectively. Although our
model uses more parameter than deliberate net-
work due to additional position attention network,
its training speed is significantly faster than delib-
erate network (1.8 steps/s vs. 0.7 steps/s)

Translation Quality We report the translation
performance in Table 1, from which we can make
the following conclusions: (1) Our proposed model
(row 10) significantly outperforms Transformer
baseline (row 8) by 0.59, 0.89, and 1.14 BLEU
points in three translation tasks, respectively. (2)
Compared to the existing deliberate network which
uses greedy search for the one-pass decoding, our
model can obtain a comparable performance. (3)
Our NAT model (row 9) can achieve a competitive
or even better model accuracy than previous NAT
models (rows 1-3).

Decoding Speed Table 2 shows the decoding
efficiency of different models. The deliberate net-
work achieves the translation improvement at the
cost of the substantial drop in decoding speed
(68% degeneration). However, due to the high
efficiency during inference of non-autoregressive
models (16× speedup than Transformer), the de-
coding efficiency of our proposed framework is
only slightly lower (8% degeneration) than the stan-
dard autoregressive Transformer models.

Case Study To better understand how our model
works, we present a translation example sam-
pled form De⇒En task in Table 3. The stan-
dard AT model incorrectly translates the phrase
“geschrieben sein könnte” into “may be”, and omits
word “geschrieben”. This problem is well ad-

Source ich sage dann mit meinen eigenen
worten, was zwischen diesem gerüst

::::::::::
geschrieben

:::::
sein

::::::
könnte .

Reference then i will say , in my own words
, what

:::::
could

:::
be

:::::::
written within this

framework .
AT i then say to my own words , which

::::::
may be between that framework .

NAT i i say with my own words , which

:::::
could

:::
be

:::::::
written between this scaf-

fold .
Our
Model

i then say , in my own words , what

:::::
could

::
be

:::::::
written between this frame-

work ?

Table 3: Translation examples from De⇒En task. The
italic fonts indicate the incomplete translation problem.

dressed by the Encoder-NAD-AD framework, since
AD can access the global information contained in
the draft sequence generated by NAD, and there-
fore outputs a better sentence.

4 Related Work

There are many design choices in the encoder-
decoder framework based on different types of
layers, such as RNN-based (Sutskever et al.,
2014), CNN-based (Gehring et al., 2017), and self-
attention based (Vaswani et al., 2017) approaches.
Particularly, relying entirely on the attention mech-
anism, the Transformer introduced by Vaswani et al.
(2017) can improve the training speed as well as
model performance.

In term of speeding up the decoding of the
neural Transformer, Gu et al. (2017) modified
the autoregressive architecture to directly gener-
ate target words in parallel. In past two years,
non-autoregressive and semi-autoregressive mod-
els have been extensively studied (Oord et al., 2017;
Kaiser et al., 2018; Lee et al., 2018; Libovický and
Helcl, 2018; Wang et al., 2019; Guo et al., 2018;
Zhou et al., 2019a). Previous work shows that NAT
can be improved via knowledge distillation from
AT models. In contrast, the idea of improving AT
with NAT is not well explored.

The most relevant to our proposed framework is
deliberation network (Xia et al., 2017), which lever-
ages the global information by observing both back
and forward information in sequence decoding
through a deliberation process. Recently, Zhang
et al. (2018) proposed asynchronous bidirectional
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decoding for NMT (ABD-NMT), which extended
the conventional encoder-decoder framework by
introducing a backward decoder. Different from
ABD-NMT, synchronous bidirectional sequence
generation model perform left-to-right decoding
and right-to-left decoding simultaneously and in-
teractively (Zhou et al., 2019b; Zhang et al., 2020).
Besides, Geng et al. (2018) introduced a adaptive
multi-pass decoder to standard NMT models. How-
ever, the above models improve translation quality
while greatly reducing inference efficiency.

5 Conclusion

In this work, we propose a novel Encoder-NAD-
AD framework for NMT, aiming at improving
the quality of autoregressive decoder with global
information produced by the newly added non-
autoregressive decoder. We extensively evaluate
the proposed model on three machine translation
tasks (En⇒De, En⇒Ro, and De⇒En). Compared
to existing deliberation network (Xia et al., 2017)
which suffers from serious decoding speed degra-
dation, our proposed model achieves a significant
improvement in translation quality with little degra-
dation of decoding efficiency compared to the state-
of-the-art autoregressive NMT.
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