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Abstract

Today’s news volume makes it impractical for readers to get a diverse and comprehensive view of
published articles written from opposing viewpoints. We introduce a transformer-based news ag-
gregation system, composed of topic modeling, semantic clustering, claim extraction, and textual
entailment that identifies viewpoints presented in articles within a semantic cluster and classifies
them into positive, neutral and negative entailments. Our novel embedded topic model using
BERT-based embeddings outperforms baseline topic modeling algorithms by an 11% relative
improvement. We compare recent semantic similarity models in the context of news aggrega-
tion, evaluate transformer-based models for claim extraction on news data, and demonstrate the
use of textual entailment models for diverse viewpoint identification.

1 Introduction

The advent of news aggregators has ushered in a new age of information, exposing readers to continuous
streams of articles from diverse outlets. However, the proliferation of data makes finding viewpoints
presented in different articles challenging. We introduce a novel transformer-based news aggregation
system that identifies diverse viewpoints, depicted in Figure 1. Rather than use preset criteria or learned
behavior, our system provides a list of viewpoints covered in news articles and allows users to decide
which viewpoints to explore. Our system consists of the following components, illustrated in Figure 2:
(i) Topic Modeling organizes articles from multiple news sources into clusters, (ii) Hypothesis Extraction
extracts an opinionated summary sentence (i.e., hypothesis) from each article, (iii) Semantic Similarity
identifies differing viewpoints (i.e., sub-clusters) within each topic based on the hypotheses, (iv) Premise
Extraction extracts a summary sentence (i.e., premise) from a group of articles associated with a view-
point, (v) Textual Entailment evaluates the entailment between the hypothesis of each article and the
premise of its subcluster. As part of this work, we define hypothesis extraction and premise extraction as
subsets of claim extraction, where a claim is defined as a sentence expressing viewpoints associated with
a news article. We define a hypothesis as a single summary sentence that represents an article’s view-
point, and use the terms hypothesis extraction and single-document subjectivity analysis interchangeably.
We define a premise as a single summary sentence that represents viewpoints shared by multiple articles,
and use the terms premise extraction and multi-document subjectivity analysis interchangeably.

2 Related Work

News Aggregation: Thorne et al. propose a system involving Document Retrieval, Sentence Selection,
and Recognizing Textual Entailment (RTE) for fact extraction and verification (Thorne et al., 2018).
Their system expects a claim as input to identify relevant documents, select sentences as evidence from
the document, and finally classify the claim. Other authors evaluate the performance of transformer-
based models against baseline models for debate data (Chen et al., 2019a; Chen et al., 2019b; Gretz et

*The first three authors contributed equally. Their listing order is random.
†Corresponding author. Email: sylvain@csail.mit.edu

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


60

Figure 1: Architecture of our transformer-based system showing inference examples

al., 2020; Ein-Dor et al., 2020), which has applications for news data but is structured slightly differently.
A single news article can be clustered under multiple topics and report multiple opinions within the same
article. In contrast, debate data often directly align with one particular pre-defined topic and involve
separate opinions. Our system differs from an argument search engine with indexing and retrieval (Stab
et al., 2018; Wachsmuth et al., 2017). To adjust to the dynamic incoming stream and multiple sources of
news data, we explore the generalization capability of language models to automate the news aggregation
and viewpoint discovery problem. We have chosen to develop our own labeled article data set targeted
specifically for news applications.

Topic modeling: A common approach to clustering documents based on textual content is Multino-
mial Latent Dirichlet Allocation (LDA) (Blei et al., 2003). Many alternatives have been investigated to
improve semantic coherence by representing words with word2vec embeddings (Mikolov et al., 2013a).
One such approach is the Embedded Topic Model (ETM) (Dieng et al., 2020), which uniquely represents
each document as latent topics, where each topic is an embedding in the semantic space of the words. In
this paper, we use ETM for our topic modeling and investigate using transformer-based embeddings in
lieu of word2vec embeddings to improve quality of clustering.

Semantic Similarity: Semantic Textual Similarity (STS) refers to the goal of quantifying the degree
of similarity between two bodies of text by capturing the degree to which the meanings of the two
inputs overlap (Cer et al., 2017). Until recently, state-of-the-art STS systems have relied heavily on
word embedding approaches (Mikolov et al., 2013b), which lack the capability to fully capture semantic
context. Methods such as InferSent were developed as a solution to embed multiples words, phrases, or
sentences into a single representation (Conneau et al., 2017). The Universal Sentence Encoder (USE)
models (Cer et al., 2018), BERT (Devlin et al., 2019), and other models such as RoBERTa (Liu et al.,
2019) and GPT-3 (Brown et al., 2020) have since made significant improvements on InferSent.

Claim Extraction: A key component of opinion-oriented information extraction from articles is iden-
tifying sentence(s) expressing viewpoints associated with articles (Wilson et al., 2005b; Chen et al.,
2019b). Early attempts towards solving the problem of single-document subjectivity analysis involved
the use of Naı̈ve Bayes classifiers, AdaBoost, and rule-based classifiers trained on the Multi-Perspective
Question Answering (MPQA) Opinion Corpus (Wilson et al., 2005b) for identifying subjective expres-
sions and similar tasks (Wilson et al., 2005a; Somasundaran and Wiebe, 2010). Recent work (Xu et al.,
2019; Hoang et al., 2019; Han and Kando, 2019) has shown fine-tuned BERT models and BERT-based
models (Cer et al., 2018) perform well against baseline models for sentiment analysis and opinion mining
tasks. BERT has been applied to multiple passages/documents for question and answering tasks (Wang et
al., 2019). However, few transformer-based models were applied for multi-document subjectivity analy-
sis (Liu and Lapata, 2019). In this work, we implement hypothesis extraction as a sentence-classification
task and consider BERT-based models against a Naı̈ve Bayes classifier to determine if transformer-based
models perform well for hypothesis extraction. We propose abstractive summarization models, such as
BART (Lewis et al., 2019) and T5 (Raffel et al., 2019), for premise extraction.

Textual Entailment: Recognizing textual entailment (RTE) involves identifying whether a hypoth-
esis statement supports, contradicts, or is indifferent to a premise statement, regardless of whether the
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Figure 2: Our system processes news articles in five steps and generates entailment predictions.

premise and hypothesis lexically match (Sammons et al., 2012). Chen et al. leverage textual entail-
ment to find evidence paragraphs in support of viewpoints (Chen et al., 2019b). Attempts towards RTE
include Named Entity Recognition (NER) (Sammons et al., 2012), LSTMs with word embeddings, and
transformer-based models, such as BART and RoBERTa, which deliver high performance for these tasks.

3 Methods

A demo of our system is available at https://harvard-almit.github.io/newsaggregator/. We tested this
system on a dataset of over 1,000 scraped articles from various news outlets, such as Yahoo News and
The Post and Courier. Figure 2 illustrates how news articles are processed across the components in our
system: (i) Topic Modeling generates cluster IDs for the articles, (ii) Hypothesis Extraction generates
hypotheses for the clustered articles, (iii) Semantic Similarity generates subcluster IDs using hypotheses,
(iv) Premise Extraction generates premises for articles in each subcluster, and (v) Textual Entailment,
consuming outputs of Hypothesis Extraction and Premise Extraction, generates entailment predictions
and provides the results of our news aggregation system.

We perform topic modeling with three approaches using 20 Newsgroups data (Lang, 1995) and Ad-
justed Rand Index Scoring (Hubert and Arabie, 1985): (i) Latent Dirichlet Allocation (LDA) using the
gensim package (Řehůřek and Sojka, 2011), (ii) ETM with word2vec embeddings, and (iii) ETM with
centroids of BERT based embeddings (Blei et al., 2003; Mikolov et al., 2013a; Dieng et al., 2020), where
we select a value for num bert centroids as the number of embeddings ETM will use, and use k-means
clustering (k=num bert centroids) from FAISS package (Johnson et al., 2019). For training hypothesis
extraction models on the clustered articles, we use a modified version of the MPQA Opinion Corpus
v3.0 consisting of expressive subjective elements (Deng and Wiebe, 2015). We train a multinomial
Naı̈ve Bayes classifier and fine-tune BERT, XLNet (Yang et al., 2019), and ALBERT (Lan et al., 2020)
models using HuggingFace’s transformers library (Wolf et al., 2020) on pre-processed MPQA data for
sentence-level subjectivity analysis (i.e., binary opinion classification of sentences).

The semantic similarity module then clusters generated hypotheses of documents within a topic into
clusters of semantically related articles, in which each article is associated with a single, more specific
topic. We considered BERT, RoBERTa, and DistilBERT (Sanh et al., 2019) in a siamese network struc-
ture (Reimers and Gurevych, 2019), in addition to USE using the Pearson correlation coefficient, for
the semantic similarity module. The models were fine-tuned on the Argument Facet Similarity Corpus
by (Misra et al., 2016) and the STS-Benchmark dataset provided by the SentEval (Conneau and Kiela,
2018) package. For premise extraction, we fine-tuned a large BART model (406M parameters) (Lewis et
al., 2019) and a small T5 model (60M parameters) (Raffel et al., 2019) using the transformers library on
data taken from IBM’s Project Debater Claim Stance Dataset (Bar-Haim et al., 2017). We reformatted
this dataset into a summarization dataset for fine-tuning. We chose not to utilize the claims provided in
the dataset, since the hypothesis extraction module already accomplishes this purpose, and used topics

https://harvard-almit.github.io/newsaggregator/
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(statements that represent a group of articles) from the dataset instead. The final output of the system is
provided by the textual entailment module. For each article in a semantic similarity sub-cluster, premises
and hypotheses generated from the claim extraction module are input to the textual entailment module to
predict whether the hypothesis contradicts, entails, or is unrelated to the premise. We evaluated Fairseq’s
pre-trained RoBERTa and BART models fine-tuned for MNLI (Ott et al., 2019) using the transformers
library for textual entailment on the claim stance dataset presented by (Bar-Haim et al., 2017), given that
BART reportedly performs similar to RoBERTa on the MNLI task (Lewis et al., 2019).

4 Results

Our results for topic modeling show ETM with word2vec embeddings outperforming LDA by 32% on
unseen data, and ETM with BERT based embeddings outperforms ETM with word2vec embeddings
based on the number of BERT centroids. When predicting on unseen data, ETM trained with 100K
BERT centroids outperforms ETM with 25,535 word2vec embeddings by 11%, suggesting the benefits
of long sequence contextualized embeddings. We found when predicting on unseen data, the improve-
ments of ETM trained with BERT embeddings do not continue beyond a certain number of centroids due
to overfitting. However, when predicting on seen data, ETM trained with BERT embeddings’s outperfor-
mance increases as the number of BERT centroids increases to 1 million centroids. When predicting on
seen data, ETM trained with 1 million BERT centroids outperforms ETM with word2vec embeddings by
17%. For hypothesis extraction, on a held-out dataset of the MPQA data, we found XLNet outperforms
the Naı̈ve Bayes classifier baseline by 23%, and provides better performance compared to BERT and
ALBERT on the F1 score while ALBERT achieved a higher Matthews correlation coefficient score (see
Table 1). We found the BERT-based model is capable of extracting distinct hypotheses from different
entities for a particular article.

MODEL F1 MCC

NAÏVE-BAYES BASELINE 0.740 0.302
BERT 0.878 0.722
XLNET 0.911 0.736
ALBERT 0.893 0.757

Table 1: XLNet outperforms other models
on F1 using held-out MPQA data.

MODEL STS-B AFS

USE 0.78413 0.44501
SBERT 0.84195 0.75800
SROBERTA 0.84266 0.75502
SDISTILBERT 0.84135 0.73400

Table 2: Siamese BERT-based models outper-
form USE on STS-B and AFS by 6%.

In Table 2, for the semantic similarity task, we found the BERT-based models in a siamese network
outperformed USE, making them well-suited for our use-case. The results presented are the Pearson
correlation of the cosine distance between the embedding vectors and the human-labeled similarity score.
The results indicate that we have fairly high correlation (r ≈ 0.84) recognizing semantically similar
sentences and moderate correlation (r ≈ 0.75) recognizing argument facets. This gives us an average
r value across the two tasks of approximately 0.80. Additionally, we note that the smaller DistilBERT
yields results similar to its larger counterparts. For premise extraction, we achieved a loss of 1.260
with T5 and a loss of 6.192 with BART on the validation dataset. The T5 model typically outputs 3
sentences. The output is further processed to include the longer sentence to prevent run-off sentences
from occurring in the predicted premises. We found BART’s predictions were limited to topics in the
training data contra T5’s predictions that were directly related to article content. Sample predictions
from T5 include “The house would be a great place to promote the liberal arts movement” and “The
study believes that warm climates would limit the spread of the virus if people are immune from it”.
For textual entailment, BART has slightly higher accuracy (67%) compared to RoBERTa (65%) on the
claim stance dataset. However, for our datasets, RoBERTa outputted predictions with higher probability
compared to BART. Given these results, we implemented XLNet for hypothesis extraction, SBERT for
semantic similarity, T5 for premise extraction, and RoBERTA for textual entailment. As for ETM, since
it proves to be highly resource-intensive, we opted for LDA instead. The following examples show two
groups of premise, hypothesis and predicted entailment generated by our system.



63

Premise Health experts agree that keeping people apart, or “social distancing,” during the
coronavirus pandemic is essential for bringing the outbreak under control.

Hypothesis “There is just no way you can be socially distant with this,” said Carol Rosenberg
Entailment Contradiction

Premise Word that money would soon land in bank accounts across the country has led to
a surge of scam phone calls, with fraudsters falsely claiming people had to provide
personal information to collect government money.

Hypothesis Clicking a link takes them to what looks like an official website asking for personal
information with instructions that the step is “necessary” to process their check

Entailment Neutral

5 Discussion

We found topics generated by ETM for our dataset were more coherent compared to LDA for topic mod-
eling. ETM with BERT based embeddings outperforms ETM with word2vec embeddings when ETM
is trained with a number of BERT centroids greater than the number of word2vec embeddings associ-
ated with the corpus. Training ETM with BERT centroids involves significantly more computational
work than training ETM with word2vec embeddings. On the other hand, in settings where both model
creation and predictions are based on the same, full dataset, ETM with BERT-based embeddings does
perform better and could be incorporated. We demonstrate that hypothesis extraction can be phrased as
subjectivity analysis, and we found XLNET and ALBERT can deliver high performance for this task.
A novel aspect of our methodology is that we employ the generated hypotheses as input to the seman-
tic similarity module. Current state-of-the-art models treat semantic similarity as a pair-wise regression
problem, making them computationally inefficient for clustering for news aggregation. We found that
transformer-based models increased the quality of the clustering compared to USE. The results here show
that we can efficiently find semantic clusters with standard clustering methods, e.g., k-Means++ (Arthur
and Vassilvitskii, 2007), or density based clustering, e.g., DBSCAN (Ester et al., 1996), to present users
with a diverse set of articles on a specific topic.

We show that premise extraction is closely related to the task of abstractive summarization, as premises
must be constructed to enable a group of articles to agree or disagree with statements. We observed the
small T5 model was able to significantly outperform the larger BART model. We demonstrate that multi-
document and single-document claim extractions can be informative premises and hypotheses that are
inputs to a textual entailment module. From the second premise-hypothesis pair in Section 4, we see
there is a small contradiction that the model does not detect, but could potentially predict if a different
premise-hypothesis pair was chosen, or if predictions were validated using phrases from the hypothesis
(e.g., the model based its prediction on the phrase “what looks like an official website asking for personal
information”). Consequentially, we found that different premise-hypothesis pairs within an article can
lead to different predictions from the textual entailment module for the same article, due to opposing
viewpoints described in the article and distinct word phrasing between sentences.

6 Conclusion

We have introduced a transformer-based news aggregation system, consisting of topic modeling, hy-
pothesis extraction, semantic clustering, premise extraction, and textual entailment that allows readers
to view articles from diverse viewpoints. Our results show relative improvements over baseline models
in the range of 10-23% using Embedded Topic Modeling, semantic similarity through fine-tuned BERT
models with a siamese network structure, and hypothesis extraction using large pre-trained language
models for sentence-level subjectivity analysis. Our results also show a five-fold loss decrease when
using a small T5 model, compared to a large BART model, for premise extraction. The system we have
developed demonstrates that pre-trained BERT-based models of textual entailment can be used to identify
diverse viewpoints.
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