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Abstract

A challenge that many online platforms face is
hate speech or any other form of online abuse.
To cope with this, hate speech detection sys-
tems are developed based on machine learning
to reduce manual work for monitoring these
platforms. Unfortunately, machine learning is
vulnerable to unintended bias in training data,
which could have severe consequences, such
as a decrease in classification performance or
unfair behavior (e.g., discriminating minori-
ties). In the scope of this study, we want to
investigate annotator bias — a form of bias
that annotators cause due to different knowl-
edge in regards to the task and their subjective
perception. Our goal is to identify annotation
bias based on similarities in the annotation be-
havior from annotators. To do so, we build a
graph based on the annotations from the differ-
ent annotators, apply a community detection
algorithm to group the annotators, and train for
each group classifiers whose performances we
compare. By doing so, we are able to iden-
tify annotator bias within a data set. The pro-
posed method and collected insights can con-
tribute to developing fairer and more reliable
hate speech classification models.

1 Introduction

A massive problem that online platforms face nowa-
days is online abuse (e.g., hate speech against
women, Muslims, or African Americans). It is a se-
vere issue for our society because it can cause more
than poisoning the platform’s atmosphere. For ex-
ample, Williams et al. (2020) showed a relation
between online hate and physical crime.

Therefore, people have started to develop sys-
tems to automatically detect hate speech or abusive
language. The advances in machine learning and
deep learning have improved these systems tremen-
dously, but there is still much space for enhance-
ments because it is a challenging and complex task

(Fortuna and Nunes, 2018; Schmidt and Wiegand,
2017).

A weakness of these systems is their vulnera-
bility towards unintended bias that can cause an
unfair behavior of the systems (e.g., discrimination
of minorities) (Dixon et al., 2018; Vidgen et al.,
2019). Researchers have identified different types
and sources of bias that can influence the perfor-
mance of hate speech detection models. Davidson
et al. (2019), for example, investigated racial bias
in hate speech data sets. Wiegand et al. (2019)
showed that topic bias and author bias of data sets
could impair the performance of hate speech clas-
sifiers. Wich et al. (2020) examined the impact of
political bias within the data on the classifier’s per-
formance. To mitigate bias in training data, Dixon
et al. (2018) and Borkan et al. (2019) developed an
approach.

Another type of bias that caught researchers’ at-
tention is annotator bias. It is caused by the sub-
jective perception and different knowledge levels
of annotators regarding the annotation task (Ross
et al., 2017; Waseem, 2016; Geva et al., 2019).
Such a bias could harm the generalizability of clas-
sification models (Geva et al., 2019). Especially in
the context of online abuse and hate speech, it can
be a severe issue because annotating abusive lan-
guage requires expert knowledge due to the vague-
ness of the task (Ross et al., 2017; Waseem, 2016).
Nevertheless, due to the limited resources and the
demand for large datasets, annotating is often out-
sourced to crowdsourcing platforms (Vidgen and
Derczynski, 2020). Therefore, we want to investi-
gate this phenomenon in our paper. There is already
research concerning annotator bias in hate speech
and online abuse detection. Ross et al. (2017) ex-
amined the relevance of instructing annotators for
hate speech annotations. Waseem (2016) compared
the impact of amateur and expert annotators. One
of their findings was that a system trained with data
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labeled by experts outperforms one trained with
data labeled by amateurs. Binns et al. (2017) inves-
tigated whether there is a performance difference
between classifiers trained on data labeled by males
and females. Al Kuwatly et al. (2020) extended
this approach and investigated the relevance of an-
notators’ educational background, age, and mother
tongue in the context of bias. Sap et al. (2019)
examined racial bias in hate speech data sets and
its impact on the classification performance. To
the best of our knowledge, no one has investigated
annotator bias by identifying patterns in the anno-
tation behavior through an unsupervised approach.
That is why we address the following research ques-
tion in the paper: Is it possible to identify annotator
bias purely on the annotation behavior using graphs
and classification models?

Our contribution is the following:

• A novel approach for grouping annotators ac-
cording to their annotations behavior through
graphs and analyzing the different groups in
order to identify annotator bias.

• A comparison of different weight functions
for constructing the annotator graph modeling
the annotator behavior.

2 Data

For our study, we use the Personal Attacks corpora
from the Wikipedia Detox project (Wulczyn et al.,
2017). It contains 115,864 comments from English
Wikipedia that were labeled whether they comprise
personal attack or not. In total, there are 1,365,217
annotations provided by 4,053 annotators from the
crowdsourcing platform Crowdflower — approx-
imately 10 annotations for each comment. Each
annotation consists of 5 categories distinguishing
between different types of attack: quoting attack,
recipient attack, third party attack, other attack,
and attack. In our experiments, we only use the 5th

category (attack) because it covers a broader range
than the other labels. Its value is 1 if ”the comment
contains any form of personal attack” (Wikimedia,
n.d.). Otherwise it is 0. The corpora also contain
demographic information (e.g., gender, age, and
education) of 2,190 annotators. But this data is not
relevant to our study.

3 Methodology

Our approach is to group annotators according
to their annotation behavior and analyze perfor-

mance of classification models trained on anno-
tations from these groups. To do so, we firstly
group the annotators according to their annotation
behavior using a graph. Secondly, we split the
data set by the groups and their respective annota-
tions. Thirdly, we train classifiers for each anno-
tator group and then compare their performances.
The reader can find a detailed description of the
steps in the following1:

Creating Annotator Graph
In the first step, we create an undirected un-
weighted graph to model the annotation behavior
of the annotators (e.g., how similar the annotations
of two annotators are). Each node represents an an-
notator. An edge between two nodes exists if both
annotators annotate at least one same data record.
Additionally, each edge has a weight that models
the similarity between the annotations of the data
records. To calculate the weight, we selected four
functions that we will compare:

1. Agreement Rate: It is the percentage in
which both annotators agree on the annota-
tion for a data record:

a =
nagree

nagree + ndisagree

where nagree is the number of data records
that both annotated and assigned the same la-
bels to and ndisagree is the number of data
records that both annotated and assigned dif-
ferent labels.

2. Cohen’s Kappa (Cohen, 1960): It is often
used as a measure for inter-rater reliability.

κ =
p0 − pe
1− pe

where p0 is the ”proportion of observed agree-
ments” (Sim and Wright, 2005, p.258) among
the data records annotated by both annotators
and pe is ”proportion of agreements expected
by chance” (Sim and Wright, 2005, p.258)
among the records. The range of κ is between
−1 and +1. +1 corresponds perfect agree-
ment; ≤ 0 means agreement at chance or no
agreement (Cohen, 1960). If both annotators
select the same label for all records, κ is not

1Code available on GitHub: https://github.com/
mawic/graph-based-method-annotator-bias

https://github.com/mawic/graph-based-method-annotator-bias
https://github.com/mawic/graph-based-method-annotator-bias
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defined. In this case, we remove the edge. An
alternative would be to keep the edge and as-
sign 1. But we rejected this idea because of
the following consideration. Let us assume
that we have 4 annotators (A,B,C, and D). A
and B assigned the same label to the same
comment. C and D assigned the same labels
to the same 20 comments. In both cases, κ is
not defined. Assigning the same value (e.g., 1)
to both edges would weigh both equally. But
the edge between C and D should receive a
higher weight because the agreement between
A and B could be a coincidence.

3. Krippendorff’s Alpha (Krippendorff, 2004):
It is another inter-rater reliability measure,
which is defined as follows:

α = 1− D0

De

”where D0 is the observed disagreement
among values assigned to units of analysis
[...] and De is the disagreement one would
expect when the coding of units is attributable
to chance rather than to the properties of these
units” (Krippendorff, 2011, p.1). Further de-
tails of the calculation are provided by Krip-
pendorff (2011). Similar to κ, α is not defined
if the annotators choose the same label for all
records. We handle this case in the same way
as above.

4. Heuristic: To overcome the undefined issue,
we define a heuristic weight function taking
the relative agreement rate and the number of
commonly annotated data records (overlap)
between two annotators into account. The
function is defined by four boundary points:

• The maximum weight (1.0) is reached,
if two annotators commonly annotated
n data records and agree on all annota-
tions. n is the maximal number of data
records that is commonly annotated by
two annotators and is defined by the data
set.

• The minimum weight (0) is reached, if
two annotators commonly annotated n
data records and disagree on all annota-
tions.

• A weight that is 20% larger than the min-
imum weight (0.2) is reached, if two an-

notators commonly annotated only one
data record and disagree.

• A weight that is 60% larger than the min-
imum weight (0.6) is reached, if two an-
notators commonly annotated only one
data record and agree.

The transition between the four boundary
points is gradually calculated. The algorithm
can be found in the appendix. The purpose
of the approach is to consider the overlap be-
sides the agreement rate because the larger
the overlap the more reliable is the agreement
rate. Cohen’s Alpha and Krippendorff’s Al-
pha provide this, but their weakness is the
undefined issue, which is a realistic scenario
for our annotation task.

All weight functions are normalized between 0
and 1 to make the results comparable, if they are
not already in this range.

Detecting Annotator Groups

The goal of the next step is to group the annotators
according to their annotation behavior. For this
purpose, we apply the Louvain method, an unsu-
pervised algorithm for detecting communities in a
graph (Blondel et al., 2008). After that, we filter
the communities with at least 250 members. Oth-
erwise, the groups do not comprise enough data
records that were annotated by their members in
order to train a classification model.

Splitting Data According to Groups

After detecting the groups, we split the comments
and annotations according to the groups. For each
weight function and the corresponding graph, we
do the following: We select those comments that
were annotated by at least one member of every
group. For each group, we create a data set con-
taining these comments and the annotations from
the group’s members. The label for each comment
is the majority vote of the group’s annotators. In
addition, we create a further data set that serves as
a baseline and is called group 0 for all experiments.
The data set contains the same comments, but the
labels are the results of all 4,053 annotators. After
that, all data sets for a weight function are split in
a training and test set in the same manner to ensure
the comparability of the data sets. This is done for
each of the four weight functions.
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Weight function Agreement Rate Cohen’s Kappa Krippendorff’s Al-
pha

Heuristic Function

Number of nodes 4,053 4,053 4,053 4,053
Number of edges 444,344 91,308 91,308 444,344
Average degree 219.3 45.1 45.1 219.3
Density 0.054 0.011 0.011 0.054
Connected components 1 1 1 1
Distribution of
edge weights

0.0 0.5 1.0
0

50000

100000

150000

200000

250000

300000

350000

0.0 0.5 1.0 0.0 0.5 1.0 0.5 1.0

Median

Table 1: Graph metrics

Training Classification Models for Groups and
Comparing Their Performances

For the classification model, we use a pre-trained
DistilBERT that we fine-tune for our task (Sanh
et al., 2019). It is smaller and faster to train than
classical BERT, but it provides comparable per-
formance (Sanh et al., 2019). In the context of
abusive language detection, it shows a similar per-
formance like larger BERT models (Vidgen et al.,
2020). Since we need to train several models for
different weight functions and groups, we choose
the lighter model.

The basis of our classification model is the
pre-trained distilbert-base-uncased,
which is the distilled version version of
bert-base-uncased. It has 6 layers, a
hidden size of 768, 12 self-attention heads, and
66M parameters. To fine-tune the model for our
task, we apply the 1cycle learning rate policy
suggested by Smith (2018) with a learning rate of
5e-6 for 2 epochs. The batch size is 64 and the
size of the validation set is 10% of the training set.
Furthermore, we limit the number of input tokens
to 150. The task that DistilBERT is fine-tuned for
is to distinguish between the labels ”ATTACK”
and ”OTHER”.

After training the models, we compare their per-
formances (F1 macro). For this purpose, each
model is evaluated on its own test set and the one

from the other groups including group 0, which
represents all annotators. Instead of reporting the
F1 score, we report them relatively to our baseline
(group 0) because it allows a better comparison of
the results. Additionally, the actual F1 score are
not relevant for this analysis.

4 Results

The experiments show that our proposed method
enables the grouping of annotators according to
similar annotation behavior. Classifiers separately
trained on data from the different groups and eval-
uated with the other groups’ test data exhibit no-
ticeable differences in classification performance,
which confirms our approach. The detailed results
can be found in the following:

Annotator Graph
We created one graph for each weight function.
Table 1 provides the key metrics of the generated
graphs. It is conspicuous that the graphs with Co-
hen’s Kappa and Krippendorff’s Alpha weight func-
tion have only 91,308 edges, while the other twos
have 444,344. This difference also causes the di-
vergence of the average degree and density. The
reason for the difference is that many relations be-
tween two annotators comprise only one comment.
If both agree on an annotation, Cohen’s Kappa
and Krippendorff’s Alpha are not defined; conse-
quently, we do not have an edge. Therefore, graphs
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Weight function Agreement Rate Cohen’s Kappa Krippendorff’s Al-
pha

Heuristic Func-
tion

Number of identified groups 6 13 12 6
Number of selected groups 6 6 6 6
Number of annotators 4,053 3,407 3,282 4,053

AVG(annotators/groups) 579.00 486.71 468.86 579.00
SD(annotators/groups) 266.17 239.75 224.99 258.24

Size of training set/test set 31,170 / 7,793 18,951 / 4,738 18,204 / 4,551 31,738 / 7,934
Distribution of

group sizes

400

500

600

700

800

900

Table 2: Results of community detection

with these weight functions have fewer edges.

Community Detection

Table 2 shows the results of community detec-
tion. While the Louvain algorithm split the graphs
with the Agreement Rate and Heuristic Function
as weight functions in 6 groups, 13 groups in the
graph with Cohen’s Kappa were detected and 12 in
the one with Krippendorff’s Alpha. An explanation
for the divergence is the difference between the
number of edges of the graphs. Since the groups
have various numbers of members, we select only
these with at least 250 annotators due to two rea-
sons. Firstly, we have the same number of groups
for all weight functions. Secondly, we ensure that
we have enough annotated comments to train the
classifiers. It may be noted at this juncture that
only comments were selected for the training/test
set if they were annotated by the group. There-
fore, groups with a small number of annotators
would have reduced the size of the training/test set.
The distribution of the size of the training/test set
is similar to the one of the numbers of identified
groups. For Agreement Rate we have 31,170 anno-
tated comments for the training set and 7,793 for
the test set, for the Heuristic Function 31,738 and
7,934, for the Cohen’s Kappa 18,951 and 4,738,
and for Krippendorff’s Alpha 18,204 and 4,551.
The smaller data sizes for the last two are related
to the smaller average size of groups.

To compare the different groups, we computed
the inter-rater agreement for each group and be-
tween the groups by using Krippendorff’s Alpha.
To calculate the rate between the groups, we com-
pute Krippendorff’s Alpha using the union of all an-

notations from both groups. The inter-rater agree-
ment scores (in percent, 100% means perfect agree-
ment) for all four weight functions are depicted in
Figure 1. The first column of each subfigure shows
the inter-rater agreement within each group. The
7 columns right to the line provide the inter-rater
agreement between the groups, and the last column
shows the average inter-rater agreement between
the groups. Please note that the inter-rater agree-
ment scores are not comparable between the differ-
ent weight functions/subfigures because the groups,
the comments, and the annotations are different.
The scores can only be compared with scores from
the same graph with the same weight function.

If we look at the inter-rater agreement within the
groups (first column of each subfigure), we see that
the groups exhibit varying scores and that the de-
viations to the baseline (group 0, data set average)
also differ. If the score is higher than the baseline,
the group is more coherent in regards to the anno-
tations. If it is lower, the group is less coherent.
Furthermore, the more scores are higher than the
baseline, the better because it means that the algo-
rithm is able to create more coherent groups. Con-
sidering these aspects, we can say that the Heuristic
Function produces the best results. Its groups 3
(48.3%), 5 (48.3%), and 6 (48.0%) together have
the largest distance to the baseline (46.5%) than the
top three groups of the other groups.

The groups resulting from the graph with the
Agreement Rate as weight function have less
strongly varying inter-rater agreement rates than
the groups of the other weight functions. In the
case of Cohen’s Kappa, one group with a strong
inter-rater agreement is formed (49.8%) — the
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Figure 1: Inter-rater agreement within and between groups for different weight functions

highest deviation for all weight functions. But the
other groups are similar to the baseline or worse.
Krippendorf’s Alpha as weight function produces
results that are comparable to the ones from the
Heuristic Function. The deviations from its top
three groups, however, are smaller than the ones
from the corresponding groups of Heuristic Func-
tion. Furthermore, the groups of the Heuristic Func-
tions cover all 4,053 annotators, while the ones
from Krippendorf’s Alpha comprise only 3,282.
Therefore, we choose the groups from the Heuris-
tic Function for the last part of the experiment.

Classification Models and Their Performances

Instead of reporting the macro-F1 scores for the
classifiers trained on the different group-specific
training sets and tested on the all group-specific
test sets, we report them relatively to the baseline
(trained on group 0 and tested on group 0) for easier
comparison. The baseline has a macro-F1 score of
87.54%. In addition to the relative scores, the fig-
ures contain an extra column and row with average
values for better comparability.

It is conspicuous that the deviations reported in
the first column of each matrix are lower than the

rest. The reason is the following: These columns
report the performances of the classifiers for the
different groups on the baseline test set. Since the
baseline test set has the largest number of annota-
tions, the labels are more coherent. Consequently,
classifiers perform better on the baseline test set
than on their own, less coherent test sets.

The first thing that attracts our attention is col-
umn 4 because it has the largest deviations, mean-
ing that all classifiers perform quite worse on the
test set of group 4. We can explain this phe-
nomenon with the low inter-rater agreement rate of
this group (44.6%, compare Figure 1d). This is also
the explanation of why row 4 has the lowest aver-
age of all rows. In this context, it is surprising that
row 6 has the second-lowest average of all rows,
while it has a relatively large inter-rater agreement
rate (48.0%). A possible explanation can be that
the annotations within the group are coherent but
less coherent with respect to all other annotations.
In the case of group 3 and 5 (inter-rater agreement
rate of 48.3% and 48.%), the average deviations
are comparable to the others. This indicate that
the annotation behavior of the group members is
more coherent with the overall annotation behavior.
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Figure 2: Macro F1 scores for the Heuristic Function

The cross-group agreement average (last column in
Figure 1d) confirms this because both groups have
the largest values aside from the baseline. In the
case of group 5, this hypothesis is supported by the
fact that all classifiers perform on average better
on the test set of group 5 than on the test sets from
groups 1, 2, 3, 4, and 6.

5 Discussion

The results show that the proposed method is suit-
able for identifying annotator groups purely based
on annotation behavior. The deviations in inter-
rater agreement rates of the groups and in the clas-
sifiers’ performances prove this.

In regards to the weight functions, we found that
the Agreement Rate is not suitable compared to
the other functions. This is not surprising because
there is a reason why Cohen’s Kappa and Krippen-
dorff’s Alpha are used as a metric for the inter-rater
agreement. An advantage of our Heuristic Function
in regards to Cohen’s Kappa and Krippendorff’s Al-
pha as weight functions is that it does not have the
undefined issue if two annotators assign only one
type of label to the comments to be labeled. A po-
tential improvement could be to combine Cohen’s
Kappa and Krippendorff’s Alpha weight function
with the Heuristic Function.

The results of our method can be linked to anno-
tator bias in the following manner: An identified
annotator group that has a high inter-rater agree-
ment within the group, but poor classification per-
formance on the other test sets indicates that it has

a certain degree of bias as the group’s annotation
behavior differs from the rest. For such insights,
we see currently two possible use cases:

• The insights can be used to mitigate annotator
bias. The annotations of these groups can
either be weighted differently or deleted to
avoid transferring the bias to the classification
model.

• The insights can be used to build classification
models that model the annotator bias. This can
be helpful for tasks that do not have one truth.
In the case of online abuse, it is possible that
one group is more tolerant towards abusive
language and another one less tolerant.

The novelty of our approach is that it is unsu-
pervised and does not require any stipulation of
bias that you want to detect in advance. Existing
approaches, such as Binns et al. (2017), who in-
vestigated gender bias, or Sap et al. (2019) and
Davidson et al. (2019), who examined racial bias,
defined in their hypothesis which kind of bias they
want to uncover. Our method, however, does not
require any pre-defined categories to detect bias.

6 Conclusion

In this paper, we proposed a novel graph-based
method for identifying annotator bias through
grouping similar annotation behavior. It differs
from existing approaches by its unsupervised na-
ture. But the method requires further research and
refinement. To address our limitations, we propose
the following future work:

Firstly, we used only one data set for our study.
The approach, however, should be also tested and
refined with other data sets. The Wikipedia Detox
project, for example, provides two more data sets
with the same structure, but with different tasks
(toxicity and aggression). In general, data availabil-
ity is a challenge of this kind of research because
hate speech data sets mostly contain aggregated an-
notations. Therefore, we urge researchers releasing
data sets to provide the unaggregated annotations
as well.

Secondly, other approaches for grouping the an-
notators should be investigated. We used only one
community detection method, the Louvain algo-
rithm. But there are many more methods, such as
the Girvan-Newman algorithm (Girvan and New-
man, 2002) and the Clauset-Newman-Moore algo-
rithm (Clauset et al., 2004).
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Thirdly, our methods should be extended so that
it can handle smaller groups. Our current approach
requires at least 250 annotators in a group to ensure
that we have enough training data. But it would
be interesting to investigate smaller groups in the
hope that these groups are more coherent in regards
to their annotation behavior.
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