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Abstract

Scene graph is a graph representation that ex-
plicitly represents high-level semantic knowl-
edge of an image such as objects, attributes of
objects and relationships between objects. Var-
ious tasks have been proposed for the scene
graph, but the problem is that they have a lim-
ited vocabulary and biased information due
to their own hypothesis. Therefore, results of
each task are not generalizable and difficult
to be applied to other down-stream tasks. In
this paper, we propose Entity Synset Align-
ment(ESA), which is a method to create a
general scene graph by aligning various se-
mantic knowledge efficiently to solve this bias
problem. The ESA uses a large-scale lexical
database, WordNet and Intersection of Union
(IoU) to align the object labels in multiple
scene graphs/semantic knowledge. In experi-
ment, the integrated scene graph is applied
to the image-caption retrieval task as a down-
stream task. We confirm that integrating multi-
ple scene graphs helps to get better representa-
tions of images.

1 Introduction

Beyond detecting and recognizing individual ob-
jects, research for understanding visual scenes is
moving toward extracting semantic knowledge to
create scene graph from natural images. Starting
with (Krishna et al., 2017), various studies have
been proposed to generate this semantic knowl-
edge from images (Zellers et al., 2018; Xu et al.,
2017; Liang et al., 2019; Anderson et al., 2018).
However, each study extracts only highly biased
information from an image due to the limited vo-
cabulary depending on their own hypothesis and
the statistical bias of the dataset. For example, in
(Anderson et al., 2018), the author conducted a
study on extracting information of both object and
attribute for each entity using 1,600 object and 400

Figure 1: An example of scene graph for a common
image from Visual Genome 200 (VG200) and Visually-
Relevant Relationship (VrR-VG) dataset.

attribute class labels. In addition, (Zellers et al.,
2018; Xu et al., 2017) generate a relationship be-
tween objects in a form of triplet (head entity -
predicate - tail entity) in an image by using 150 ob-
ject and 50 predicate class labels. In (Liang et al.,
2019), the author constructed a Visually-Relevant
Relationships(VrR-VG) based on (Krishna et al.,
2017) to mine more valuable relationships with
1600 objects and 117 predicate class labels. As
such, each task defines and uses its own vocabulary,
but the problem is that the vocabulary is limited. As
shown in Figure 1,If some of objects in an image
do not belong to the dataset-specific vocabulary,
objects as well as relations are omitted frequently
even though they are in an image. In addition, there
are cases where the same object is defined with
different vocabulary in a common image (e.g. man,
person).

In this paper, we propose Entity Synset Align-
ment (ESA) to perform scene graph integration.
With a large-scale lexical database WordNet and
IoU, the ESA aligns the entity labels in scene
graphs generated from each dataset. The contri-
butions of the method proposed in this paper are as
follows: 1) Scene graphs can be generated from raw
image inputs, 2) integrating multiple scene graphs
inferred from each dataset into one via ESA, 3)
the qualitative results show that an integrated scene
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graph can extract richer semantic information in an
image, 4) quantitative results show the significance
of integrated scene graph by applying integrated
scene graph to image-caption retrieval task.

2 Related Work

BottomUp-VG. Bottom-Up VG is a bottom-up at-
tention model that extracts information of both
object and attribute for each entity with 1,600
object and 400 attribute class labels from Visual
Genome(VG).
VG200. VG200 introduced by (Xu et al., 2017) is
a filtered version of the original VG scene graph
dataset. It contains 150 object and 50 predicate
class labels in 108,077 images, and consists of an
average of 11.5 distinct objects and 6.2 predicates
per image.
VrR-VG. Visually-Relevant Relationships (VrR-
VG) introduced by (Liang et al., 2019) is con-
structed to highlight visually-relevant relationships
using visual discriminator to learn the notion of
visually-relevant.
WordNet. WordNet, a large lexical database of En-
glish, is an ontology that summarizes a relationship
between words and has been integrated into the
Natural Language ToolKit. Nouns, verbs, adjec-
tives and adverbs are grouped into sets of cogni-
tive synonyms (synsets), each representing intrinsic
concept.

3 Method

As shown in Figure 2, we employ bottom-up at-
tention (Anderson et al., 2018) model to generate
only nodes containing information of both object
and attribute, and CompTransR model to gener-
ate scene graphs from raw images. Entity Synset
Alignment(ESA) integrates scene graphs generated
from each dataset. We introduce a simple model,
CompTransR, for scene graph generation in Sec-
tion 3.1 and a scene graph integration technique,
Entity Synset Alignment(ESA) in Section 3.2.

3.1 Compositional Translational Embedding

Compositional Translation Embedding combines
the well-known Knowledge Graph embedding al-
gorithms (i.e., TransR (Lin et al., 2015)) to learn
the semantic relationships between two entities in
a scene graph. Here, we apply transitive constraints
to predict the semantic predicate labels in multiple
symbolic subspaces by learning compositional rep-
resentations of the relationships. As an entity fea-

ture, we extract visual, positional, and categorical
features from a detected bounding box in a given
image, and concatenate them into one. Then, entity
features are transformed to head(h) and tail(t) fea-
tures through single feed-forward neural network.
The feature vectors of head and tail are projected
into multiple latent relational subspaces. We aim to
disentangle the semantic space of the sub-relation
labels. The predicate representation rs ≈ ts−hs is
defined on each latent relational space s. All rs on
the subspaces are summed out to predict predicate
labels between two entities.

3.2 Entity Synset Alignment (ESA)

Algorithm 1: Entity Synset Alignment
Function ESA (A obj list, B obj list)
obj list=A obj list

for A obj in A obj list do
A obj synset = get synset(A obj);
for B obj in B obj list do

B obj synset = get synset(B obj);
if A obj in B obj synset OR B obj in
A obj synset then

iou = get IoU(B obj, A obj);
if iou is larger than 0.3 then

pass Flag=True;
Break;

end
end

end
if pass Flag is True then

Continue;
end
obj list.append(B obj);

end

Entity Synset Alignment is an algorithm that in-
tegrates scene graphs generated from each dataset
by using label alignment and Intersection of Union
(IoU). In label alignment process, we use a synset,
a set of synonym(lemma, hypernym, and hyponym)
that shares a common meaning in WordNet, to align
two entity labels. The method using synset com-
pares whether an entity label in a scene graph is
the same entity label in other scene graph, and
aligns. If the entity label is same vocabulary or in
the synset of entity label for other scene graph, then
IoU calculation is implemented to check whether
it indicates same entity. The detailed procedure is
shown in Algorithm 1.
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Figure 2: An overview of framework which integrates visual semantic knowledge with Entity Synset Align-
ment(ESA). (a) A raw image goes into inference models as an input. (b) Inference models(Bottom-up attention
and CompTransR) generate (c) scene graphs from each dataset(VG, VG200, VrR-VG). (e) Integrated scene graph
is built as an output via (d) Entity Synset Alignment method.

4 Experiments

4.1 Scene Graph Statistics

In Table 1, we measure the average and max num-
ber of object, relation, and attribute with vari-
ous combinations of scene graph datasets. Default
VG200 has 12.53 average number of object and 62
max number of object, default BottomUp-VG has
26.35 average number of object and 55 for max,
and default VrR-VG has 36.77 average number of
object and 167 max number of object. The most
key section of Table 1 is the average number of
object and relation in integrating three datasets in-
creased. This result implies that integrating three
scene graphs into one scene graph can get more
richer scene graph.

4.2 Image-Caption Retrieval Task

To verify the usefulness of our algorithm, we sug-
gest an image-caption retrieval task (Kiros et al.,
2014) as an application of scene graphs. The image-
caption retrieval task needs visual-semantic embed-
dings, which is obtained by mapping the image
features and caption features into joint embedding
space. A general approach for this task is to ob-
tain image features and caption features with pre-
trained model (such as VGGNet (Simonyan and
Zisserman, 2014) for images and S-BERT (Reimers
and Gurevych, 2019) for captions), then to learn
mapping both to joint embedding space for maxi-
mizing similarities. In our case, we substitute im-
age features from the pre-trained CNN model to
scene-graphs and learn the representations of scene-
graphs with simple 2-layer Graph Convolution Net-
works (Kipf and Welling, 2016). Following (Faghri
et al., 2017), we use the Max of Hinge loss for train-

ing:

lMH(i, c) = max
c′

[α+ s(i, c′)− (i, c)]+

+max
i′

[α+ s(i′, c)− (i, c)]+
(1)

where i and c are image features and caption fea-
tures in joint embedding space, s(x, y) is inner-
product similarity function for x and y, [x] ≡
max(x, 0) and α serves as a margin parameter.

4.3 Results

4.3.1 Qualitative Results
Figure 3 shows each generated scene graph for an
image and an integrated scene graph generated. In
each scene graph, person is presented as person
in BottomUp-VG, but woman in VG200 and VrR-
VG. Furthermore, phone and tree(s) nodes are in
BottomUp-VG and VrR-VG, but not in VG200.
On the other hand, BottomUp-VG and VrR-VG
have grass node but not in VG200. In integrated
scene graph, each node has an attribute of each
object such as color and some entities such as per-
son or tree are aligned via ESA. For the setting
of qualitative results, we limit the number of rela-
tion(predicate) between objects to top 20 in gener-
ated each scene graph.

4.3.2 Quantitative Results
To obtain both captions and scene-graphs for im-
ages, we select subset of images, called VG-COCO,
belongs to both MS COCO dataset (Lin et al., 2014)
(for captions) and Visual Genome (VG) dataset (Kr-
ishna et al., 2017) (for scene graphs). We manu-
ally split the VG-COCO dataset with 24,763 train,
1,000 validation and 1,470 test images. To evaluate
the performance of image-caption retrieval task, we
introduce Recall@K(R@K), i.e., the fraction of
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Table 1: The average and max number of object, relation and attribute with various combinations of scene graph
datasets.

Method Number of object Number of relation Number of attributes
Avg. Max Avg. Max Avg. Max

VG200 12.53 62 50.0 50 0.0 0
VrR-VG 36.77 167 50.0 50 0.0 0
BU-VG 26.35 55 0.0 0 26.35 55

VG200 ∧ VrR-VG 37.00 167 100 100.0 0.0 0
VG200 ∧ BU-VG 27.21 66 44.39 50 26.35 55

VrR-VG ∧ BU-VG 42.04 141 29.57 50 26.35 55
VG200 ∧ VrR-VG ∧ BU-VG 41.95 127 79.67 100 26.35 55

Table 2: Quantitative results for our method on image-to-caption retrieval(caption retrieval) and caption-to-image
retrieval(image retrieval) task. BU-VG is an abbreviation of BottomUp-VG.

Method Caption Retrieval Image Retrieval
R@1 R@5 R@10 R@1 R@5 R@10

CNN based ResNet-152 26.9 65.1 79.4 24.2 36.4 39.9
VG200 22.2 57.6 73.2 19.7 34.6 39.5

VrR-VG 28.1 66.2 80.4 23.2 37.2 40.9
BU-VG 27.0 65.4 80.6 23.1 37.0 40.7

GCN based VG200 ∧ VrR-VG 29.3 67.6 81.9 23.4 37.4 41.0
VG200 ∧ BU-VG 29.4 68.7 82.8 24.1 37.5 41.1

VrR-VG ∧ BU-VG 27.9 70.5 83.2 23.7 37.7 41.4
VG200 ∧ VrR-VG ∧ BU-VG 27.2 70.0 82.4 24.7 37.7 41.0

queries for which the correct item is retrieved in
the closest K points to the query in the embedding
space. We adopt R@1, R@5, R@10 metrics, as
used in (Faghri et al., 2017).

First, to understand the effectiveness of scene
graph based approach, we compare graph based
method (GCN based) to CNN based model (Resnet-
152). ResNet-152 trains the whole CNN networks,
starting from pretrained model parameters. Here,
we note that graph based method shows superior
performance than the CNN based model, even
though the graph based model exploits the simple
two-layer graph convolution operations.

Second, we evaluate our proposed method with
various combinations of VG200, VrR-VG and
BottomUp-VG. The results show that integrated
scene graph generally works better than default
scene graph. The overall quantitative results for
image-caption retrieval are presented in Table 2.

5 Conclusion

In this paper, we present a simple and efficient
method to integrate multiple visual semantic knowl-
edge into general scene graph. With a large-scale

lexical database WordNet and IoU, the ESA aligns
the entity labels in scene graphs generated from
each dataset. The integrated scene graph has richer
information and is less biased. To evaluate our pro-
posal, we conduct the image-caption retrieval task
as a down-stream task and show better performance
than each scene graph. For future work, we plan to
integrate more diverse visual semantic knowledge
such as Human-object interaction (Gkioxari et al.,
2018).

Acknowledgments

This work was partly supported by the Institute
for Information and Communications Technology
Promotion (2015-0-00310-SW.StarLab, 2017-0-
01772-VTT, 2018-0-00622-RMI, 2019-0-01367-
BabyMind) and Korea Institute for Advancement
Technology (P0006720-GENKO) grant funded by
the Korea government.

References
Peter Anderson, Xiaodong He, Chris Buehler, Damien

Teney, Mark Johnson, Stephen Gould, and Lei
Zhang. 2018. Bottom-up and top-down attention for



11

Figure 3: Qualitative results for our Entity Synset Alignment(ESA) method with Top 20 relations. Each scene
graph (c),(d),(e) generated from inference models are combined into an integrated scene graph (b) for an image
(a).

image captioning and visual question answering. In
CVPR.

Fartash Faghri, David J Fleet, Jamie Ryan Kiros,
and Sanja Fidler. 2017. Vse++: Improving visual-
semantic embeddings with hard negatives. arXiv
preprint arXiv:1707.05612.

Georgia Gkioxari, Ross Girshick, Piotr Dollár, and
Kaiming He. 2018. Detecting and recognizing
human-object interactions. In Proceedings of the
IEEE Conference on Computer Vision and Pattern
Recognition, pages 8359–8367.

Thomas N Kipf and Max Welling. 2016. Semi-
supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907.

Ryan Kiros, Ruslan Salakhutdinov, and Richard S
Zemel. 2014. Unifying visual-semantic embeddings
with multimodal neural language models. arXiv
preprint arXiv:1411.2539.

Ranjay Krishna, Yuke Zhu, Oliver Groth, Justin John-
son, Kenji Hata, Joshua Kravitz, Stephanie Chen,
Yannis Kalantidis, Li-Jia Li, David A Shamma,
et al. 2017. Visual genome: Connecting language
and vision using crowdsourced dense image anno-
tations. International Journal of Computer Vision,
123(1):32–73.

Yuanzhi Liang, Yalong Bai, Wei Zhang, Xueming Qian,
Li Zhu, and Tao Mei. 2019. Vrr-vg: Refocusing
visually-relevant relationships. In Proceedings of
the IEEE International Conference on Computer Vi-
sion, pages 10403–10412.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James
Hays, Pietro Perona, Deva Ramanan, Piotr Dollár,
and C Lawrence Zitnick. 2014. Microsoft coco:
Common objects in context. In European confer-
ence on computer vision, pages 740–755. Springer.

Yankai Lin, Zhiyuan Liu, Maosong Sun, Yang Liu,
and Xuan Zhu. 2015. Learning entity and relation
embeddings for knowledge graph completion. In
Twenty-ninth AAAI conference on artificial intelli-
gence.

Nils Reimers and Iryna Gurevych. 2019. Sentence-
bert: Sentence embeddings using siamese bert-
networks. arXiv preprint arXiv:1908.10084.

Karen Simonyan and Andrew Zisserman. 2014. Very
deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556.

Danfei Xu, Yuke Zhu, Christopher B Choy, and Li Fei-
Fei. 2017. Scene graph generation by iterative mes-
sage passing. In Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition,
pages 5410–5419.

Rowan Zellers, Mark Yatskar, Sam Thomson, and
Yejin Choi. 2018. Neural motifs: Scene graph pars-
ing with global context. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recog-
nition, pages 5831–5840.


