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1 Description

Open-domain question answering (QA), the task
of answering questions using a large collection of
documents of diversified topics, has been a long-
standing problem in NLP, information retrieval (IR)
and related fields (Voorhees et al., 1999; Moldovan
et al., 2000; Brill et al., 2002; Ferrucci et al.,
2010). Traditional QA systems were usually con-
structed as a pipeline, consisting of many differ-
ent components such as question processing, doc-
ument/passage retrieval, and answer processing.
With the rapid development of neural reading com-
prehension (Chen, 2018), modern open-domain QA
systems have been restructured by combining tradi-
tional IR techniques and neural reading comprehen-
sion models (Chen et al., 2017; Yang et al., 2019;
Min et al., 2019a) or even implemented in a fully
end-to-end fashion (Lee et al., 2019; Seo et al.,
2019; Guu et al., 2020; Roberts et al., 2020). In
this tutorial, we aim to provide a comprehensive
and coherent overview of cutting-edge research in
this direction.1

We will start by first giving a brief background
of open-domain question answering, discussing the
basic setup and core technical challenges of the
research problem. We aim to give the audience a
historical view of how the field has advanced in
the past several decades, from highly-modulated
pipeline systems in the early days, to modern end-
to-end training of deep neural networks in the
present.

We will then discuss modern datasets proposed
for open-domain QA (Voorhees et al., 1999; Berant
et al., 2013; Rajpurkar et al., 2016; Joshi et al.,
2017; Dhingra et al., 2017; Dunn et al., 2017;
Kwiatkowski et al., 2019), as well as common eval-
uation metrics and benchmarks. We plan to provide

1All the tutorial materials will be released at
https://github.com/danqi/acl2020-openqa-tutorial.

a detailed discussion on available datasets — their
collection methodology and properties — as well
as insights on how these datasets should be viewed
in the context of open-domain QA.

Next, the focus will shift to cutting-edge mod-
els proposed for open-domain QA, which is also
the central part of this tutorial. We divide exist-
ing models into three main categories: Two-stage
retriever-reader approaches, Dense retriever and
end-to-end training, and Retriever-free approaches.
We will present the logical elements behind dif-
ferent sorts of models and discuss their pros and
cons.

Two-stage retriever-reader approaches. We
will start by discussing two-stage retriever-reader
frameworks for open-domain QA, pioneered by
Chen et al. (2017): a retriever component finding
documents that (might) contain an answer from a
large collection of documents, followed by a reader
component finding the answer in a given paragraph
or a document. In this category, the retriever com-
ponent is usually implemented by traditional sparse
vector space methods, such as TF-IDF or BM25
and the reader is implemented by neural reading
comprehension models. We will further discuss
several challenges and techniques arising in this
area, including multi-passage training (Clark and
Gardner, 2018; Wang et al., 2019), passage rerank-
ing (Wang et al., 2018; Nogueira and Cho, 2019),
and denoising distantly-supervised data (Lin et al.,
2018).

Dense retriever and end-to-end training. The
first category mainly employs a non-machine learn-
ing model for the retrieval stage. The second cate-
gory will focus on how to learn the retriever com-
ponent by replacing traditional IR methods with
dense representations, as well as joint training of
both components. Learning and searching in dense
vector space is challenging, as it usually involves

https://github.com/danqi/acl2020-openqa-tutorial
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an enormous search space (easily ranging from mil-
lions to billions of documents). We will discuss in
depth how this was achieved by existing models,
including novel pre-training methods (Lee et al.,
2019; Guu et al., 2020), carefully-designed learn-
ing algorithms (Karpukhin et al., 2020) or a hybrid
approach using both dense and sparse representa-
tions (Seo et al., 2019).

Retriever-free approaches. The third category,
which is a recent emerging trend, only relies
on large-scale pre-trained models (Radford et al.,
2018; Devlin et al., 2018; Liu et al., 2019) as im-
plicit knowledge bases and doesn’t require access
to text data during inference time. These pre-
trained models will be used directly to answer ques-
tions, in a zero-shot manner (Radford et al., 2019;
Raffel et al., 2019) or fine-tuned using question-
answer pairs. As these methods don’t need a re-
triever component, we call them Retriever-free ap-
proaches.

Up to this point, our tutorial has mainly focused
on textual question answering. At the end, we
also plan to discuss some hybrid approaches for
answering open-domain questions using both text
and large knowledge bases, such as Freebase (Bol-
lacker et al., 2008) and Wikidata (Vrandečić and
Krötzsch, 2014), and give a critical review on how
structured data complements the information from
unstructured text. The approaches include (1) how
to leverage structured data to guide the retriever or
reader stage of existing textual QA systems (Asai
et al., 2020; Min et al., 2019b), or (2) how to syn-
thesize information from these two heterogeneous
sources and build effective QA models on the com-
bined information (Sun et al., 2018, 2019; Xiong
et al., 2019).

Finally, we will discuss some important ques-
tions, including (1) How much progress have we
made compared to the QA systems developed in
the last decade? (2) What are the main challenges
and limitations of current approaches? (3) How
to trade off the efficiency (computational time and
memory requirements) and accuracy in the deep
learning era? We hope our tutorial will not only
serve as a useful resource for the audience to ef-
ficiently acquire up-to-date knowledge, but also
provide new perspectives to stimulate the advances
of open-domain QA research in the next phase.

Prerequisites The tutorial will be accessible to
anyone who has the basic knowledge of machine

learning and natural language processing. The tu-
torial will target both NLP researchers/students in
academia and NLP practitioners in industry.

2 Tutorial Outline

The intended duration of this tutorial is 3.5 hours,
including a half an hour break.

1. Introduction

2. Problem definition & motivation

3. A history of open-domain (textual) QA

(a) Early QA systems
(b) TREC QA competitions
(c) IBM’s DeepQA project
(d) More recent developments: 2017-2020

4. Datasets & evaluation

(a) Reading comprehension vs QA datasets
(b) Categorization of QA datasets
(c) Evaluation metrics

5. Two-stage retriever-reader approaches

(a) General framework
(b) Multi-passage training
(c) Passage reranking
(d) Denoising distantly supervised data

6. Dense retriever and end-to-end training

(a) Dense passage retrieval
(b) Joint training of retriever and reader
(c) Dense-sparse phrase indexing

7. Retriever-free approaches

8. Open-domain QA using KBs and text

(a) Improving retriever and reader using
structured KBs

(b) Answering questions over combined
KBs and text

9. Open problems and future directions
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