
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 23–26
July 5, 2020. c©2020 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17

23

Multi-modal Information Extraction from Text, Semi-structured, and
Tabular Data on the Web

Xin Luna Dong
Amazon

lunadong@amazon.com

Hannaneh Hajishirzi
University of Washington

Allen Institute for AI
hannaneh@washington.edu

Colin Lockard
University of Washington

lockardc@cs.washington.edu

Prashant Shiralkar
Amazon

shiralp@amazon.com

Abstract

How do we surface the large amount of infor-
mation present in HTML documents on the
Web, from news articles to Rotten Tomatoes
pages to tables of sports scores? Such informa-
tion can enable a variety of applications includ-
ing knowledge base construction, question an-
swering, recommendation, and more. In this
tutorial, we present approaches for informa-
tion extraction (IE) from Web data that can
be differentiated along two key dimensions:
1) the diversity in data modality that is lever-
aged, e.g. text, visual, XML/HTML, and 2)
the thrust to develop scalable approaches with
zero to limited human supervision.

1 Description

Motivation: The World Wide Web contains vast
quantities of textual information in several forms:
unstructured text, template-based semi-structured
webpages (which present data in key-value pairs
and lists), and tables. Methods for extracting in-
formation from these sources and converting it to
a structured form have been a target of research
from the natural language processing (NLP), data
mining, and database communities. While these
researchers have largely separated extraction from
web data into different problems based on the
modality of the data, they have faced similar prob-
lems such as learning with limited labeled data,
defining (or avoiding defining) ontologies, making
use of prior knowledge, and scaling solutions to
deal with the size of the Web.

In this tutorial we take a holistic view toward
information extraction, exploring the commonali-
ties in the challenges and solutions developed to
address these different forms of text. We will ex-
plore the approaches targeted at unstructured text
that largely rely on learning syntactic or seman-
tic textual patterns, approaches targeted at semi-
structured documents that learn to identify struc-

tural patterns in the template, and approaches tar-
geting web tables which rely heavily on entity link-
ing and type information.

While these different data modalities have
largely been considered separately in the past, re-
cent research has started taking a more inclusive ap-
proach toward textual extraction, in which the mul-
tiple signals offered by textual, layout, and visual
clues are combined into a single extraction model
made possible by new deep learning approaches.
At the same time, trends within purely textual ex-
traction have shifted toward full-document under-
standing rather than considering sentences as inde-
pendent units. With this in mind, it is worth consid-
ering the information extraction problem as a whole
to motivate solutions that harness textual seman-
tics along with visual and semi-structured layout
information. We will discuss these approaches and
suggest avenues for future work.

Tutorial Content: We will start by defining un-
structured, semi-structured, and tabular text, and
discussing the challenges and opportunities that
differentiate these data sources, as well as those
they have in common. We will then provide in-
troductions to the basic models and learning algo-
rithms used in extraction from unstructured, semi-
structured, and tabular text. We will pay special
attention to methods that enable extraction to be
expanded to the scope of entity and relation types
found on the web, such as the distant supervision
and data programming paradigms of creating train-
ing data, and schema-less “OpenIE” extraction. Af-
ter introducing the separate approaches targeting
these data modalities, we will then explore research
that combines signals from textual, visual, and lay-
out information to consider all aspects of a docu-
ment.

Throughout the tutorial, we will bring together
lessons learned from the different communities in-
volved in information extraction research and will
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provide insights from industry experiences build-
ing a production knowledge graph leveraging both
unstructured and semi-structured text. Section 3
contains a full outline of planned content.

Tutorial slides are available at https://sites.
google.com/view/acl-2020-multi-modal-ie

Relevance to ACL: Information Extraction is
a core task in natural language processing, with
the web serving as a rich source of information
for constructing knowledge bases (KBs). A 2018
NAACL tutorial, “Scalable Construction and Rea-
soning of Massive Knowlege Bases” (Ren et al.,
2018), provided an overview of recent IE and KB
research. However, like most NLP research, that
tutorial focused on methods that treat text as a sim-
ple string of natural language sentences in a txt
file, while many real-world documents convey in-
formation via visual and layout relationships. A
separate line of information extraction work has
focused on learning to extract from these template-
based documents. As interest in multi-modal NLP
techniques has grown in recent years, we think the
community will be interested in a tutorial that com-
pares and contrasts these approaches and examines
recent research that brings together textual, visual,
and layout features of documents.

2 Type of the tutorial:

The tutorial will cover cutting-edge work in
both unstructured and semi-structured informa-
tion extraction, including visual and GCN-based
approaches. However, our coverage of semi-
structured and tabular IE will cover introductory
material since it is likely new to much of the NLP
community.

3 Outline

1. (30 mins) Introduction and Applications

• Knowledge Base Population
– Intro to knowledge graphs
– Applications
– Industry examples
– Importance of the long tail

• Unstructured, Semi-structured, and Tab-
ular text

– Unstructured Text
– HTML and DOM trees
– Webtables
– Template learning vs. generalization

• Schema-aligned extraction vs. OpenIE

• Common challenges, opportunities, and
key intuitions

2. (45 mins) IE from unstructured text:

• Tasks
– Named Entity Recognition
– Co-reference Resolution
– Relation Extraction
– Event Extraction

• Featurization and Modeling
– OpenTag (Zheng et al., 2018)
– DyGIE (Luan et al., 2019)

• Limited Training Data
– Distant Supervision (Mintz et al.,

2009)
– Data Programming (Ratner et al.,

2017)
• OpenIE

3. (45 mins) IE from semi-structured docu-
ments

• Supervised Wrapper Induction
– Vertex (Gulhane et al., 2011)

• Distantly Supervised approaches
– LODIE (Ciravegna et al., 2012)
– DIADEM (Furche et al., 2012)
– Ceres (Lockard et al., 2018)

• OpenIE / Schema-less approaches
– WEIR (Bronzi et al., 2013)
– OpenCeres (Lockard et al., 2019)

4. (15 mins) IE from tables

• WebTables (Cafarella et al., 2018)
• Subject detection (Venetis et al., 2011)
• Joint approaches (LimayeGirija et al.,

2010)

5. (30 mins) Multi-modal extraction

• Benefits of multi-modal extraction
– Connecting tables and text (Ibrahim

et al., 2019)
– Visual signals for keyphrase extrac-

tion (Xiong et al., 2019)
– Documents as images (Katti et al.,

2018)
– GCN-based encoders (Qian et al.,

2019; Liu et al., 2019)
• Multi-modal signals for creating training

data (Wu et al., 2018)

https://sites.google.com/view/acl-2020-multi-modal-ie
https://sites.google.com/view/acl-2020-multi-modal-ie
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• Multi-modal OpenIE

6. (15 mins) Conclusion and Open Directions

4 Prerequisites

The tutorial should be accessible to anyone with
a background in natural language processing. It
would be helpful to have a basic understanding
of classification algorithms, preferably with some
knowledge of neural network approaches, as well
as unsupervised clustering algorithms.

5 Reading list

• “Web-Scale Information Extraction With Ver-
tex”, Gulhane et al. (2011)

• “Ten Years of WebTables”, Cafarella et al.
(2018)

• “Fonduer: Knowledge Base Construction
from Richly Formatted Data”, Wu et al.
(2018)

• “Document-level N-ary Relation Extraction
with Multi-Scale Representation Learning”,
Jia et al. (2019)

• “Extraction and Integration of Partially Over-
lapping Web Sources” Bronzi et al. (2013)

• “Knowledge Vault: A Web-Scale Approach to
Probabilistic Knowledge Fusion”, Dong et al.
(2014)

• “A General Framework for Information Ex-
traction Using Dynamic Span Graphs”, Luan
et al. (2019)

• “OpenCeres: When Open Information Ex-
traction Meets the Semi-Structured Web”,
Lockard et al. (2019)

• “GraphIE: A Graph-Based Framework for In-
formation Extraction”, Qian et al. (2019)
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