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Abstract
It is well-understood that different algorithms,
training processes, and corpora produce dif-
ferent word embeddings. However, less is
known about the relation between different em-
bedding spaces, i.e. how far different sets of
embeddings deviate from each other. In this
paper, we propose a novel metric called Rel-
ative pairwise inner Product Distance (RPD)
to quantify the distance between different sets
of word embeddings. This metric has a uni-
fied scale for comparing different sets of word
embeddings. Based on the properties of RPD,
we study the relations of word embeddings of
different algorithms systematically, and inves-
tigate the influence of different training pro-
cesses and corpora. The results shed light on
the poorly understood word embeddings and
justify RPD as a measure of the distance of em-
bedding spaces.

1 Introduction

Word embeddings are important in Natural lan-
guage processing (NLP) which map words into a
low-dimensional vector space. Many works have
been proposed to generate word embeddings (Mnih
and Kavukcuoglu, 2013; Mikolov et al., 2013; Pen-
nington et al., 2014; Levy and Goldberg, 2014a;
Bojanowski et al., 2017; Devlin et al., 2019).

With many different sets of word embeddings
produced by different algorithms and corpora, it is
interesting to investigate the relationships between
these sets of word embeddings. Intrinsically, this
would help us better understand word embeddings
(Levy et al., 2015). Practically, knowing the rela-
tionship between different sets of word embeddings
helps us build better word meta-embeddings (Yin
and Schütze, 2016), reduce biases in word embed-
dings (Bolukbasi et al., 2016), pick better hyper-
parameters (Yin and Shen, 2018), and choose suit-
able algorithms in different scenarios (Kozlowski
et al., 2019).

To study the relationship between different em-
bedding spaces systematically, we propose RPD
as a measure of the distance between different sets
of embeddings. We derive statistical properties of
RPD including its asymptotic upper bound and nor-
mality under the independence condition. We also
provide a geometric interpretation of RPD. Further-
more, we show that RPD is strongly correlated with
the performance of word embeddings measured by
intrinsic metrics, such as comparing semantic simi-
larity and evaluating analogies.

With the help of RPD, we study the rela-
tions among several popular embedding meth-
ods, including GloVe (Pennington et al., 2014),
SGNS1 (Mikolov et al., 2013), Singular Value De-
composition (SVD) factorization of PMI matrix,
and SVD factorization of log count (LC) matrix.
Results show that these methods are statistically
correlated, which suggests that there is an unified
theory behind these methods.

Additionally, we analyze the influence of train-
ing processes, i.e. hyperparameters (negative sam-
pling), random initialization; and the influence of
corpora towards word embeddings. Our findings
include the fact that different training corpora result
in significantly different GloVe embeddings, and
that the main difference between embedding spaces
comes from the algorithms although hyperparam-
eters also have certain influence. Those findings
not only provide some interesting insights of word
embeddings but also fit nicely with our intuition,
which further proves RPD as a suitable measure to
quantify the relationship between different sets of
word embeddings.

2 Background

Before introducing RPD, we review the theory be-
hind some static word embedding methods, and
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discuss some previous works investigating the rela-
tionship between embedding spaces.

2.1 Word Embedding Models

We consider the following four word embedding
models: SGNS, GloVe, SVDPMI, SVDLC. SGNS
and GloVe are two widely used embedding meth-
ods, while SVDPMI and SVDLC are matrix fac-
torization methods which are intrinsically related
to SGNS and GloVe (Levy and Goldberg, 2014b;
Levy et al., 2015; Yin and Shen, 2018).

The embedding of all the words forms an em-
bedding matrix E ∈ Rn×d, where the d here is the
dimension of each word vector and n is the size of
the vocabulary.

SGNS maximizes a likelihood function for word
and context pairs that occur in the dataset and min-
imizes it for randomly sampled unobserved pairs,
i.e. negative samples (NS). We denote the method
with k NS as SGNSk.

GloVe factorizes the log-count matrix shifted by
the entire vocabulary’s bias term. The bias here are
parameters learned stochastically with an objective
weighted according to the frequency of words.

SVDPMI/LC SVD factorizes a signal matrix
M = UDV T , which aims at reducing the dimen-
sions of the cooccurrence matrix. The resulting

embedding is E = U:,1:dD
1
2
1:d,1:d , where d is the

dimension of word embeddings. We denote the
method as SVDPMI, if the signal is the PMI matrix,
and SVDLC if the signal is the log count matrix.

Although the scope of this paper focuses on stan-
dard word embeddings that were learned at the
word level, RPD could be adapted to analyze em-
beddings that were learned from word pieces, for
example, fastText (Bojanowski et al., 2017) and
contextualized embeddings (Peters et al., 2018; De-
vlin et al., 2019).

2.2 Relationship Between Embedding Spaces

Levy and Goldberg (2014b) provide a good anal-
ogy between SGNS and SVDPMI. They suggest
that SGNS is essentially factorizing the pointwise
mutual information (PMI) matrix. However, their
analogy is based on the assumption of no dimen-
sion constraint in SGNS, which is not possible in
practice. Furthermore, their analogy is not suit-
able for analyzing methods besides SGNS and PMI
models since their theoretical derivation relies on
the specific objective of SGNS.

Yin and Shen (2018) provide a way to select

the best dimension of word embeddings for spe-
cific tasks by exploring the relations of embed-
ding spaces of different dimension. They introduce
Pairwise Inner Product (PIP) loss (Yin and Shen,
2018), an unitary-invariant metric for measuring
word embeddings’ distance (Smith et al., 2017).
The unitary-invariance of word embeddings states
that two embedding vector spaces are equivalent if
one can be obtained from another by multiplying a
unitary matrix. However, PIP loss is not suitable for
comparing numerically across embedding spaces
since PIP loss has different energy for different
embedding spaces.

3 Quantifying Distances between
Embeddings

In this section, we describe the definition of RPD
and its properties, which make RPD a suitable
and effective method to quantify the distance be-
tween embedding spaces. Note that two embedding
spaces do not necessarily have the same vocabulary
for calculating the RPD.

3.1 RPD
For the following discussion, we always use the
Frobenius norm as the norm of matrices.

Definition 1. (RPD) The RPD between embedding
matrices E1 and E2 is defined as follows:

RPD(E1, E2) =
1

2

‖Ẽ1Ẽ1
T − Ẽ2Ẽ2

T ‖2

‖Ẽ1Ẽ1
T ‖‖Ẽ2Ẽ2

T ‖
.

where Ẽ comes from dividing each entry of E
by its standard deviation. For convenience, we let
Ẽ ≡ E for the following discussion.

The numerator of RPD respects the unitary-
invariant property of word embeddings, which
means that unitary transformation (i.e. rotation)
preserves the relative geometry of an embedding
space. The denominator is a normalization, which
allows us to regard the whole embedding matrix as
an integrated part (i.e. RPD does not correlate with
the number of words of embedding spaces). This
step makes comparisons across methods possible.

3.2 Statistical Properties of RPD
We assume the widely used isotropic assump-
tion (Arora et al., 2016) that the ensemble of word
vectors consists of i.i.d draws generated by v = sv̂,
where v̂ is from the spherical Gaussian distribution,
and s is a scalar random variable. In our case, we
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can assume each entry of embedding comes from a
standard normal distribution E: vij ∼ N (0, 1).

Note that the assumption may not always work
in practice, especially for other embeddings such
as contextualized embeddings. However, under
the isotropic conditions, the statistical properties
derived are intuitively and empirically plausible.
Besides, those properties serve to better interpret
the value of RPD alone. Since RPD, in many cases,
is used for comparison, we should be comfortable
with the assumption.
Upper bound We estimate the asymptotic upper
bound of RPD. By factorizing the numerator of
RPD, we get (1).

RPD(E1, E2) =
1

2

‖E1E
T
1 ‖2 + ‖E2E

T
2 ‖2

‖E1ET1 ‖‖E2ET2 ‖

− 〈E1E
T
1 , E2E

T
2 〉

‖E1ET1 ‖‖E2ET2 ‖
(1)

Applying the Cauchy-Schwarz inequality to the last
term of (1)2, we have the following estimation.

2RPD(E1, E2) ≤
‖E1E

T
1 ‖2 + ‖E2E

T
2 ‖2

‖E1ET1 ‖‖E2ET2 ‖

=
‖E1E

T
1 ‖

‖E2ET2 ‖
+
‖E2E

T
2 ‖

‖E1ET1 ‖

(2)

By the law of large numbers, we can prove that
limn→∞ ‖EET ‖ = n

√
d (Appendix A). Then,

we can tell from (2) that RPD is bounded by 1
when n → ∞. In practice, the number of words
n is large enough to let the maximum of RPD
stay around 1, which means RPD is well-defined
numerically.

Normality For RPD(E1, E2), ifE1 is independent
of E2, we can prove that RPD distributes normally
from both an empirical and a theoretical perspec-
tive. Theoretically, by applying the central limit
theorem to the numerator and the law of large num-
bers to the denominator of RPD, we can get the
normality of RPD under the condition n → ∞,
d
n = c, where c remains constant (Appendix B).
Empirically, we can use Monte Carlo simulation to
show the normality and estimate the mean and vari-
ance of RPD (Appendix C). With the help of RPD,
we can perform hypothesis test (z-test) to evaluate
the independence of two embedding spaces.

2The inner product of matrix A and B is defined as
〈A,B〉 = trace(ATB)

3.3 Geometric Interpretation of RPD
From equation (1), we can tell that the first term
goes to 1 when n→∞. So we only need to discuss
the second term.

〈E1E
T
1 , E2E

T
2 〉

‖E1ET1 ‖‖E2ET2 ‖

For the ith row in EET , we have vector v̂i =
(viv

T
1 , viv

T
2 , ..., viv

T
n ), where vi is the word i’s vec-

tor in embedding E, n is the number of words. We
can interpret v̂i as another representation of word i
projected onto the space spanned by v1, v2, ..., vn.
So for convenience, we denote Ê = EET with its
ith row as v̂i.

We can prove that limn→∞ RPD(E1, E2) =
1 − 1

n

∑n
i=1 cos(θi). The θi ∈ (0, π2 ) is the angle

between v̂(1)i (ith row vector of Ê1) and v̂(2)i (ith

row vector of Ê2) (Appendix D). Therefore, we can
understand the value of RPD from the perspective
of cosine similarity between vectors.

Figure 1: The plot shows the difference in performance
as a function of RPD score. The x-axis for each point
represents the RPD between word embeddings pro-
duced by SGNS (with NS 15, 5, 1), GloVe, SVDPMI,
SVDLC and word embeddings produced by SGNS25.
The y-axis for each point represents the sum of abso-
lute variation in the performance (word similarity and
word analogy).

3.4 RPD and Performance
As Yin and Shen (2018) discussed, usability of
word embeddings, such as using them to solve anal-
ogy and relatedness tasks, is important to practition-
ers. Through applying different sets of word em-
beddings to word similarity and word analogy tasks
(Mikolov et al., 2013), we study the relationship
between RPD and word embeddings’ performance.
Specifically, we set the word embeddings produced
by SGNS with 25 NS as a starting point and use
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other word embeddings, for example, GloVe as an
end point. Then we get a two dimensional point
with x as their RPD, y as their absolute perfor-
mance change in word similarity3 and analogy4

tasks.
By putting those points in Figure 1, we can tell

in a certain range of RPD, the larger RPD between
the two sets of word embedding means the bigger
gap in their absolute performance. Intuitively, RPD
is strongly related to cosine similarity, which is the
measure of word similarity. RPD also shares the
same property of PIP loss, where a small RPD leads
to a small difference in relatedness and analogy
tasks. We obtain similar results when the starting
point is a different embedding space.

Note that this section serves to demonstrate the
performance (at least in word similarity and anal-
ogy tasks) variation of different embedding spaces
is correlated with their RPD. While we are aware
of the relevance of other downstream tasks, we do
not explore further since our focus lies in investi-
gating the intrinsic geometry relation of embedding
spaces.

4 Experiment

The following experiments serve to apply RPD
to explore some questions of interest and further
demonstrate that RPD is suitable for investigat-
ing the relations between embedding spaces. We
leave applying RPD to help improve specific NLP
tasks to future research. For example, RPD could
be used for combining different embeddings to-
gether, which could help us produce better meta-
embeddings (Kiela et al., 2018).

4.1 Setup

If not explicitly stated, the experiments are per-
formed on Text8 corpus (Mahoney, 2011), a stan-
dard benchmark corpus used for various natural
language tasks (Yin and Shen, 2018). For all meth-
ods we experiment, we train 300 dimension embed-
dings, with window size of 10, and normalize the
embedding matrices with their standard deviation5.
The default NS for SGNS is 15.

3Our word similarity task can be found here: https:
//aclweb.org/aclwiki/WordSimilarity-353_
Test_Collection_(State_of_the_art)

4Our word analogy task can be found here:
https://aclweb.org/aclwiki/Google_
analogy_test_set_(State_of_the_art)

5The code can be found on Bitbucket: https://
bitbucket.org/omerlevy/hyperwords

Methods GloVe SVDPMI SVDLC

SGNS25 0.792 0.609 0.847
SGNS15 0.773 0.594 0.837
SGNS5 0.725 0.550 0.805
SGNS1 0.719 0.511 0.799

Table 1: RPDs of SGNS vs other methods

4.2 Different Algorithms Produce Different
Embeddings

Dependence of SGNS and SVDPMI

As discussed in the introduction, the relation-
ship between embeddings trained with SGNS and
SVDPMI remains controversial (Arora et al., 2016;
Mimno and Thompson, 2017). We use the results
we obtain in Section 3.2 to test their dependence.
For example, if one believes that E1 trained with
SGNS and E2 trained with SVDPMI have no rela-
tionship, then the null hypothesis H0 would be: E1

and E2 are independent.
UnderH0, RPD(E1, E2) asymptotically follows
N (µ, σ2). Then the test statistic z is calculated as
follows.

z =
RPD(E1, E2)− µ

σ

In our case, we estimate µ = 0.953 and
σ = 0.001 with Monte Carlo simulation
with randomly initialized embeddings. Take
RPD(ESGNS1 ,ESVDPMI) = 0.511 from Table 1 as
an example, the statistic z = 442, which means the
p-value� 0.01. Thus, we can confidently reject
H0. Notice that we can test any two sets of word
embeddings with this method. It is not hard to see
that no pair of word embeddings in Table 1 are
independent, which suggests that there exists an
unified theory behind these methods.

SGNS is Closest to SVDPMI

With the help of RPD, it is also interesting to in-
vestigate distances between embeddings produced
by different methods. Here, we calculate the RPDs
among SGNS (with negative sampling 25, 15, 5,
1), GloVe, SVDPMI, SVDLC.

Table 1 shows the RPDs between SGNS with dif-
ferent negative sampling numbers and other meth-
ods. From the table, we can tell that SGNS stays
close to SVDPMI, which confirms Levy and Gold-
berg (2014b)’s theory.

 https://aclweb.org/aclwiki/WordSimilarity-353_Test_Collection_(State_of_the_art)
 https://aclweb.org/aclwiki/WordSimilarity-353_Test_Collection_(State_of_the_art)
 https://aclweb.org/aclwiki/WordSimilarity-353_Test_Collection_(State_of_the_art)
 https://aclweb.org/aclwiki/Google_analogy_test_set_(State_of_the_art)
 https://aclweb.org/aclwiki/Google_analogy_test_set_(State_of_the_art)
https://bitbucket.org/omerlevy/hyperwords
https://bitbucket.org/omerlevy/hyperwords
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Figure 2: Plot of different methods. We create the plot
by fixing the position of SVDLC and SVDPMI. We then
derive the position of other word embeddings accord-
ing to their RPD with existing points on the plot.

Hyper-parameters Have Influence on
Embeddings
From Table 1, an interesting phenomenon is that
SGNS becomes closer to other methods with the
decrease of negative samples, which suggests that
negative sampling is one of the factors driving
SGNS away from matrix factorization methods.

With RPDs between different sets of word em-
beddings, we plot the embeddings in 2D by treat-
ing each embedding space as a single point. We
first fix point SVDPMI and SVDLC, then we draw
other points according to their RPDs with the other
methods. Figure 2 helps us see how negative sam-
pling affects the embedding intuitively. Increasing
the number of negative samples pulls SGNS away
from SVDPMI. Combining Table 1 and Figure 2,
we can tell that although the hyper-parameters can
influence the embeddings to some extent, the main
difference comes from the algorithms.

4.3 Different Initializations Barely Influence
Embeddings

Random initializations produce different embed-
dings with the same algorithms and hyperparame-
ters. While those embeddings usually get similar
performance on the downstream tasks, people are
still concerned about their effects. We investigate
the influence of random initializations for GloVe
and SGNS.

We train the embedding in the same setting mul-
tiple times and get the average RPDs for each
method. For SGNS, the average RPDs of ran-
dom initialization is 0.027. For GloVe, the value is
0.059.

We can tell that different random initializations
produce essentially the same embeddings. Neither

SGNS GloVe

Text8-WMT14 0.168 0.686
Text8-TED 0.119 0.758
WMT14-TED 0.175 0.716

Table 2: RPDs between same method trained from dif-
ferent corpora

SGNS or GloVe has a significant RPD in differ-
ent initializations, which suggests random initial-
ization has little influence over word embeddings’
performance (Section 3.4). However, SGNS seems
to be more stable in this setting.

4.4 Different Corpora Produce Different
Embeddings

It is well known that different corpora produce dif-
ferent word embeddings. However, it is hard for
us to tell how different they are and whether the
difference influences downstream applications (An-
toniak and Mimno, 2018). Knowing this would
help researchers choose the algorithms in specific
scenarios, for example, evolving semantic discov-
ery (Yao et al., 2018; Kozlowski et al., 2019). They
focus on the semantic evolution of words, but cor-
pora are different in different time scales. Their
methods use word embeddings to study semantic
shift, which might be influenced by the word em-
beddings being trained on different corpora, thus
getting unreliable results. In this case, it would
be important to chose an algorithm less prone to
influences by differences in corpora.

We train word embeddings using each of
text8 (Wikipedia domain, 25097 unique words),
WMT14 news crawl6 (Newswire domain, 24359
unique words), TED speech7 (Speech domain,
7389 unique words). We compute RPD on the
intersections of their vocabulary

From Table 2, we can tell that SGNS is consis-
tently more stable than GloVe in different domains.
We suggest that this is because GloVe trains the
embedding with co-occurrence matrix, which gets
influenced more by the corpus.

5 Discussion

While our work investigates some interesting prob-
lems about word embeddings, there are many other

6http://www.statmt.org/wmt14/
7https://workshop2016.iwslt.org/

http://www.statmt.org/wmt14/
https://workshop2016.iwslt.org/
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problems about embeddings that can be demon-
strated with the help of RPD. We discuss some of
them as follows.

5.1 RPD and Crosslingual Word Embeddings
Artetxe et al. (2018) provide a framework to ob-
tain bilingual embeddings, whose the core step of
the framework is an orthogonal transformation and
other existing methods can be seen as its varia-
tions. The framework proposes to train monolin-
gual embeddings separately and then map them
into a shared-embedding space with linear transfor-
mation.

While linear transformation is no guarantee for
the alignment of two embedding spaces from dif-
ferent languages, RPD could potentially serve as a
way to indicate how different language pairs benefit
from mapping them with an orthogonal transfor-
mation. Since RPD is unitary-invariant, we can
calculate RPD between embedding spaces from
different language pairs. The smaller RPD is, the
better the framework could align this two language
embedding spaces.

5.2 RPD and Post-Processing Word
Embeddings

Post-processing word embeddings can be useful
in many ways. For example, Vulić et al. (2018)
retrofit word embeddings with external linguistic
resources, such as WordNet to obtain better embed-
dings; Rothe and Schütze (2016) decompose em-
bedding space to get better performance at special-
ized domains; and Mu and Viswanath (2018) obtain
stronger embeddings by eliminating the common
mean vector and a few top dominating directions.

RPD could serve as a metric to evaluate how the
embedding space changes intrinsically after post-
processing.

5.3 RPD and Contextualized Word
Embeddings

Contextualized embeddings are popular NLP tech-
niques which significantly improve a wide range
of NLP tasks (Bowman et al., 2015; Rajpurkar
et al., 2018). To understand why contextualized em-
beddings are beneficial to those NLP tasks, many
works investigate the the nature of syntactic (Liu
et al., 2019), semantic (Liu et al., 2019), and com-
monsense knowledge (Zhou et al., 2019) contained
in such representations.

However, we still know little about the vector
space of contextualized embeddings and their rela-

tionship with traditional word embeddings, which
is important to further apply contextualized embed-
dings in various scenarios (Lin and Smith, 2019).
RPD can potentially serve to help us better un-
derstand contextualized embeddings in future re-
search.

6 Conclusion

In this paper, we propose RPD, a metric to quantify
the distance between embedding spaces (i.e differ-
ent sets of word embeddings). With the help of
RPD and its properties, we verify some intuitions
and answer some questions. Justifying RPD theo-
retically and empirically, we believe RPD can offer
us a new perspective to understand and compare
word embeddings.
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A Appendix A. Limitation of ||EET ||

As discuss before, in our case, we can assume
i.i.d. vij ∼ N (0, 1), where vij is the jth entry in
the ith word vector vi of E.

||EET || = n

√∑n
i,j(viv

T
j )

2

n2

= n

√∑n
i 6=j(viv

T
j )

2

n2
+

∑n
i=j(viv

T
j )

2

n2

(3)

By the assumption, we know that vivTj identi-
cally distributes for any i 6= j, 1 ≥ i ≤ n, 1 ≥
j ≤ n. By applying the law of large numbers,

the term
∑n

i 6=j(viv
T
j )2

n2 goes to E((viv
T
j )

2) as n goes

to ∞. The term
∑n

i=j(viv
T
j )2

n2 goes to zero as n
goes to ∞. Then, we know that ||EET || →
n
√
E((vivTj )

2), n→∞.

We only need to calculate E((viv
T
j )

2).

E((viv
T
j )

2) = V ar(viv
T
j ) + (E(viv

T
j ))

2 (4)

Simple calculation shows that V ar(vivTj ) = d,
E(viv

T
j ) = 0. Then E((viv

T
j )

2) = d, d is
the dimension of word embedding here. Thus,
||EET || → n

√
d, n→∞.

B Appendix B. Normality of RPD

Let’s review the form of RPD.

RPD(E1, E2) =
1

2

||E1E
T
1 − E2E

T
2 ||2

||E1ET1 ||||E2ET2 ||
(5)

As we discuss in A, ||E1ET
1 ||||E2ET

2 ||
n2 → d, as

n → ∞. We only have to prove ||E1ET
1 −E2ET

2 ||2
n2

distributes normally. The key is how to apply the
central limit theorem (CLT).

We denote as follows.

Hn =
||E1E

T
1 − E2E

T
2 ||2

n2

=
||E1E

T
1 ||2 + ||E2E

T
2 ||2 − 2〈E1E

T
1 , E2E

T
2 〉

n2
(6)

Notice that the term 〈E1E
T
1 , E2E

T
2 〉 does not

contribute to the variance if we analyze the sec-
ond moment of the numerator. So it is equivalent

to prove Tn =
||E1ET

1 ||2+||E2ET
2 ||2

n2 distributes nor-
mally.

We project the Tn to
Sn =

∑n
i,j E(Tn|vij)− (n− 1)E(Tn)

Simple calculation would show that V ar(Tn)V ar(Sn)
→

1, n → ∞, nd = c. Then by the Hajek projection
theorem, we get Tn has the same distribution as
Sn. It is not hard to see that each random variable
E(Tn|vij) in Sn is independent of others. This al-
lows us to apply CLT to Sn and get Sn ∼ N (µ, σ2).
Thus, Hn ∼ N (µ, σ2).

C Appendix C. Monte Carlo Simulation

Here is how we perform Monte Carlo simulation.
We independently produce two matrix E1, E2 ∈
Rn×d with each entry i.i.d as N (0, 1). Then we
calculate RPD(E1, E2) and get the first RPD value.
Repeat the process for 5000 times, we get a vector
of RPDs. Drawing the histogram of this vector
yields a normal distribution and we can estimate the
mean and variance of the distribution by calculating
the mean and variance of the vector of RPDs.

D Appendix D. Geometry Interpretation
of RPD

Now we consider a general case, where Ê1 and Ê2

are embeddings with n words.
v
(1)
1

v
(1)
2
...

v
(1)
n

 ,

v
(2)
1

v
(2)
2
...

v
(2)
n


Then

〈 Ê1, Ê2〉
||Ê1||||Ê2||

=

∑n
i=1 v

(1)T
i v

(2)
i

||Ê1||||Ê2||

=
n∑
i=1

v
(1)T
i v

(2)
i

||v1i ||||v
(2)
i ||
||v1i ||||v

(2)
i ||

||Ê1||||Ê2||

(7)

We denote ||v1i ||||v
(2)
i ||

||Ê1||||Ê2||
as wi,

v
(1)T
i v

(2)
i

||v1i ||||v
(2)
i ||

as

cos(θi)
It is not hard to see that the wi ≈ 1

n , when n
is large enough. Then we get RPD(E1, E2) ≈
1−

∑n
i=1 cos(θi)

n . Considering the isotropic assump-
tion again, another observation is that the cos(θi)
distributes normally.


