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Abstract

Deep neural network based machine learning
models are shown to perform poorly on un-
seen or out-of-domain examples by numerous
recent studies. Transfer learning aims to avoid
overfitting and to improve generalizability by
leveraging the information obtained from mul-
tiple tasks. Yet, the benefits of transfer learn-
ing depend largely on task selection and find-
ing the right method of sharing. In this the-
sis, we hypothesize that current deep neural
network based transfer learning models do not
achieve their fullest potential for various tasks
and there are still many task combinations that
will benefit from transfer learning that are not
considered by the current models. To this
end, we started our research by implementing
a novel multi-task learner with relaxed anno-
tated data requirements and obtained a perfor-
mance improvement on two NLP tasks. We
will further devise models to tackle tasks from
multiple areas of machine learning, such as
Bioinformatics and Computer Vision, in addi-
tion to NLP.

1 Introduction

Deep neural network based machine learning mod-
els have shown remarkable progress in the last
decades across a wide range of tasks. The typi-
cal training regime uses a large amount of labeled
data to get a general mapping of the elements in the
input space to the label space, which is known as
supervised learning. Yet, it is shown by numerous
studies that these models suffer from overfitting
and are sensitive to noise and examples that are not
available in the training data (Jia and Liang, 2017;
Belinkov et al., 2017). In addition, these models
are usually trained from scratch for each new task
where the weights of the models are initialized ran-
domly. This approach does not follow the way
humans learn new tasks, i.e. leveraging external
world knowledge and information obtained from

related tasks when learning a new task (Bruner,
1985; Hayes et al., 2002).

Transfer learning (TL) is a biologically moti-
vated training paradigm that aims to mitigate the
above mentioned real-world challenges of conven-
tional supervised learning (Ruder, 2019). Signals
in the training set of a source task are used as ad-
ditional information for a given target task to en-
able better generalization. It is especially useful
when the labeled data is limited for the target task
and when the tasks are relatively similar (Collobert
and Weston, 2008; Hashimoto et al., 2017; Ruder,
2019). Learning the structure among tasks is an es-
sential first step to benefit most from transfer learn-
ing, and to this end Zamir et al. (2018) proposed a
fully-computational framework to learn this struc-
ture in the Computer Vision domain. Straight-
forward application of transfer learning algorithms
may lead to catastrophic forgetting where models
forget the source task after being exposed to the
target task. In addition, there is a lack of theoret-
ical understanding of the task relationships, and
as a result, tasks for transfer learning are usually
determined with hindsight.

Multi-task learning (MTL) is a special case of
transfer learning where multiple tasks are learned
simultaneously. Caruana (1997) summarizes multi-
task learning as leveraging information obtained
from the training data of different tasks to improve
generalization. It enables better generalization
and lowers the annotated data requirements (Caru-
ana, 1997; Maurer et al., 2016). Current multi-
task learning systems typically use hard-sharing,
where a low layer hidden representation is shared
among all tasks to have an inductive bias (Collobert
et al., 2011; Chu et al., 2015). It is recently shown
that for dissimilar tasks hard-sharing may degrade
the performance, which is also called negative-
transfer (Yosinski et al., 2014). More sophisticated
information sharing methodologies must be consid-
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ered in addition to finding useful task combinations,
to make the most out of multi-task learning and to
avoid negative-transfer.

The above findings and challenges motivate our
research on transfer learning in deep neural net-
works. Specifically, we focus our research on inves-
tigating the task relations on the currently proposed
models and on proposing new task combinations.
Through our research, we plan to find answers to
‘where to transfer from’ (task selection), ‘what to
transfer’ (datasets and data selection) and ‘how to
transfer’ (pretraining and model architecture). Our
main hypothesis is that, 1) neural network based
transfer learning models improve over their single-
task counterparts both in terms of generalizabil-
ity and overall performance, 2) currently proposed
transfer learning models do not achieve their fullest
potential, and 3) there are many task combinations
that will benefit from transfer learning. We will
focus on the following research questions about
transfer learning models throughout this thesis:

RQ1. How to optimize the model architecture
and sharing methodology for a given task combina-
tion?

RQ2. What are some good auxiliary tasks to
improve the perfomance of a target task?

RQ3. How to find useful pretraining schemes?
The first question aims to find the most useful

architecture and the sharing methodology when the
task combination is known/determined. Second
is a higher-level research question to find useful
task combinations and can be considered as the
preliminary step for the first one. Finally, question
three aims to find the right pretraining scheme to
make the most ouf of transfer learning for a given
set of target tasks. By combining these research
questions, we aim to find the most useful multi-task
learning setting for a given domain.

We started our research by analyzing the limi-
tations of current supervised learning systems and
showed the sensitivity of neural network based
models to the changes in the domain (Akdemir
et al., 2018). Next, we proposed a novel joint learn-
ing model that relaxes labeled data requirements
for the Named Entity Recognition and Dependency
Parsing tasks and showed improvements over the
conventional methods. The results for the model
are given in more detail in Section 4. We will
further devise models to tackle tasks from multi-
ple areas of machine learning, such as Bioinfor-
matics and Computer Vision (CV) in addition to

NLP. Specifically, we plan to focus on biomedical
question answering and object detection tasks from
Bioinformatics and CV areas, respectively. We
motivate the choice of these two domains as fol-
lows: Transfer learning with ImageNet achieved a
huge success, and almost all state-of-the-art models
for downstream tasks in CV make use of transfer
learning. The abundance of transfer learning based
models makes CV a good test-domain for evaluat-
ing the contributions we will propose for different
pretraining schemes for transfer learning. On the
contrary, applications of transfer learning is scarce
in Bioinformatics compared to CV and NLP. Hence,
there should be various task combinations that can
benefit from transfer learning in the Bioinformat-
ics domain that were not investigated before. This
motivated us to choose Bioinformatics as a target
domain to find new task combinations.

The remainder of this paper is structured as fol-
lows. Section 2 gives a summary of the related
work on transfer learning and multi-task learning.
This is followed by the Research Plan, where we ex-
plain the methodology we will use regarding each
research question. Finally, Section 4 describes the
evaluation methods and datasets that will be used
to assess the significance of our contributions re-
garding each research question.

2 Related Work

Our research is related to the works in the subtopics
we summarize below.

2.1 Transfer Learning

We follow the taxonomy defined by Ruder (2019)
to differentiate between transfer learning and multi-
task learning. Specifically, transfer learning is an
umbrella term for settings where information from
a source task is leveraged to improve the perfor-
mance of a target task. If the target and source
are learned simultaneously, this methodology is
defined as ‘multi-task learning’, whereas if we em-
ploy a sequential learning of each task, this is re-
ferred to as ‘sequential transfer learning’. For in-
stance, in the domain of reinforcement learning,
Rusu et al. (2016) proposed ‘progressive neural
networks’ which learn each task sequentially and
fixes the parameters for the subsequent tasks. On
the contrary, Hashimoto et al. (2017) proposed a
joint many task model to simultaneously learn mul-
tiple NLP tasks.

In the area of Computer Vision, sequential trans-
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fer learning unlocked many potentials. Models pre-
trained on ImageNet are finetuned on the target task
datasests (Krizhevsky et al., 2012) to achieve state-
of-the-art results. Similarly, Peters et al. (2018)
showed pretrained models improve performance
across a wide range of NLP tasks. Radford et al.
(2018) and Devlin et al. (2019) pretrained mod-
els over huge unlabeled datasets and these models
are successfully applied to many downstream NLP
tasks. However, Mou et al. (2016) showed that
transferability depends largely on the semantic re-
latedness of the tasks. Finding related tasks is a key
factor to achieve better transfer learning models,
but a thorough understanding of how to find the
most useful pretraining task is still missing (Ruder,
2019).

Another key factor to improve transferability
is the selection of relevant data. Recently, Ruder
and Plank (2017) proposed learning a similarity
metric over the training sets by using Bayesian
Optimization for transfer learning. Their work is
limited to a domain adaptation setting where the
source tasks are the same as the target task but the
domains of the datasets are different. We propose
extending their method to avoid negative-transfer
in various multi-task settings.

2.2 Multi-task Learning

Ruder (2017) gives a comprehensive overview of
multi-task learning models, where they define two
main categories based on the information sharing
methodology: hard-sharing and soft-sharing. In
Hard-sharing, models contain a low-level layer
which is shared among all task-specific layers,
whereas in soft-sharing each model has its own
weight set and regularization is applied to force
these weights to be similar across all models. Soft-
sharing based models are shown to benefit from
multi-task learning when applied to related tasks.
Yet, the benefits of this method are unclear for
loosely related tasks.

Long and Wang (2015) attempted to learn the
information flow between task-specific models.
Ruder (2017) showed the effect of applying regular-
ization to the network weights to generalize better.
Using a more sophisticated approach to control the
information flow and applying additional regular-
ization terms on the network weights are promising
ways to obtain improvements over the current mod-
els. Zhang et al. (2018) proposed learning the most
suitable model for a given multi-task setting using

the previous results obtained for various (S,M)
pairs where S is a set of tasks and M is the learn-
ing model. They find the best candidate covariance
matrix which represents the task relations to esti-
mate the relative error for a new multi-task setting
and show the effectiveness of their approach. One
drawback of these approaches is that they focus
only on learning the task-relatedness between tasks
and ignore the architectural variations. Meyerson
and Miikkulainen (2019) showed that architectures
can also be decomposed to allow sharing of various
sub-modules for a set of tasks. Yet, more research
is necessary to find out the best method of shar-
ing and the best architecture for a given multi-task
setting.

3 Research Plan

In this section, we restate the research questions
and explain the approach we are planning to take.

RQ1: How to optimize the model architec-
ture and sharing methodology for a given task
combination?

Currently proposed multi-task learners mostly
use hard sharing, where models share a common
low-level layer, and task-specific sharing methods
are not analyzed for many task combinations (Col-
lobert et al., 2011; Søgaard and Goldberg, 2016;
Hashimoto et al., 2017). Following Long and Wang
(2015), we plan to use learnable parameters to con-
trol the information flow between each task-specific
model. Learning joint label embeddings for dis-
parate label classes (Augenstein et al., 2018) is
another promising approach that goes beyond hard-
sharing. Specifically, we will apply this method
to leverage our previously proposed joint learner
for Dependency Parsing and Named Entity Recog-
nition. Part-of-speech tags strongly correlate with
named entities and dependencies (Hashimoto et al.,
2017; Akdemir and Güngör, 2019b). Thus, we ar-
gue that learning joint label embeddings of these
tasks can help to further capture the relations be-
tween them.

RQ2: What are some good auxiliary tasks to
improve the performance of a target task?

Regarding this research question, we will fix a
target task and try to improve the performance by 1)
incorporating a transfer learning framework and 2)
applying a more sophisticated data selection mecha-
nism. To better understand the task relations (where
to transfer from), we will compare the performance
on a fixed target task using several auxiliary tasks
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obtained through different task selection mecha-
nisms. Lee et al. (2019) proposed pretraining the
BERT model in the biomedical domain and apply
the model to make predictions in several different
downstream tasks in Bioinfomatics such as gene-
disease relation extraction and biological named
entity recognition. We argue that their approach
can be combined with multi-task learning to further
leverage the information available in the dataset of
each task. Specifically, we claim that biological
named entity recognition can be used as an auxil-
iary task to improve the performance of biological
question answering systems. Our preliminary re-
sults are given in Section 4. The biological named
entity dataset consists of several types of entities
(genes, chemicals and disease mentions) and each
type can be considered as a different task. We will
use these set of tasks to compare the performance
of the task selection mechanisms.

Deciding which data are useful (what to trans-
fer), in addition to finding promising task combina-
tions, is another key factor to increase transferabil-
ity (Ruder and Plank, 2017). However, many of the
current multi-task models use all the available data
for all tasks (Long and Wang, 2015; Hashimoto
et al., 2017; Lee et al., 2019). To this end, we
will apply the previously proposed data selection
mechanisms on our new task combinations to find
the most useful and relevant examples from each
dataset to improve the transferability and to avoid
negative-transfer. Previous work on data selection
successfully showed that using a Bayesian suite for
deciding which data to use for multi-task learning
brings significant improvements (Ruder and Plank,
2017). This motivated us to incorporate similar
data selection mechanisms to further improve the
performance of transfer learning models. We will
compare several data selection mechanisms by fix-
ing the model to be used and the task combination.

RQ3: How to find useful pretraining
schemes?

The standard approach in sequential transfer
learning is to pretrain a model using an objective
that is relevant to and useful for the target task.
In NLP, the prevailing method is to train a lan-
guage model using the next sentence prediction
and masked token prediction objectives over huge
unlabeled datasets, e.g. the BERT model (Devlin
et al., 2019). The pretrained models are usually
fine-tuned on task-specific datasets, yet the char-
acteristics of the downstream task are usually not

considered during the pretraining process. Regard-
ing this research question, our main goal is to find
task-specific pretraining schemes and to compare
the performance with fine tuned models that are not
pretrained considering the downstream task (Lee
et al., 2019).

Curriculum learning aims to find a good order-
ing of the training samples to go beyond random
sampling (Bengio et al., 2009). The training sam-
ples are ordered according to their difficulties using
prior knowledge. Recently, Jiang et al. (2015) pro-
posed self paced curriculum learning which tries to
learn this ordering dynamically during training to
mitigate the drawbacks of defining static difficul-
ties for training samples using external knowledge.
Following this idea of changing the difficulty of the
training samples (Bengio et al., 2009; Kumar et al.,
2010; Jiang et al., 2015; Liang et al., 2016), we
propose using ‘adaptive masking’ for pretraining
language models. The standard approach for pre-
training with masked language modeling involves
predicting the distribution of a randomly masked
word using its context (Devlin et al., 2019). Each
masked word can be considered as an instance of
a cloze test which is frequently used to assess the
linguistic skills in humans. In a cloze test, students
are expected to understand the context to fill in the
masked word. Randomly selecting which words
to mask causes the difficulty of each instance to
change randomly as well. We propose adaptively
changing the difficulty of the next training instance
by observing the performance of the model. In
this context, we define difficulty as the amount
of contextual information necessary to select the
most probable word, whereas Bengio et al. (2009)
defined difficulty as the inverse of the frequency
of each masked token regardless of their contexts.
Table 1 illustrates why going beyond random mask-
ing is a promising method to improve the learning
process. For the first example, the model (or the
person tested) must predict ‘school’ from the con-
text which includes the word ‘students’. In the
second example, the model must comprehend the
overall negative meaning to predict ‘low’ instead
of ‘high’. 1 The idea can be extended easily to
other domains of machine learning such as object
detection where ‘difficult words’ are replaced with
‘difficult objects’.

1The examples were taken from intermediate and advanced
level cloze grammar tests from the englishlearner website:
https://www.englishlearner.com/tests
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Difficulty Sentence

Intermediate
Two students from Cologne, Germany, ages 17 and 18,

are accused of plotting an attack at their school on November 20.
Advanced Low levels of literacy have a damaging impact on almost every aspect of adult life.

Table 1: Two example sentences for the masked language modeling task. The underlined tokens are the originally
masked ones in the reference tests. Tokens that are more challenging to predict are shown in bold.

4 Evaluation

In order to evaluate the significance of our contri-
butions, we will do evaluations for each research
question separately. Below we give the evaluation
methodology, together with example tasks and the
related datasets that will be used for each research
question.

4.1 RQ1.

We will compare our proposed methodology with
the previously proposed multi-task learners and
the state-of-the-art single-task learners in the same
setting. We proposed a novel multi-task learning
framework to improve the performance of the target
task, Named Entity Recognition, using the informa-
tion obtained from the auxiliary task, Dependency
Parsing, for the Turkish language. Dependency
Parsing is chosen as the auxiliary task following
the previous work that showed the importance of
dependencies for the Named Entity Recognition
task, for morphologically rich languages, e.g the
Turkish language (Güngör et al., 2018; Straka et al.,
2019; Akdemir and Güngör, 2019a). The results
in Table 2 show that our proposed model (Model
2) achieves an absolute 2.45% F-1 score overall
improvement over the conventional joint learning
model (Model 1). The conventional model requires
a single dataset annotated with labels for both
tasks, which is a delimiting constraint for less re-
sourced languages. Instead, we proposed using sep-
arate datasets for each task (Akdemir and Güngör,
2019b) which allows the model to be trained on a
larger dataset.

Next, we proposed a hierarchical multi-task
learning framework (Akdemir et al., 2020) that
builds on our previous work mentioned above. In
this framework, each task-specific component is
implemented following the state-of-the-art mod-
els and experiments are conducted using differ-
ent sharing methodologies to find the most use-
ful setting for this task combination. We fol-
lowed Qi et al. (2018) and Lample et al. (2016) to
implement a Highway Long Short Term Memory

Model 1 Model 2
PER 84.50 86.48
LOC 81.97 86.36
ORG 78.34 78.63

Overall 82.11 84.56

Table 2: Results comparing the proposed model
(Model 2) with the conventional joint learner (Model
1). All results are given in percentage (%) F-1.

(H-LSTM) based dependency parser and a BiL-
STM Conditional Random Fields based named en-
tity recognizer. In addition, we used BERT sub-
word contextual embeddings as the common low-
level layer shared by the task-specific components.
This framework achieved absolute improvements
of 18.86% and 4.61% F-1 over our previously
proposed model for DEP and NER tasks respec-
tively. In addition, the framework showed absolute
improvements of 1.44% and 0.13% F-1 over the
state-of-the-art models for the Turkish language for
DEP and NER tasks respectively. The details about
the implementation and the experiments conducted
are given in (Akdemir et al., 2020).

We will further test the validity of our hypoth-
esis on other less resourced morphologically rich
languages such as the Czech Language (Demir and
Özgür, 2014).

Dataset. To test our hierarchical multi-task
learner on the Czech Language, we will use the
‘Czech Named Entity Corpus 2.0’ (Ševčı́ková et al.,
2007) for the NER task and the PDT-UD tree-
bank (Hajič et al., 2017) of the ‘CoNLL 2018
Shared Task’ (Zeman et al., 2018) for Depen-
dency Parsing task. The NER dataset contains
8,993 sentences with 35,220 entities and uses a
two-level named entity classification. For our pur-
poses it is sufficient to use the first level classes
(10 classes) as the named entity labels, referred as
supertypes. PDT-UD contains 87,913 sentences
obtained mainly from newswire.
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4.2 RQ2.
To evaluate the significance of the contributions
we make regarding RQ2, we will fix a target task
and compare the performance using the newly pro-
posed auxiliary task(s). As mentioned in Section 3,
an example target task is biomedical question an-
swering. We argue that detecting and categorizing
diseases and biological entities is an important first
step to answer biological questions. In addition,
the effect of applying data selection will be evalu-
ated by fixing a deep learning model for the object
detection task. It was chosen because there are
numerous models already proposed for multi-task
object detection which allows us to clearly assess
the significance of our contributions.

Dataset. We use the BC2GM (Smith et al.,
2008), BC4CHEMD (Krallinger et al., 2017), and
BC5CDR (Li et al., 2016) datasets for biological
named entity recognition which contain gene en-
tities, chemical entities and disease mentions re-
spectively. To test our claim, we use the BioASQ
dataset (Tsatsaronis et al., 2015) used during the
biomedical question answering competition which
contains yes-no, factoid and list type questions.

The preliminary results we obtained for Biolog-
ical Question Answering task can be seen on Ta-
ble 3. 2 We started with BERT (Devlin et al., 2019)
embeddings and obtained improvements through 1)
transfer learning on the biomedical abstracts from
PubMed, 2) pretraining the question answering
module on the Squad question answering dataset
and 3) training a multi-task learning model for all
question types. Step 3 is our contribution and has
not been employed before, to the best of our knowl-
edge. We aim to show further improvements by in-
corporating multi-task learning of biological named
entities.

BioAsq-6b - Factoid
Model LAcc SAcc MRR

BERT (baseline) 0.24 0.35 0.28
+TL on PubMed 0.32 0.50 0.39

+pretraining on Squad 0.39 0.58 0.47
+MTL of all questions 0.42 0.61 0.49

Table 3: Initial results on Biological Question
Answering-6 factoid type questions.

For multi-task object detection from different do-
mains, we will use the Office-Caltech (Gong et al.,

2LAcc,SAcc and MRR are abbreviations for Lenient Accu-
racy, Strict Accuracy and Mean Reciprocal Rank, respectively.

2012) dataset, which is the standard benchmark
for transfer learning in Computer Vision. The Of-
fice dataset contains images from three different
domains; Amazon, Webcam and DSLR, containing
31 categories. Caltech dataset is the 10 overlapping
categories from the Caltech-256 dataset (Griffin
et al., 2007).

4.3 RQ3.

We will evaluate our newly proposed pretraining
schemes both performance-wise and resource-wise.
We choose the standard pretraining objective of
BERT (Devlin et al., 2019) as the baseline and we
will train the same model using our newly proposed
‘adaptive masking’.

Dataset. We will use the unlabeled Wikipedia
articles in English for pretraining the model using
both pretraining tasks. Next, we will evaluate the
performance of the system on the benchmark ‘The
Stanford Question Answering Dataset’, SQuAD
2.0, which contains over 150,000 answerable and
unanswerable questions. We choose question an-
swering as the downstream task, as it was used as
the downstream task to evaluate the performance
of BERT (Devlin et al., 2019) .

5 Summary

Transfer learning is a promising area of research
for deep neural network based machine learning
models. It helps achieve better generalization and
utilization of the training datasets. In this paper, we
pointed out the current key challenges and unsolved
problems: 1) Going beyond the conventional way
of hard-sharing in multi-task learning and finding
the most useful architecture for a given setting, 2)
Finding good auxiliary tasks in a multi-task setting
for a specific target task, and 3) Finding useful
pretraining schemes. Our research aims to apply
the current work on transfer learning to new tasks
and also find novel methods to obtain better multi-
task learning models.
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rak Gürel, Çağri Yoltar, and Deniz Yüret. 2018.
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