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Abstract

Recently, deep learning has been used in Med-
ical Subject Headings (MeSH) indexing to
reduce the labor costs associated with manual
annotation, including DeepMeSH, TextCNN,
etc. However, these models fail to capture the
complex correlations between MeSH terms.
To this end, we use a Graph Convolution
Network (GCN) to learn the relationship
between these terms and present a novel Hy-
brid Graph Convolution Net for MeSH index
(HGCN4MeSH). We utilize two bidirectional
GRUs to learn the embedding representation
of the abstract and the title of the MeSH
index text respectively. We construct the
adjacency matrix of MeSH terms, based on
the co-occurence relationships in corpus,
and use the matrix to learn representations
using the GCN. On the basis of learning the
joint representation, the prediction problem
of the MeSH index keywords is an extreme
multi-label classification problem after the
attention layer operation. Experimental results
on two datasets show that HGCN4MeSH is
competitive with the state-of-the-art methods.

1 Introduction

MEDLINE1 is an important database for publi-
cations of biomedical and life science containing
more than 24 million journal citations. To facilitate
information storage and retrieval, the National Li-
brary of Medicine (NLM) created Medical Subject
Headings (MeSH)2 to index articles in MEDLINE.
MeSH is an annually-updated hierarchical glossary.
There are 29368 concepts3 of MeSH in 2019, cov-
ering various area from biomedicine to information
technology. Currently, the articles in MEDLINE
are indexed primarily by NLM human experts. It is
estimated that it costs millions of dollars each year

∗The corresponding author.
1https://www.nlm.nih.gov/bsd/medline.html
2https://www.nlm.nih.gov/mesh/meshhome.html
3https://www.nlm.nih.gov/databases/download/mesh.html

Example1: [Animals, Blotting Western, Body, Weight,
Heme, Oxygenase1, Male, Mice ,Mice Obese, Motor, Ac-
tivity, Oxygen, Consumption, Protoporphyrins, Receptor
Melanocortin Type 4, Thermogenesis, Weight]

Example2: [Animals, Blotting Western, Cell Hypoxia,
Cell Line, Cell Survival, Cells Cultured, E2F1 Transcrip-
tion Factor, Hepatocytes, Hypoxia-Inducible Factor 1 al-
pha Subunit, Membrane Proteins, Mice, Mice Inbred
C57BL, Mitochondrial Proteins, RNA Small Interfering]

Example3: [Animals, Appetite Regulation, Energy
Metabolism, Fats, Feedback Physiological, Glucose, Hu-
mans, Intestine Small, Signal Transduction]

Table 1: Examples of tags from article 26815432,
27391842, 26736497 in MEDLINE. It can be seen that
when the tag ‘Mice’ appears, tag ‘Animals’ is likely to
appear. However, when tag ‘Animals’ appears, the tag
‘Mice’ does not necessarily appear.

to index new articles (Mork et al., 2013). Therefore,
it is necessary to build an efficient and accurate
model for indexing documents — MeSH index.

Xun et al. (2019) demonstrated that the MeSH
indexing problem can be cast as an extreme multi-
label classification task. Each MeSH term can be
regarded as a tag, with a total of 29368 tags, and
each article has an average of 13 tags. Recently,
there are some deep learning models applied to
MeSH terms indexes successfully, such as Atten-
tionMeSH (Jin et al., 2018), MeSHProbeNet (Xun
et al., 2019), etc. However, these models do not
considered the correlation and the co-occurrence
relationship between MeSH terms. By ignoring
the complexity between objects, these methods are
inherently limited. Table 1 is a real example of
article tags from the data.

In this paper, we propose a novel GCN (Kipf
and Welling, 2016)-based MeSH term index model,
HGCN4MeSH, which learns the co-occurrence rep-
resentation of tags via a GCN-based mapping func-
tion. Specifically, we design a novel data-driven
adjacency matrix to guide the information prop-
agation between nodes. To solve the problem of
too many tags in extreme multi-label classification
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Figure 1: The proposed model framework. Balls of various sizes and colors represent different representations
of MeSH terms, BiGRU is the bidirectional gated recurrent unit. First, A hybrid graph is constructed for MeSH
terms, where each node represents a MeSH term. The abstract and title are input into GRU for feature extraction
respectively and GCN updates the representation of MeSH terms by learning co-occurrences of MeSH terms during
training. The final representation of MeSH terms consists of two parts, one is the representation generated by GCN,
the other is the semantic representation of MeSH terms. Then we can calculate the attention weight between MeSH
terms and title; abstract, output the final score via a linear layer and a sigmoid activation function.

cases, we propose a hybrid adjacency matrix, that
is, constructing a bidirectional GCN between high-
frequency tags and a unidirectional GCN between
high-frequency and low-frequency tags to reduce
the computation. The major contribution are:

• We propose a novel end-to-end extreme multi-
label classification framework (Figure 1),
which employs a GCN to learn tags repre-
sentation.

• We utilize a partial block adjacency matrix
to reduce calculation and noise for extreme
multi-label classification. The experimental
results show that our method is competitive
with the state-of-the-art method.

2 Related Work

Aronson et al. (2004) introduced the Medical Text

Index (MTI) to help experts find suitable MeSH
terms for articles quickly and accurately. Peng et al.
(2016) proposed DeepMeSH, which achieved the
best results in the 2017 BioASQ challenge task
A. BioASQ is a challenge funded by the Euro-
pean Union; the task A of BioASQ requires par-
ticipants to use only the abstracts and titles to pre-
dict corresponding MeSH terms. DeepMeSH uti-
lized TF-IDF (Jones, 1972) and document to vec-
tor (D2V) (Le and Mikolov, 2014) to represent
each abstract and They used k-nearest-neighbor
(KNN) (Altman, 1992) classifiers to generate can-
didate MeSH terms. AttentionMeSH (Jin et al.,
2018) was also divided into two parts. The first
part used KNN to generate candidate MeSH terms,
and the second used bidirectional Recurrent Gated
Unit (BiGRU) (Cho et al., 2014) architecture to
capture context features. Xun et al. (2019) used
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the representation learned from the name of journal
combine with the information from the abstract and
a multi-view neural classifier to get results. Wang
and Mercer (2019) provided a useable data set, in-
cluding the title, abstract, paragraphs associated
with the figures, and tables of each text, and used
multi-channel TextCNN (Kim, 2014) to solve the
problem.

MeSH terms were modelled independently in
those methods, which ignored the relationships be-
tween MeSH terms. In this paper, we use a GCN
to capture the more complex topological relation-
ships.

3 HGCN4MeSH Model

3.1 Graph Convolutional Network and
Correlation Matrix

We use Graph Convolutional Network (GCN) to
model the relationship between MeSH terms. Kipf
and Welling (2016) proposed GCN which induces
embedding vectors of the nodes according to the
properties of their neighbor nodes. Given a graph
G = (V,E) where V and E denote the set of nodes
and edges respectively. The GCN is a multi-layer
neural network. With convolutional operations, the
propagation of every layer can be written as

H l+1 = h(Ã ·H l ·W l). (1)

Here, H l ∈ Rn×d and H l+1 ∈ Rn×d′ indicate
the nodes representation of the lth and (l + 1)th

hidden layer respectively (where n is the number
of nodes and d, d′ are the dimensions of the node
representations), Ã ∈ Rn×n represents the normal-
ized version of the correlation matrix A ∈ Rn×n,
h(·) means a non-linear operation such as ReLU, ·
means the matrix product operation, W l ∈ Rd×d′

is a layer-specific trainable transformation matrix.
GCN updates the node features by propagating

the information between neighbor nodes, based on
the corresponding correlation matrix. Hence, the
crucial thing is how to build the adjacency matrix.
In most applications, the adjacency matrix is pre-
defined. However, there is no corresponding adja-
cency matrix already defined in the area of extreme
multi-label text classification. Facing this problem,
we propose the hybrid adjacency matrix construc-
tion method. We construct the adjacency matrix
between tag frequencies and the co-occurrence re-
lationships between tags.

In extreme multi-label text scenarios, the num-
ber of tags is often in the tens of thousands. If we

consider the relationship between all the tags, the
adjacency matrix would be huge and consume con-
siderable memory and time during the computation.
Considering that in the extreme multi-label classi-
fication task, the distribution of tags is long-tailed,
which means that there are some tags appear rarely,
hence Ã is a sparse matrix.

Figure 2: The construction of adjacency matrix. (a)
the adjacency matrix of original GCN (m×m) (b) the
hybrid adjacency matrix of our model (m× n)

Hence, we set a threshold frequency to divide
tags into low-frequency and high-frequency groups.
We find that the number of low-frequency tags co-
occurring with high-frequency tags is larger than
the number of low-frequency tags co-occurring
with low-frequency tags through empirically. Thus,
we build an adjacency matrix Ã ∈ Rm×n, where
m is the number of the high-frequency tags and
n denotes the total number of tags. It means that
we utilize the information between high-frequency
tags and low-frequency tags, so it is called hybrid
adjacency matrix. Figure 2 shows the example of
adjacency matrix. We use the empirical conditional
probability to model the directed relationship be-
tween tags:

p(Lj |Li) =
Mij

Ni
(2)

which means the occurrence probability of tag Lj

when tag Li appears, where Ni denotes the occur-
rences times of the tag Li, and Mij denotes the
concurring times of tag Li and tag Lj .

Pij = p(Lj |Li) (3)

However, due to a large number of tags, these co-
occurrencesmay be noisy estimate for some tags
with low co-occurrence frequency, so we set a
threshold τ as follows:

Aij =

{
Pij Pij > τ

0 Pij ≤ τ
(4)
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3.2 Document Representation
The core challenging in MeSH idnexing is to learn
representations for the title and abstract. After to-
kenizing the titles and abstracts, we derive the
context-aware title representation via a bidirec-
tional Gated Recurrent Unit (BiGRU) (Cho et al.,
2014):

Htitle = BiGRU(Xtitle) ∈ RL×2dh

Habstract = BiGRU(Xabstract) ∈ RL′×2dh
(5)

where Htitle, Habstract mean the hidden state
of title, abstract respectively. Xtitle ∈ RL×de ,
Xabstract ∈ RL′×de denote the feature of title, ab-
stract respectively (de means the embedding di-
mension of word), L is the length of title, L′ is the
length of title, dh is the hidden layer dimension. In
this work, the title and the abstract share the same
process.

3.3 MeSH Representation
First, we use the corresponding word embedding
of all MeSH terms as the initial input (H0) to GCN.
In section 3.1, we introduced a novel adjacency
matrix A, we can get the new representation of
MeSH terms with co-occurrence information after
multi-layers of GCN.

HGCN = σ(Ã ·H l ·W l) (6)

where H l ∈ Rm×dl is the high-frequency MeSH
terms representation of lth layer, Ã is the normal-
ized version of adjacency matrix and W l is a layer-
specific trainable transformation matrix. In other
words, only the representations of high-frequency
MeSH terms are propagated at each layer in GCN.
After getting the representation of MeSH terms in-
terrelation by GCN, we also use the embedding of
MeSH terms to retain the semantic information.

HMeSH = [HGCN : eMeSH ] (7)

where the symbol : means the concatenated op-
eration; eMeSH is the word embedding of MeSH
terms.

Now we can utilize MeSH representations to se-
lect the most relevant text representation features
for classification by attention mechanism (Bah-
danau et al., 2014). We calculate the similarity
between MeSH terms and text by dot products and
use Softmax to normalize the word axis:

Sim = Htitle ·HMeSH

Aattn = softmax(Sim)
(8)

Ultimately, we can get the representation of MeSH
terms by words representation:

H ′MeSH = AattnHtitle +A′attnHabstract (9)

where A′attn is the attention score between abstract
and MeSH terms, and Habstract is the hidden state
of abstract. Then we can gain the score of MeSH
terms:

ŷ = σ(WH ′MeSH + b) (10)

here, σ(·) is the sigmoid function, W is the train-
able weight matrix and b is the bias. The binary
cross-entropy loss function is applied in the model:

Lj = −(yjlog(ŷj) + (1− yj)log(1− ŷj)) (11)

where yj is the ground truth, ŷj ∈ [0, 1]. The total
loss is:

L =
1

K

K∑
j=1

Lj (12)

Here, K is the total number of training data.
Finally, the MeSH multi-label classifier outputs

the MeSH index that we want.

4 Experiments

4.1 Dataset
PMC Collection contains 257590 manually anno-
tated biomedical articles and covers 22881 MeSH
terms in total. Each documents contains 13.34
MeSH terms on average.
SETC2015 contains 14828 annotated articles cre-
ated by Demner-Fushman and Mork (2015). Wang
and Mercer (2019) used this dataset to create a
new dataset, which covers 14365 MeSH terms and
contains 13.15 MeSH terms per document.

4.2 Implementation Details
In the processing, non-English characters are re-
moved. The embedding dimensions of title and
abstract are both 200, GRU layer number is set to
2, and the hidden dimension is 200. In the part
of GCN, we use a layer of GCN with both input
and output dimensions of 200. LeakyReLU (Maas
et al., 2013) with a negative slope of 0.2 is used as
the non-linear activation function. For the division
of word frequency, we choose the high-frequency
MeSH terms with more than 1000 occurrences, the
low-frequency MeSH terms with less than 1000
of the PMC Collection dataset. For SETC2015
dataset, the threshold is 500. We set τ in Eq.(4)
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p@k nDCG@k
p@1 p@3 p@5 p@10 p@15 nDCG@1 nDCG@3 nDCG@5

PMC Collection
multichannel TextCNN 0.8791 0.7214 0.6148 0.5179 0.4801 0.8791 0.7574 0.6752

HGCN4MeSH-1 0.9145 0.8250 0.7417 0.5773 0.4618 0.9145 0.8463 0.7832
HGCN4MeSH 0.9267 0.8495 0.7707 0.6124 0.4953 0.9267 0.8677 0.8086

SETC2015
multichannel TextCNN 0.8051 0.6298 0.5206 0.4196 0.3959 0.8051 0.6698 0.5841

HGCN4MeSH-1 0.9054 0.7841 0.6921 0.5415 0.4450 0.9054 0.8124 0.7411
HGCN4MeSH 0.9185 0.7930 0.7078 0.5581 0.4563 0.9185 0.8221 0.7555

Table 2: Results for our Model in p@k and nDCG, HGCN4MeSH-1 is the model using the embedding of MeSH
terms merely without GCN, HGCN4MeSH is the model with GCN

to be 0.1. Dropout (Srivastava et al., 2014) is 0.2,
and learning rate 0.0005. Besides, we apply the
Adam optimizer (Kingma and Ba, 2014) and early
stopping strategies (Yao et al., 2007). The model is
implemented with PyTorch (Paszke et al., 2017).

4.3 Evaluation Metrics

Due to the large space of the tags, only a few tags
can match the text. Hence, the major metrics for
performance evaluation are ranking-based meth-
ods.

Precision at k (p@k) and normalized discounted
cumulative gain (nDCG) are ranking-based evalu-
ation methods. In this paper, we also utilize these
two authoritative metrics.

4.4 Experiments Results

Table 2 shows the rank-based matric result. Al-
though there are some strong baselines of bioASQ
challenge, the code is available to test on the two
dataset. We compare with the state-of-art method,
multichannel TextCNN (Wang and Mercer, 2019).
For the proposed model, we report the results of
the model with GCN or not. It is obvious that our
model without GCN outperforms baseline, and the
performance of the model with GCN is the best
result, which may due to the fact that the model
with GCN pays more attention to the co-occurrence
relationships between the tags.

In addition, the score of the PMC Collection
dataset increases by about 2-4 points after introduc-
ing GCN. However, the score of SETC2015 only
increases by 1-2 points. The reason is that there are
only 14000 samples of SETC2015. Thus the data-
driven adjacency matrix is biased. Nevertheless,
since the PMC Collection dataset contains about
250000 data, the adjacency matrix based on the
dataset should be closer to the true co-occurrence
relationship between the MeSH terms, and results
to better performance.

Model p@k

l f p@1 p@3 p@5 p@10

1 0.5k 0.9116 0.8345 0.7597 0.6029
1 1k 0.9267 0.8495 0.7707 0.6124
1 1.5k 0.9185 0.8409 0.7518 0.6103
4 2k 0.9174 0.8359 0.7618 0.6046

Table 3: The result of MeSH terms on testing set for
different frequency threshold. l is the GCN layer, f
is the frequency threshold, f=1k means MeSH terms
with less than 1000 occurrences is low-frequency tag,
and those with more than 1000 occurrences are high-
frequency tags.

Model p@k

l f p@1 p@3 p@5 p@10

1 1k 0.9267 0.8495 0.7707 0.6124
2 1k 0.9094 0.8323 0.7577 0.6008
3 1k 0.9170 0.8285 0.7494 0.5945

Table 4: The result of MeSH terms for different GCN
layers. l=1 means the GCN layer is 1.

4.5 Ablation Studies

In the Table 3, we can observe effects of thresholds
that define low-frequency MeSH terms and
high-frequency MeSH terms. If the threshold
is too high, it may cause fewer high-frequency
MeSH terms, which causes the representation
between different MeSH terms to be too smooth.
However, when the frequency threshold is too low,
there are many high-frequency words, and some
co-occurrence of many words may become noise.

Table 4 shows that with the number of GCN
layers increasing, the results decrease. As the
number of GCN layers increasesthe information
transmission between nodes may accumulate,
resulting in excessive smoothness of the final
representation.
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Model p@1 p@3 p@5 p@10

w/o atten 0.8897 0.7978 0.7235 0.5531
w/o GCN 0.9145 0.8250 0.7417 0.5773
w/o title 0.9094 0.8351 0.7589 0.5984
w/o abs 0.8763 0.7857 0.7050 0.5569

title&abs 0.9082 0.8361 0.7621 0.6058
ours 0.9267 0.8495 0.7707 0.6124

Table 5: The result of ablation studies. w/o: without;
atten: attention; abs: abstract; ours:HGCN4MeSH; ti-
tle&abs: title and abstract are concatenated as the input
of GRU.

The results of the ablation experiment are shown
in Table 5. Title contains a lot of useful information,
the effect of extracting information from title and
abstract separately is slightly better than directly
concatenating both.

5 Conclusion

Modelling the relationship between MeSH terms is
a key issue in MeSH indexing. This paper proposes
a model for constructing specifying the relationship
between MeSH terms based on GCN and a new
end-to-end model for MeSH indexing.

In the field of biomedicine, the co-occurrence
relationship of tags is very common and useful. We
use the co-occurrence relationship between tags to
design the adjacency matrix by the GCN using the
data-driven method, which can also be extended to
other extreme multi-label classification fields.
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