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Abstract

Aphasia is a speech and language disorder that
results from brain damage, often characterized
by word retrieval deficit (anomia) resulting in
naming errors (paraphasia). Automatic para-
phasia detection has many benefits for both
treatment and diagnosis of Aphasia and its
type. But supervised learning methods cant be
utilized adequately as there is a lack of apha-
sic speech data. In this paper, we describe our
novel unsupervised method, which can be im-
plemented without the need for labeled para-
phasia data. Our evaluations show that our
method outperforms previous work based on
supervised learning and transfer learning ap-
proaches for English. We demonstrate the util-
ity of our method as an essential first step in
developing augmentative and alternative com-
munication (AAC) devices for patients suffer-
ing from aphasia in any language.

1 Introduction

Aphasia is a speech and language disorder com-
monly acquired by brain damage resulting from a
stroke (Bhogal et al., 2003). Many people around
the world suffer from Aphasia as there are at least
2 million patients in USA and 250,000 in Great
Britain (National Aphasia Association, 2019).

Anomia, the difficulty in spoken word retrieval,
is a common symptom in Aphasic speech (Laine
and Martin, 2013). A majority of persons with
aphasia (PWA) suffer from varying degrees of
anomia (Nickels, 2002). Anomia further results in
various types of Paraphasia (naming errors) which
impedes the PWA’s ability to carry out meaning-
ful conversation leading to loneliness and social
anxiety (Beeke et al., 2013).

There are three common types of paraphasia
which occur in aphasic speech, namely semantic,
phonemic and neologistic (Laine and Martin, 2013;
Goodglass and Kaplan, 1972). In semantic para-

phasia, the PWA substitutes a semantically sim-
ilar word eg. (substituting elbow with knee). In
phonemic paraphasia, there are various sub types
involving the type of phoneme substitution such
as, substituting bat with lat, inserting or deleting a
phoneme (drake as dake) or phoneme movements
(candle with cancle). Lastly, in neologistic para-
phasia, the target word is substituted with a non-
word (harmonica with parokada). Detecting and
classifying the type of paraphasia is useful to de-
termine the type of aphasia and which treatment to
prescribe (Nickels, 2002; Friedmann et al., 2013).

Aphasia TalkBank (MacWhinney, 2007), is a
large scale multi-modal online database of aphasic
speech data. It contains aphasic speech data for
many languages such as English, French etc which
is primarily used by clinical researchers to study
aphasia (Forbes et al., 2012). While the amount
of data is sufficient for clinical researchers, there
is a lack of data to implement supervised learning
methods. This is true not only for a well researched
language like English, but also for low-resource 1

languages like Greek, Spanish etc.
To counter the lack of data and to extend the

proposed method for low-resource languages too,
we investigate an unsupervised approach. We first
consider large and available speech corpuses such
as LibriSpeech (Panayotov et al., 2015) to create
speech embeddings of individual words similar to
(Chung et al., 2016). We then perform soft cluster-
ing using HDBSCAN on these embeddings, and
classify each word by using simple rules with a
cutoff hyperparameter. The whole method is end-
to-end unsupervised and can be applied to any lan-
guage.

In our evaluations section, we demonstrate the
efficacy of our method over a naive baseline and the
transfer learning method used by (Le et al., 2017)

1we define low-resource wrt amount of available aphasic
speech data
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for English. We hope that such an unsupervised
method allows for development of AAC devices
improving daily life of not only English-speaking
PWA’s but also PWA’s in other languages.

2 Related Work

Recently, researchers have demonstrated the use of
machine learning methods not only to diagnose
the type of aphasia but also to rehabilitate and
treat PWA’s. Mainly focusing on obtaining a medi-
cal diagnosis, (Fraser et al., 2013) applied feature
selection using a transcript and low-level acous-
tic features to classify between two sub-types of
primary progressive aphasia. Likewise, (Peintner
et al., 2008) used speech and language features to
classify between three broad types of frontotempo-
ral lobar degeneration, including progressive non-
fluent aphasia. Further, given speech samples of
PWA’s, (Le et al., 2014; Le and Mower Provost,
2015; Le et al., 2016) proposed approaches for
predicting the utterance-level pronunciation and
prosody scores. (Abad et al., 2012, 2013) aimed
to tackle the contextually similar problem through
keyword spotting. It recognized target words from
phrases spoken by the PWA but disregarded fine-
grained word-level errors such as paraphasias.

Deep learning methods to detect paraphasia was
first demonstrated in (Le et al., 2017). It worked
around the notion of mispronunciation detection,
adopting the methods of (Lee et al., 2013; Lee and
Glass, 2013), which used Dynamic Time Warping
(DTW) features to provide a quantitative compar-
ison of word and phone-level pronunciations be-
tween native and non-native speakers. Similarly,
(Le et al., 2017) has used DTW and other acous-
tic features like Phone Edit distance and Good-
ness of Pronunciation, to distinguish between target
transcripts and paraphasias. Consequently, it has
also used Automatic Speech Recognition (ASR)
techniques to generate the target transcripts from
the paraphasias automatically. In the end, all of
these proposed methods require target transcripts
for their core functioning.

To the best of our knowledge, no existing work
provides an unsupervised approach to detecting
and classifying paraphasia from aphasic speech. In
this paper, we explore a realistic scenario where we
have access only to the free form discussion with
PWA’s.

3 Method

Aphasic speech data can be collected in mainly two
ways: as a free form discussion between a PWA
and an interviewer or a PWA reading a set of pro-
vided scripts. While a PWA reading from scripts
is conducive to supervised learning methods, it is
rarely the case in real life. Hence, our goal is to
perform paraphasia detection and classification in
the wild i.e. without any target scripts. Another
motivation for classification in the wild is the lack
of labeled English aphasic speech data. Further, the
available speech data has a class imbalance (phone-
mic and neologistic paraphasias account for 12.0
and 6.4 percent respectively). Low-resource lan-
guages such as Hindi, Greek etc. have a serious
lack of aphasia speech data and almost non-existent
labeled speech data. Using transfer-learning ap-
proaches similar to (Le et al., 2017), would not
allow extending it to such low-resource languages.
Hence, it was necessary to investigate unsupervised
approaches for paraphasia classification. In this sec-
tion, we outline our proposed unsupervised method
which consists of first creating speech embeddings
of non-aphasic speech data and then performing
soft clustering to further classify the type of para-
phasia detected.

3.1 Speech Embedding

In order to classify phonemic and neologistic para-
phasia, capturing phoneme placement in a word is
necessary.

Previous work, used features such as Goodness
of Pronunciation and Phoneme Edit-Distance to do
the same. Hence, we adopt speech embeddings
which focus on phoneme pronunciation.

In particular, we use the Audio-Word2Vec em-
beddings outlined in (Chung et al., 2016) as they
have demonstrated good performance in distin-
guishing utterances that have large (>3) phoneme
sequence edit distance and grouping utterances
with low phoneme sequence edit distance (0 to
2). These speech embeddings are created in an un-
supervised fashion. Each word utterance is passed
through a sequence-to-sequence encoder and recon-
structed via a decoder. This process preserves the
acoustic information in the embedding.

(Chung et al., 2016) further demonstrated that
sequential phoneme structure is preserved in the
vector space. This property can be exploited us-
ing density based clustering, the next step of our
proposed method.
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Classifying semantic paraphasia requires differ-
ent approaches which cannot be encompassed in
methods used to classify phonemic and neologistic
paraphasia and hence is left as future work.

3.2 Probing Tasks

Unsupervised word embeddings can be improved
further and geared specifically for aphasic speech,
but in order to understand what these embeddings
are capturing it is important to probe them. Taking
inspiration from (Conneau et al., 2018), we create
probing tasks specifically for paraphasia. Probing
tasks are simple classification tasks for embeddings.
We detail three probing tasks specifically for phone-
mic and neologistic paraphasia.

1. Phoneme-Movement: Phonemic paraphasia is
often characterized with phoneme movement,
usually involving a shift in the position of one
or two phonemes. In this binary classification
task, the embeddings are used to determine if
a phoneme shift took place or not.

2. Phoneme-Add/Delete: The addition or dele-
tion of a phoneme is seen in phonemic para-
phasia. We use the generated embeddings to
determine if the word utterance has a phoneme
addition/deletion or is unchanged.

3. In-Dictionary: In this task, we check if the
embeddings can classify if the word is in the
language’s dictionary or not. Neologistic para-
phasia occurs when PWA’s substitute target
words with non-words.

These three probing tasks, while not exhaustive,
can be used to determine how well the speech em-
beddings can perform for paraphasia detection.

3.3 Density based Clustering

As our method is unsupervised, we do not have
access to whether each word utterance is a para-
phasia (further what type) or not. To classify each
utterance, we use techniques similar to anomaly
detection.

Firstly, the embeddings generated for each word,
represent only non-paraphasia words. This is be-
cause the dataset used to create these embeddings
consists of only correct words utterances. We clus-
ter these non-paraphasia embeddings into distinct
clusters where the members of each cluster are
embeddings of the same word. We use individ-
ual words as centroids rather than phoneme based

centroids. This is because, phoneme based cen-
troid choices such as monophones, senones etc.
creates a surjective mapping from embeddings to
centroids (eg. both words cat and hat contain the
same phoneme ae, hence both words will be as-
signed to the same centroid), whereas word based
centroids has a bijective mapping.

Secondly, we use HDBSCAN (McInnes et al.,
2017) to perform density based clustering as it al-
lows for cluster densities of varying size. The two
most influential parameters namely, minimum clus-
ter size and minimum samples are chosen so as to
produce number of clusters equal to the vocabulary
size of the dataset.

Lastly, we exploit the soft clustering property of
HDBSCAN to detect paraphasias. We use simple
rule based methods to perform classification. When
a word utterance is correct i.e it is not a paraphasia,
the top 1 cluster probability should be high, as the
embedding should have a core distance of 0. Hence
if the utterance satisfies top1 probability ≥ α then
it is classified as a correct word. We use α = 0.75
in our experiments.

Now, if a word utterance is phonemic paraphasia,
HDBSCAN returns near similar cluster member-
ship probabilities for 2 to 3 clusters (eg. lat will be
clustered close to correct words bat, late etc.)

top1 − top2 ≤ β (1)

If a word utterance satisfies equation 1 then we
can classify it as a phonemic paraphasia. We use
β = 0.2 in our experiments.

For a neologistic paraphasia, the cluster mem-
bership probabilities are evenly low, as the word
utterance is a non-word and was never seen by
HDBSCAN while clustering. Hence, a utterance
that satisfies

k∑
topi ≤ γ

is classified as a neologistic paraphasia. In our
experiments k = 5 and γ = 0.5

This clustering based method does not violate
the unsupervised nature of the proposed goal. Our
reasoning is validated by the empirical evaluations
performed in further sections.

4 Evaluation

In order to validate the claims made in the previous
section, we perform the following evaluations. For
a fair comparison, we use the same test dataset used
in (Le et al., 2017), and perform further analysis
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on our soft clustering approach. In this section,
we detail the experimental setup used including
the model structure and hyperparameters, the met-
rics and the baselines used to compare and finally
expand on the results of our method.

4.1 Data

We use two speech datasets, one to create word ut-
terance embeddings and perform HDBSCAN clus-
tering and another to test our method.

As detailed in (Chung et al., 2016), we used
the LibriSpeech corpus (Panayotov et al., 2015) to
create audio-word2vec embeddings. We have used
the train-clean-100 subset to train the Seq2Seq
autoencoder and a combination of dev-clean and
test-clean subsets to perform density based soft
clustering. MFCC’s of 13 feature-coefficient were
used as input to the models.

For our test dataset we used speech data from
Aphasia TalkBank (MacWhinney, 2007), specif-
ically, the Scripts section of the English section.
Scripts contains recordings of PWA’s reading a
script, with each word utterance conveniently la-
beled as [*p:n] and [*n:k] for phonemic and ne-
ologistic paraphasia. (Le et al., 2017) uses the
Fridriksson subset consisting of 12 PWA’s reading
4 predefined scripts each, allowing (Le et al., 2017)
to use supervised learning to classify paraphasia
as they have access to the target word. We used
this same subset, for our experiments to remain
consistent.

4.2 Analysis

In this section we provide empirical evidence to
substantiate our intuition while building our unsu-
pervised method.

4.2.1 Probing Tasks
The three probing tasks are used to determine how
well the unsupervised embeddings are perform-
ing on specific tasks. We examine three different
types of embedding methods. First is the original
setup (Chung et al., 2016) utilized, an Sequence-to-
Sequence autoencoder with both the RNN Encoder
and Decoder consisting of one hidden layer of 100
LSTM units was used. The networks were trained
with SGD without momentum with a fixed learn-
ing rate of 0.3 and for 500 epochs. Secondly we
improve upon the autoencoder architecture by us-
ing 2 instead of 1 hidden layer of 100 bidirectional
LSTM units. (Chung et al., 2016) noticed that the
embeddings favoured phonemes towards the end

of the word, this problem is alleviated by using
bidirectional LSTM. The networks were trained
with Adam with a learning rate of 0.01 and for 500
epochs.

Method
Ph-

Move
Ph-

Add/Del
In-

Dict
Audio-word2vec 68% 81% 76%

Bi-LSTM 73% 77% 83%

Table 1: Performance of embedding generation meth-
ods on probing tasks reported as averaged accuracy val-
ues.

As seen in table 1, the bi-directional LSTM ver-
sion of audio-word2vec performs better and hence
going further we use this setup for creating word
utterance embeddings.

4.2.2 Soft Clustering
We empirically demonstrate that the word embed-
ding clusters behave similar to the format outlined
in the Methods section. We use (McInnes et al.,
2017) implementation of HDBSCAN in our exper-
iments.

First we report the HDBSCAN cluster member-
ship scores for correct, phonemic and neologistic
paraphasias in Table 2. The paraphasia are tran-
scribed in CHAT transcription format.

Word Top 1 Top 2 Top 3
Correct Words

weather .882 .073 .032
hot .821 .072 .053

rarely .764 .213 .014
Phonemic Paraphasia

u@u (to) .537 .419 .065
duz@u (choose) .501 .324 .171
fpł@u (spring) .461 .253 .258

Neologistic Paraphasia
ziz@u (easy) .277 .102 .156
muz@u (use) .196 .162 .153
zt@u (vast) .234 .142 .077

Table 2: Top k cluster membership probability scores
for correct, phonemic and neologistic paraphasia. Cor-
rect word for corresponding paraphasia is included in
parenthesis

The cluster membership probabilities, align with
the choice of cutoff rules used in the Methods sec-
tion. Phonemic paraphasia is usually assigned a
membership score split across two or three clusters.
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Figure 1: (a) TSNE projections of phonemic paraphasia (in red) with top 1,2 and 3 clusters. The darker the color
the higher the cluster membership probability. (b) Minimum spanning tree based on mutual reachability scores

This is true because of the phoneme movement,
addition or deletion property leaving rest of the
word unaffected, causing confusion so as to which
cluster the utterance belongs to. TSNE projection
of a sample phonemic paraphasia with its top 1,2
and 3 clusters is displayed in Figure 1. The mini-
mum spanning tree of the clusters also displays the
confusion in allocating cluster membership to the
phonemic error. Similarly neologistic paraphasia,
has uniformly low cluster membership scores, as
the utterance is never seen by HDBSCAN as it is a
non-word.

A very small set of word utterances (≤ 20) satis-
fied the condition for both phonemic and neologis-
tic paraphasia eg.( top 1,2 and 3 probabilities were
.32 .11 and .09) These utterances were classified as
phonemic due to the higher value of top 1 than the
average neologistic paraphasia.

4.3 Results

As noted by (Le et al., 2017), it is necessary to
classify if the word is correct in addition to phone-
mic or neologistic for future ASR and AAC system
development. We report the averaged F1 score on
three binary classification schemes, namely C-pn
(correct vs. phonemic or neologistic), C-p (correct
vs. phonemic) and C-n (correct vs. neologistic)

As baselines, we compare with a naive baseline
which classifies all words as correct (the majority
class) and the DBLSTM-RNN acoustic model by
(Le et al., 2017). It is necessary to note that the
DBLSTM-RNN was trained on supervised data
using transfer learning methods.

Our method demonstrates results in table 3
which are comparable to the supervised learning
method. It outperforms the other baselines for C-pn
and C-p.

Method C-pn C-p C-n
Majority Baseline .442 .461 .484
(Le et al., 2017) .704 .632 .761

Ours .761 .683 .728

Table 3: Paraphasia detection and further classification
reported as averaged F1 scores.

While, a tighter set of cutoff hyperparameters
can be used to classify the paraphasias as the AAC
devices and systems gets further personalized. Our
choice of hyperparameters is purposely kept gener-
alized so as to accommodate various PWA speakers.
We also believe a better embedding method will
allow for better scores even with our general cutoff
hyperparameters, especially neologistic paraphasia
as it will be further from any word cluster.

5 Conclusion

The work presented in this paper is heavily inspired
by (Le et al., 2017), but differs and improves it in
the following ways. We provide a completely unsu-
pervised method which outperforms previous work
in paraphasia classification and detection. While
we maintain that our method can be used for all
languages, irrespective of aphasic speech data, due
to time constraints we could include only English
in our evaluations. We lay the ground-work for
paraphasia classification in low-resource languages
allowing for development of ASR and AAC sys-
tems for not only English-speaking PWA’s but also
PWA’s in developing nations. Our future work
will target demonstrating the method on other lan-
guages. We also hope to address semantic parapha-
sia in future work and create, deploy AAC systems
building on the method proposed in this paper.
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