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Abstract 

Medical image captioning can reduce the 
workload of physicians and save time and 
expense by automatically generating 
reports. However, current datasets are 
small and limited, creating additional 
challenges for researchers. In this study, we 
propose a feature difference and tag 
information combined long short-term 
memory (LSTM) model for chest x-ray 
report generation. A feature vector 
extracted from the image conveys visual 
information, but its ability to describe the 
image is limited. Other image captioning 
studies exhibited improved performance by 
exploiting feature differences, so the 
proposed model also utilizes them. First, 
we propose a difference and tag (DiTag) 
model containing the difference between 
the patient and normal images. Then, we 
propose a multi-difference and tag 
(mDiTag) model that also contains 
information about low-level differences, 
such as contrast, texture, and localized area. 
Evaluation of the proposed models 
demonstrates that the mDiTag model 
provides more information to generate 
captions and outperforms all other models. 

1 Introduction 

Image captioning is a research area that generates 
text describing natural images, representing a 
convergence of computer vision and natural 
language processing. There are several existing 
methods for image captioning. One way involves 
filling up templates with detected objects or 
properties (Li et al., 2011; Yang et al., 2011), but 
this has limitations about diversity. Especially, 
sentences describing abnormal findings in medical 
images are relatively diverse and rare. Another 
involves retrieving the captions of images that are 
similar to the query image and selecting relevant 

phrases from those captions to generate new 
captions (Gupta et al., 2012; Kuznetsova et al., 
2014). However, this method does not generalize 
well when applied to unfamiliar images. 

To overcome the weaknesses of current 
methods, we adopted the encoder-decoder 
architecture with an attention mechanism. The 
encoder encodes an image into a feature vector, 
and the decoder decodes the feature vector into 
text. The encoder-decoder is one of the neural 
networks successfully used in other recent image 
captioning studies (Vinyals et al., 2015; Xu et al., 
2015; Karpathy and Fei-Fei, 2015; You et al., 2016; 
Zhou et al., 2017; Anderson et al., 2018). 

Medical image captioning is the field of 
generating medical reports that describe medical 
images, as shown in Figure 1. The first challenge 
in medical image captioning is the lack of quality 
in training sets. Researchers have difficulty 
accessing chest x-ray datasets, which slows the 
development of related technologies. There are 
publicly available datasets that have images and 
reports: IU X-RAY, PEIR GROSS, and ICLEF-
CAPTION (Kougia et al., 2019). Using only these 
datasets, state-of-the-art caption generation 
models do not generate medical reports correctly. 
Recently, MIMIC-CXR (Johnson et al., 2019), the 
largest dataset with images, reports, and labels, is 
released. The second challenge is that there are too 
many normal descriptions in the dataset, which 
creates a skewed dataset that poses problems for 
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Figure 1: An example of a medical image 
captioning system that generates a report given a 
chest x-ray image. 
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supervised learning. Besides, some types of 
significant abnormal findings appear too rarely in 
the dataset to appropriately train the model. 

In this study, we propose a model that can 
identify and focus on abnormal findings more 
specifically and precisely, similar to the way that 
physicians would typically read, interpret, and 
write chest x-ray reports. Since physicians look for 
the differences between the normal group and the 
disease group, we also focus on image feature 
differences. Therefore, the proposed model sets the 
criteria based on a normal x-ray image and creates 
a feature difference vector that explains the 
difference between a normal x-ray image and a 
patient’s x-ray image. This feature difference 
vector is a subtraction of visual feature vectors 
extracted from the two images. To improve the 
model, we also exploit tag information obtained 
from the medical report. Tags provide important 
information about the images and also convey 
meaningful semantics to the decoder. Several 
previous studies (Jhamtani and Berg-Kirkpatrick, 
2018; Tan et al., 2019; Forbes et al., 2019) show 
methods that leverage feature vectors of images to 
account for differences between two images. 

Next, since physicians obtain information not 
only from the overall image but also from the 
localized lesion areas, we consider that each 
convolutional level would also convey meaningful 
details such as contrast, texture, and localized area. 
Therefore, another proposed model fully exploits 
information contained in each layer. Previous 
studies (Darlow et al., 2018; Bau et al., 2017; Zhou 
et al., 2018) analyze and interpret convolutional 
neural networks (CNNs) utilizing feature vectors 
extracted from lower convolutional layers. 

The following section describes the organization 
of the dataset, and section 3 introduces the baseline 
and our proposed models. Section 4 provides the 
experimental settings and results with analysis, and 
draws some conclusions in Section 5. 

2 Dataset 

This study uses IU X-RAY, which consists of a 
series of image-text-tag triplets. This dataset is 
anonymous and is from the Open Access 

                                                           
1 https://openi.nlm.nih.gov/ 
2 https://ii.nlm.nih.gov/MTI/ 
3 https://www.nlm.nih.gov/mesh/meshhome.html 
 

Biomedical Image Search Engine (OpenI) 1 
(Demner-Fushman et al., 2016).  

The 7,470 chest x-ray images have two views: 
posteroanterior (PA) and lateral. The baseline 
model uses all images, but the proposed model uses 
only 3,821 images, which are PA views. The report 
corresponding to each image has four sections: 
comparison, indication, findings, and impression. 
The output of the model is a concatenation of the 
findings and the impression section (Jing et al., 
2018). The findings section describes observations 
in each area of the body, and the most crucial 
impression section explains the problem and then 
provides a diagnosis. The output excludes the 
comparison and indication sections, which contain 
patient information and symptoms. 

One or more tags are automatically extracted 
from each report using the Medical Text Indexer 
(MTI)2 program (Jing et al., 2018). MTI produces 
index recommendations based on Medical Subject 
Heading (MeSH)3 terms. There are a total of 210 
unique tags, with an average of 2 tags per image. 
Without the normal tag, there is an average of 25 
images per tag. Class imbalance arises because 
1,502 images contain normal tag, so we randomly 
sample 75 images for a better balance between tags. 
The tags still have a class imbalance because the 
scope is too broad, making the term rare. 

The prepared datasets are 3,821 image-text-tag 
triplets, all PA view images. After adjusting the 
number of images with the normal tag, we use 
random selection to get 1,911, 238, and 245 
triplets for the training, validation, and test sets. 

3 Models 

3.1 Baseline Model 

Among the recent models, the basis is the Jing 
(2018) model4 . Our baseline model is similar to 
this model, which includes a CNN-RNN (encoder-
decoder) with an attention mechanism. The Jing 
(2018) model’s encoder part utilizes VGG-19 
(Simonyan and Zisserman, 2014) for the visual 
feature extractor, multi-label classification (MLC) 
for tag classification, and decoder part uses 
Hierarchical LSTM (Hochreiter and Schmidhuber, 

 

4 Reference code available at 
https://github.com/ZexinYan/Medical-Report-Generation 

https://openi.nlm.nih.gov/
https://ii.nlm.nih.gov/MTI/
https://www.nlm.nih.gov/mesh/meshhome.html
https://github.com/ZexinYan/Medical-Report-Generation
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1997) with a co-attention mechanism. The only 
difference between the Jing (2018) model and our 
baseline model is that we use ResNet-152 (He et 
al., 2016) instead of VGG-19 to extract the visual 
feature vector. MLC uses the visual feature vector 
to predict one or more tags and generates semantic 
feature vectors that are word embedding of the 
predicted tags. To obtain an embedding vector of 
each tag, we train an embedding layer from the 
training data. Hierarchical LSTM combines 
sentence LSTM with co-attention and word LSTM. 
Sentence LSTM creates a topic vector and a stop 
vector by independently attending to the visual 
feature vector and semantic feature vector using 
co-attention. The word LSTM concatenates the 
topic vector and previous word embedding for a 
new embedding as input to generate words. The 
way to get a word embedding vector is the same as 
the tag, but the embedding matrix is different. 

The overall loss is the sum of tag loss, stop loss, 
and word loss. First, tag loss Ltag is a cross-entropy 
loss between predicted tag distributions by MLC 
and the normalized real tag distributions. Second, 
stop loss 𝐿𝐿𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  is a cross-entropy loss between 
predicted stop distributions by Sentence LSTM 
and ground truth distributions. The stop loss is 
binary cross-entropy, and the class is stop or 
continue. Third, word loss 𝐿𝐿𝑤𝑤𝑠𝑠𝑤𝑤𝑤𝑤  is a cross-entropy 
loss between predicted word distribution by Word 
LSTM and real word distribution. 𝜆𝜆𝑠𝑠𝑡𝑡𝑡𝑡 ,   𝜆𝜆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 , 
𝜆𝜆𝑤𝑤𝑠𝑠𝑤𝑤𝑤𝑤  scale all the losses. The report consists of 𝑆𝑆 
sentences, with each sentence having 𝑊𝑊𝑠𝑠  words. 
Total loss for the baseline model is: 

 𝐿𝐿𝑏𝑏𝑡𝑡𝑠𝑠𝑏𝑏 = 𝜆𝜆𝑠𝑠𝑡𝑡𝑡𝑡𝐿𝐿𝑠𝑠𝑡𝑡𝑡𝑡 + 𝜆𝜆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠� 𝐿𝐿𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑆𝑆
𝑠𝑠=1 +

                                   𝜆𝜆𝑤𝑤𝑠𝑠𝑤𝑤𝑤𝑤 ∑ ∑ 𝐿𝐿𝑠𝑠,𝑤𝑤
𝑤𝑤𝑠𝑠𝑤𝑤𝑤𝑤

𝑊𝑊𝑠𝑠
𝑤𝑤=1

𝑆𝑆
𝑠𝑠=1   (1) 

3.2 Difference and Tag Model 

The weakness of our baseline model is that it 
mainly generates general content (such as “the 
heart is normal in size” and “the lungs are clear”) 
and does not correctly describe the aspects of the 
patient image associated with the disease. The 
model does not adequately capture the differences 
between the images because the chest x-ray images 
are similar. Also, when clinicians diagnose patients, 
they look for the differences between the patient 
group and the normal group. 

Therefore, the first goal of this study was to 
provide the model with more information about 
these differences. Our difference and tag (DiTag) 
model creates a feature difference vector that 
contains the differences between the patient image 
and the normal image. The feature difference 
vector is the result of subtracting the visual feature 
vector of the normal image from the visual feature 
vector of the patient image extracted through 
ResNet-152. The visual feature vector is a global 
average pooling of feature map produced by the 
last convolution layer. 

We experimented with this feature difference 
vector using two model structures, as shown in 
Figure 2. The first structure, the DiTag model, 
passes the feature difference vector directly to the 
MLC and the co-attention and does not use the 
combined feature vector. Co-attention allows the 
model to attend to the feature difference vector 
{𝑑𝑑𝑛𝑛}𝑛𝑛=1𝑁𝑁  and the semantic feature vector {𝑡𝑡𝑚𝑚}𝑚𝑚=1

𝑀𝑀  
independently to create a context vector, which is 
then passed to the sentence LSTM to generate topic 
vector and stop vector, as shown in Figure 3. The 
co-attention is only associated with the sentence 
LSTM, not the word LSTM. The co-attention 

 

Figure 2: Two difference and tag (DiTag) model structures. The DiTag model uses only feature difference vector 
and sends it to MLC and co-attention. The combined DiTag (cDiTag) model uses a combined feature vector (*), 
which is a concatenation of patient visual feature vector and feature difference vector. 
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computes attention score α independently to create 
a feature difference context vector 𝑑𝑑𝑠𝑠 and a 
semantic context vector 𝑡𝑡𝑠𝑠 at time step s: 

 𝑑𝑑𝑠𝑠 = � 𝛼𝛼𝑤𝑤,𝑛𝑛𝑑𝑑𝑛𝑛
𝑁𝑁
𝑛𝑛=1 , 𝑡𝑡𝑠𝑠 = � 𝛼𝛼𝑠𝑠,𝑚𝑚𝑡𝑡𝑚𝑚

𝑀𝑀
𝑚𝑚=1    (2) 

Concatenate these context vectors, then use a fully 
connected layer W  to obtain the final context 
vector 𝑐𝑐𝑆𝑆 at time step s: 

 𝑐𝑐𝑠𝑠 = 𝑊𝑊[𝑑𝑑𝑠𝑠; 𝑡𝑡𝑠𝑠]  (3) 

A topic vector contains context information by 
combining the current hidden state of the sentence 
LSTM and the context vector of the current step. A 
stop vector decides to stop or continue generating 
the topic vector and words by combining the 
previous and current hidden state of sentence 
LSTM to calculate the probability of stopping. 
Figure 3 also shows how the word LSTM works. 

The second structure is the combined DiTag 
(cDiTag) model, which sends the combined feature 
vector that represents the concatenation of the 
feature difference vector and the patient visual 
feature vector to the MLC and the co-attention. Co-
attention is the same as DiTag model, except that it 
attends to the combined feature vector rather than 
the feature difference vector. The overall loss of 
both structures is the same as the baseline model. 

3.3 Multi-Difference and Tag Model 

Physicians provide diagnoses using information 
obtained not only from the overall image but also 
from localized lesion areas. Therefore, the second 
goal of this study was to offer lower-level 
differences to the model, such as the contrast, 

texture, and localized area. The DiTag model 
extracts the visual feature vector from the last 
convolutional layer of ResNet-152, while the 
mDiTag model further extracts additional visual 
feature vectors from three lower convolutional 
layers. Using four visual features from the patient 
images and four from the normal images, we 
experimented with the three model structures to 
compare the effects of model components, as 
shown in Figure 4. 
The mDiTag(-) model subtracts the normal visual 
feature vector from the patient visual feature vector 
obtained in each layer to generate four feature 
difference vectors and then sends all four vectors 
to the co-attention. The model excludes the MLC, 
and co-attention attends to the four feature 
difference vectors and creates a context vector and 
sends it to the LSTM. Total loss for the mDiTag(-) 
model is: 

𝐿𝐿𝐷𝐷𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡 = 𝜆𝜆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠� 𝐿𝐿𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑆𝑆
𝑠𝑠=1 +

                            𝜆𝜆𝑤𝑤𝑠𝑠𝑤𝑤𝑤𝑤 ∑ ∑ 𝐿𝐿𝑠𝑠,𝑤𝑤
𝑤𝑤𝑠𝑠𝑤𝑤𝑤𝑤

𝑊𝑊
𝑤𝑤=1

𝑆𝑆
𝑠𝑠=1

  (4) 

 The mDiTag(+) model obtains new visual 
feature vectors by sending the visual feature 
vectors of each layer into four different MLCs, one 
for each layer. The co-attention is identical to that 
of the mDiTag(-) model. The total loss is the sum 
of the four tag losses, each occurring in four layers, 
stop loss and word loss. The model is 
backpropagated based on the previous four tag 
losses and then backpropagated based on the 
overall loss. 

 

Figure 4: Three mDiTag model structures. The 
mDiTag(-) model excludes MLC and semantic 
feature vectors. The mDiTag(+) model excludes 
only the semantic feature vectors. The whole 
structure is mDiTag(s) model. 

 

Figure 3: An example of generating a second 
sentence. For each sentence LSTM step, the co-
attention creates a context vector, and the sentence 
LSTM outputs a topic vector and a stop vector. The 
word LSTM generates words based on the topic 
vector and embedding of the previous word. 
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The mDiTag(s) model is similar to the mDiTag(+) 
model, but MLC obtains a new visual feature 
vector and a semantic feature vector. The model 
sends four feature difference vectors and four 
semantic feature vectors to the decoder. Co-
attention attends to the four feature difference 
vectors and four semantic feature vectors to create 
a context vector, and then sends it to the LSTM. 
The loss function and backpropagation method of 
this model is the same as that of the mDiTag(+) 
model. There are four tag losses in each 
intermediate convolutional layer of mDiTag(+) and 
mDiTag(s) model. Total loss for these models is: 

𝐿𝐿𝑚𝑚𝐷𝐷𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡 = 𝜆𝜆𝑠𝑠𝑡𝑡𝑡𝑡_1𝐿𝐿𝑠𝑠𝑡𝑡𝑡𝑡_1 + 𝜆𝜆𝑠𝑠𝑡𝑡𝑡𝑡_2𝐿𝐿𝑠𝑠𝑡𝑡𝑡𝑡_2 +
                     𝜆𝜆𝑠𝑠𝑡𝑡𝑡𝑡_3𝐿𝐿𝑠𝑠𝑡𝑡𝑡𝑡_3 + 𝜆𝜆𝑠𝑠𝑡𝑡𝑡𝑡_4𝐿𝐿𝑠𝑠𝑡𝑡𝑡𝑡_4 +

    𝜆𝜆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 � 𝐿𝐿𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑆𝑆
𝑠𝑠=1 +

              𝜆𝜆𝑤𝑤𝑠𝑠𝑤𝑤𝑤𝑤 ∑ ∑ 𝐿𝐿𝑠𝑠,𝑤𝑤
𝑤𝑤𝑠𝑠𝑤𝑤𝑤𝑤

𝑊𝑊
𝑤𝑤=1

𝑆𝑆
𝑠𝑠=1

  (5) 

4 Experimental Settings and Results 

4.1 Experimental Settings 

All model experiments use the same parameters 
and hyperparameters. For MLC, the number of 
classes corresponding is 210, the number of classes 
to predict is 10, and the generated semantic feature 
vector dimension is 512. In the decoder, the 
Sentence LSTM is 1 layer, the Word LSTM is 1 
layer, the hidden vector dimension is 512, the 
maximum number of sentences generated is 6, and 
the maximum number of words created is 30. The 
learning rate starts from 1ⅇ − 4 and is optimized by 
Adam optimizer. Total epoch is 1,000 but tested 
with a model of minimum loss. It took four days to 
train with a 1080Ti GPU with 11G Memory. 

4.2 Metric Evaluation 

Table 1 provides information on the performance 
of the models evaluated for the test dataset. We use 
BLEU score (Papineni et al., 2002), ROUGE-L 

(Lin, 2004), and CIDEr (Vedantam et al., 2015) for 
the metrics. The DiTag model has higher metric 
scores than the baseline model, and for cDiTag 
model, only the ROUGE-L score increases. Since 
the DiTag model structure is more suitable, 
mDiTag model structures also only utilizes the 
feature difference vector. 

Next, based on all metric scores, the best model 
is the mDiTag(-) model. When the model includes 
MLC, the metric score reduces. Since there are two 
tags per image on average, when predicting 10 tags, 
there are wrong tag information. Also, the 

Model BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE-L CIDEr 
Baseline model 0.2738 0.1585 0.1045 0.0682 0.2099 0.1226 
DiTag model 0.3015 0.1795 0.1204 0.0811 0.2438 0.1939 
cDiTag model 0.2501 0.1413 0.0913 0.0597 0.2177 0.0903 

mDiTag(-) model 0.3293 0.1985 0.1354 0.0945 0.2731 0.1944 
mDiTag(+) model 0.3227 0.1919 0.1271 0.0852 0.2575 0.1829 
mDiTag(s) model 0.2086 0.1225 0.0795 0.0566 0.1719 0.1252 

Table 1: Metric Evaluation for all models. The DiTag model utilizes feature difference vector, the cDiTag model 
uses combined feature vector, and the mDiTag models use multiple feature difference vectors. The mDiTag(-) 
model excludes MLC and semantic feature vectors, the mDiTag(+) model excludes semantic feature vectors, 
and the mDiTag(s) model uses all. The best model for all metric scores is the mDiTag(-) model.  

Model generation result 

Baseline 
Model 

no acute cardiopulmonary 
abnormality the heart is normal in 
size the heart and lungs have in 
the interval 

mDiTag(-) 
Model 

<num> no acute cardiopulmonary 
abnormality <num> chronic 
changes consistent with 
emphysema the heart is normal in 
size the lungs are clear no pleural 
effusion or pneumothorax is seen  

mDiTag(+) 
Model 

no acute cardiopulmonary 
abnormality the heart is normal in 
size the lungs are clear there is no 
focal air space opacity to suggest a 
pneumonia 

Ground 
Truth 

Report 

left base atelectasis lungs 
otherwise clear there is minimal 
opacity in the left lung base 
representing atelectasis the lungs 
are otherwise clear heart size is 
normal no <unk> 

Image 

 
Table 2: The first example of the models' outputs 
with corresponding ground truth report, and image.  
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significant class imbalance makes MLC 
challenging to train. Further, when the model uses 
the semantic feature vector, metric scores reduce. 
The semantic feature vector is word embedding of 
the top 10 tags predicted by MLC. However, the 
semantic feature vector provides incorrect 
information because of the wrong tags among the 
10 predicted tags. 

4.3 Analysis of Model Output 

Table 2 and Table 3 show examples of the models’ 
output. To make the model outputs easier to see, we 
eliminate the repeated sentences in the table. The 
mDiTag(-) model generates more detailed reports 
than the other models. There are some abnormal 
findings in the images and ground truth reports in 
Table 2 and Table 3. The baseline model only 
explains about the normal findings, while the 
mDiTag(-) model produces some disease-related 
sentences, but is not accurate. The outputs show 

that exploiting multiple feature differences allows 
the model to generate a relatively diverse 
explanation of the patient’s disease. However, the 
output still produces general description and does 
not present enough information about specific 
features of the disease. As expected, there are 
incorrect disease descriptions because the tag 
prediction is not accurate. In addition, as there are 
too many types of abnormal findings, the terms 
become too rare to train the model adequately. The 
components of the text generation part should be 
modified to resolve the issue of the repeated 
sentence. Another limitation of this paper is the 
lack of human evaluation. 

5 Conclusion 

We propose models that exploit feature differences 
and tag information. As expected, the model that 
uses low-level convolutional features from the 
CNN model can convey low-level details, such as 
contrast, texture, and localized area. Some of our 
models outperform the conventional image 
captioning models in terms of BLEU score, 
ROUGE-L, and CIDEr. The mDiTag(-) model 
performs best according to every metric. Based on 
these experiments, we can conclude that the feature 
differences between images and semantic tags are 
crucial elements necessary for training. In the 
future, we will strengthen tags that contain 
semantic information to extract keywords for more 
accurate information, such as disease information, 
location, and size. Furthermore, improving the 
accuracy of multiple tag prediction is crucial to 
deliver semantic facts accurately. We are also 
considering obtaining more images from hospitals 
to reduce the proportion of abnormal images in the 
datasets. 
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Model generation result 

Baseline 
Model 

no acute cardiopulmonary 
abnormality the heart is normal in 
size the lungs are clear 

mDiTag(-) 
Model 

<num> no acute cardiopulmonary 
abnormality <num> left midlung 
subsegmental atelectasis versus 
scar the heart is normal in size the 
mediastinum is unremarkable no 
pleural effusion or pneumothorax 
no acute bony abnormality 

mDiTag(+) 
Model 

no acute cardiopulmonary 
abnormality the heart is normal in 
size the lungs are clear no focal 
airspace consolidation or pleural 
<unk> 

Ground 
Truth 

Report 

low lung volumes no acute 
cardiopulmonary findings the 
cardiomediastinal silhouette is 
stable lung volumes remain low 
there is no pleural line to suggest 
pneumothorax or costophrenic 
blunting to suggest large pleural 
effusion bony structures are 
within normal <unk> 

Image 

 
Table 3. The second example of the models' 
outputs with corresponding ground truth report, 
and image. 
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