
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics: Student Research Workshop, pages 88–94
July 5 - July 10, 2020. c©2020 Association for Computational Linguistics

88

SCAR: Sentence Compression using Autoencoders for Reconstruction

Chanakya Malireddy
IIIT Hyderabad

chanakya.malireddy
@research.iiit.ac.in

Tirth Maniar
IIIT Hyderabad
tirth.maniar

@students.iiit.ac.in

Manish Shrivastava
IIIT Hyderabad

m.shrivastava
@iiit.ac.in

Abstract

Sentence compression is the task of shortening
a sentence while retaining its meaning. Most
methods proposed for this task rely on labeled
or paired corpora (containing pairs of verbose
and compressed sentences), which is often ex-
pensive to collect. To overcome this limitation,
we present a novel unsupervised deep learn-
ing framework (SCAR) for deletion-based sen-
tence compression. SCAR is primarily com-
posed of two encoder-decoder pairs: a com-
pressor and a reconstructor. The compressor
masks the input, and the reconstructor tries to
regenerate it. The model is entirely trained
on unlabeled data and does not require addi-
tional inputs such as explicit syntactic informa-
tion or optimal compression length. SCAR’s
merit lies in the novel Linkage Loss function,
which correlates the compressor and its effect
on reconstruction, guiding it to drop inferable
tokens. SCAR achieves higher ROUGE scores
on benchmark datasets than the existing state-
of-the-art methods and baselines. We also con-
duct a user study to demonstrate the applica-
tion of our model as a text highlighting system.
Using our model to underscore salient informa-
tion facilitates speed-reading and reduces the
time required to skim a document.

1 Introduction

Our fast-paced lifestyle precludes us from reading
verbose and lengthy documents. How about a sys-
tem that highlights the salient content for us (as
shown in Fig.1)? We model this problem as the
well-known sentence compression task. Sentence
compression aims to generate a shorter representa-
tion of the input that captures its gist and preserves
its intent. Compression algorithms are broadly clas-
sified as abstractive and extractive. Extractive com-
pression or deletion-based algorithms only select
relevant words from the input, whereas abstractive
compression algorithms also allow paraphrasing.

Figure 1: An example of a system that highlights the
salient content, allowing the user to skim through the
document quickly.

In the past, compression approaches have re-
volved around statistical methods (Knight and
Marcu, 2000) and syntactic rules (McDonald,
2006). Current state-of-the-art methods model
the problem as a sequence-to-sequence learning
task (Filippova et al., 2015). Although these meth-
ods perform well, they require massive parallel
training datasets that are difficult to collect (Fil-
ippova and Altun, 2013). Recently, unsupervised
approaches have been explored to overcome this
limitation. Fevry and Phang (2018) model com-
pression as a denoising task but barely reach the
baselines. Baziotis et al. (2019) propose SEQ3, an
autoencoder which uses a Gumbel-softmax to rep-
resent the distribution over summaries. But a qual-
itative analysis of their outputs shows that SEQ3

mimics the lead baseline.
In this work, we present an unsupervised deep

learning framework (SCAR) for deletion-based sen-
tence compression. SCAR is composed of a com-
pressor and a reconstructor. For each word in the
input, the compressor determines whether or not
to include it in the compression. A length loss
restricts the compression length. The reconstruc-

89

tor tries to regenerate the input using the words
retained by the compressor. A reconstruction loss
motivates the compressor to include words that aid
in reconstruction. However, without an additional
loss to govern word masking, the network fails to
converge. We introduce a novel linkage loss that
ties together the compressor and the reconstructor.
It penalizes the network if a) it decides to drop a
word but is unable to reconstruct it or b) it decides
to include a word which it could reconstruct easily.

2 Related Work

Early compression algorithms were formulated us-
ing strong linguistic priors and language heuris-
tics (Jing, 2000; Knight and Marcu, 2002; Dorr
et al., 2003; Cohn and Lapata, 2008). McDonald
(2006) use syntactical evidence to condition the
output of the model. Berg-Kirkpatrick et al. (2011)
prune dependency edges to remove constituents for
compression.

Deep learning-based approaches have gained
popularity owing to their success in core NLP
tasks such as machine translation (Bahdanau et al.,
2014). Filippova et al. (2015) propose an RNN
based encoder-decoder network for deletion based
compression. Although this approach achieves su-
perior performance over metric-based approaches,
a large amount of paired sentences are needed to
train the network.

The first attempt to reduce the dependence on
paired corpora for deletion based deep learning
compression models was made by Miao and Blun-
som (2016). They train separate compressor and
reconstruction models, to allow for both supervised
and unsupervised training. The compressor con-
sists of a discrete variational autoencoder. The
model is trained end-to-end using the REINFORCE
algorithm. However, the reported results still use a
sizeable amount of labeled data.

Recent approaches have sought completely un-
supervised solutions. Fevry and Phang (2018) use
a denoising autoencoder (DAE) for sentence com-
pression. The input sentence is shuffled and ex-
tended to add noise. DAE tries to reconstruct the
original denoised sentence from the noisy input.
An additional signal is needed to specify the out-
put length. At test time, the sentence is fed to the
model without any noise. In an attempt to denoise
the input, the network generates a compressed out-
put. However, the model often fails to capture the
information present in the input and is barely able

to reach the baselines.
SEQ3 (Baziotis et al., 2019) proposes an au-

toencoder using a Gumbel-softmax to represent the
distribution over summaries. A compressor gener-
ates a summary, and a reconstructor tries to recon-
struct the input using the summary. A pre-trained
language model acts as a prior, to incentivize the
compressor to produce human-readable summaries.
An additional topic loss is required to ensure that
the summary contains relevant words, making the
model non-generic and fine-tuned to the domain.
A qualitative analysis of the outputs shows that
SEQ3 merely mimics the lead baseline and gener-
ates compressions by blindly copying a prefix of
the input.

3 SCAR

SCAR is composed of two encoder-decoder pairs:
compressor C and reconstructor R, as shown in
Fig. 2. Given an input sentence s = w1, w2 ...,
wk containing k words, C generates an indicator
vector Iv = Iv1, Iv2, ..., Ivk which indicates the
presence/absence of each word in the summary.
The summary is represented as s′ = s� Iv, where
� represents element-wise multiplication. There-
fore, words corresponding to Ivi≈ 0 are effectively
skipped. The network tries to reconstruct the input
sentence from s′.

Formally, the network tries to find an I∗v such
that the probability p(s|s � Iv) is maximized and∑k

t=1 Ivt is minimized, jointly. The probability
p(s|s� Iv) can be decomposed further as shown in
Eq.(1)

I∗v = argmax
Iv

k∏
t=1

p(wt|(w1 × Iv1),

..., (wk−1 × Ivk−1)) (1)

For every word in the sentence, we learn
a 300-dimensional embedding initialized with
GloVe (Pennington et al., 2014). These embed-
dings are sequentially fed as input to the Sentence
Encoder (Es), composed of a bi-LSTM. The input
is fed forwards and backward. The hidden states
are a concatenation of the forward and backward
states. The sentence representation is obtained
from the final hidden state of Es(i.e., he1). The
Indicator Extraction Module (IEM), a bi-LSTM
decoder, is initialized using he1. The output of
this decoder at each time step is passed through a
network of two fully connected layers to generate

90

Figure 2: The figure shows the proposed SCAR architecture (details are described in Section 3)

a single indicator value. We intend this value to
be close to either one or zero, denoting the pres-
ence/absence of each word from the summary.

The masked sentence, s′ = s � Iv, is encoded
using the Summary Encoder (E

s
′), composed of

a bi-LSTM. The Summary Decoder (D
s
′), also a

bi-LSTM, is initialized using the final hidden state
of E

s′(he2). This decoder aims to regenerate the
input sentence s from s′. This motivates IEM to
generate Iv such that s can be easily reconstructed.
The output at each time step inD

s′ is fed to a dense
layer, Ws, which computes a distribution over the
vocabulary from the decoder’s hidden states.

3.1 Loss functions

Compression Length loss (Llen) is used to con-
strain the summary length. It is calculated from
the output of IEM as shown in Eq. (2). Len(s′) is
the sum of elements of Iv. We set r = 0.4 in our
experiments.

Llen =
(Len(s′)
Len(s)

− r
)2

(2)

Sentence Reconstruction loss (Lrec) is applied
to ensure s′ contains enough information to recon-
struct s. It is calculated from the output of D

s′ as
shown in Eq. (3).

Lrec = −
Len(s)∑
i=1

logP (wi|w′<i, he2) (3)

To help ease reconstruction, Lrec steers the
network to keep larger summaries, whereas Llen
forces it to it cut down. This makes it hard for the

model to converge optimally. We introduce a novel
Linkage loss (Llnk), which correlates the indicator
vector and its effect on reconstruction. It penalizes
the network if a) it decides to mask a word but is
unable to reconstruct it or b) it decides to include a
word which it could reconstruct easily. It is applied
to the outputs of IEM and D

s′, as shown in Eq. (4).

Ref: the olympic village for the winter

games in turin was officially

opened on tuesday

Summ: olympic village winter turin

opened

Recon: the olympic village of the winter olympics a

turin was officially opened here wednesday

Figure 3: Linkage loss guides the model to drop words
that can be inferred during reconstruction (light green)
and retain words that are harder to infer (dark green).

Llnk =

Len(s)∑
i=1

(
Ivie

(1−χi)+(1−Ivi)e
χi−1

)
(4)

The variable χi ∈ [0, 1], in Eq. (5), is the nor-
malized value of a word’s logit in a sentence. It
denotes the relative difficulty of decoding word wi,
given w′<i and he2. Llnk is minimized when either
a) χi = 0 and Ivi = 0 (signifying that wi is easy
to decode and should be dropped) or b) χi = 1
and Ivi = 1 (signifying that hard-to-decode words
should be retained). The effect of Llnk can be seen
in Fig. 3. The model retains words with a higher χi
(dark green), whereas words with a lower χi (light
green) can be inferred during reconstruction and

91

therefore dropped.

χi =
|logP (wi|w′<i, he2)|

max1≤j≤Len(s)|logP (wj |w<j , he2)|
(5)

Binarization loss (Lbin) is applied to the output
of IEM, as shown in Eq. (6), to push the values of
Iv close to 0 and 1 (since setting them to these hard
values directly introduces non-differentiability). In
our experiments, b is set to 5 and a is such that Lbin
is always non-negative. At test time, only the words
with Ivi > 0.5 are included in the compression.

Lbin =
1

Len(s)

Len(s)∑
i=1

(a− b(Ivi − 0.5)2) (6)

3.2 Re-weighting Vocabulary Distribution
Due to the nature of Zipf’s law (Zipf, 1949), most
of the probability mass in the vocabulary distribu-
tion output by the Summary Decoder is retained
by stopwords. As a result, χi corresponding to
stopwords is much lower compared to content
words. This causes the network to blindly drop
stopwords and retain most content words. In this
case, many content words that may be inferable
are not dropped. To remedy this, we introduce
Stop Predictor (Dstop), which assigns a score to
the next word based on whether it is a stopword
or not. When the network believes that the next
word is not a stopword, it re-distributes the proba-
bility mass from stopwords proportionally among
content words and vice-versa.

The word embeddings’ of s are sequentially fed
as input to Dstop, a bi-LSTM decoder. The out-
put of Dstop at each time step is passed through a
network of two fully connected layers to generate
a single score, ystop,i ∈ [0, 1]. In order to train
Dstop we apply Lstp (mean-square-error loss with
the ground truth) as shown in Eq.(7). The ground
truth is obtained from the stopword-list, defined as
the collection of 50 most frequent words (0.25%
of the vocabulary size) found in the dataset.

We re-weight the vocabulary distribution using
ystop,i, similar to pgen in (See et al., 2017), as
shown in Eq. (8). Is is a vocabulary sized vec-
tor with the 50 elements of stopword-list set to 1
and the rest to 0.

Lstp =
1

Len(s)

Len(s)∑
i=1

(ystop,i − ygtstop,i)
2 (7)

P ′(wi|w′<i, he2) = softmax(Is ·ystop,i ·P (wi)
+ (1− Is) · (1− ystop,i) · P (wi)) (8)

This re-weighted distribution is plugged into
Eq.(5) and used to calculate Llnk.

The final loss function (L) is a linear combi-
nation of the above losses. Since this is an unsu-
pervised approach, currently, the weights are ex-
perimentally determined. Initial weights for each
loss were selected to normalize the output range
of all loss functions. We performed a grid search
in the neighborhood of these initial weight values
to determine optimal weights that maximized the
ROUGE scores on the validation set. The weights
have been set to 8 (Llen), 1 (Lrec), 5 (Llnk), 100
(Lbin) and 10 (Lstp) in our experiments.

3.3 Training
In our experiments, we used the annotated Giga-
word corpus (Rush et al., 2015). The model is
trained only on the reference section. We only con-
sidered sentences where the length was between
15 and 40 words (3.5M samples). A small por-
tion of the training set (200k samples) was held
out for validation. The batch size is set to 128.
Vocabulary is restricted to 20000 most frequent
words from the dataset. All bi-LSTM cells are
of size 600 and weights are initialized normally
N (µ = 0, σ = 0.1). The output from IEM and
Dstop is passed through a hidden layer (150 units)
and an output layer with ReLU and sigmoid ac-
tivations, respectively. We use Adam optimizer
(Kingma and Ba) (lr=0.001, β1=0.9 and β2=0.999).
Gradients larger than 1.0 are clipped. The model is
trained for 5 epochs using early stopping by moni-
toring the performance on the validation set.1

4 Experiments

Since the test set of the Gigaword corpus is small
(1.9k samples) and does not capture the true be-
havior of the models, we report our results on the
significantly larger validation set (189k samples).
Note that SCAR does not make use of the valida-
tion set during training, and it can be treated as a
test set. We also test (without retraining) SCAR
on DUC-2003 and DUC-2004 shared tasks (Over
et al., 2007), containing 624/500 news articles each,
paired with 4 reference summaries capped at 75

1https://github.com/m-chanakya/scar

https://github.com/m-chanakya/scar

92

Gigaword DUC-2003 DUC-2004
R-1 R-2 R-L R-1 R-2 R-L R-1 R-2 R-L

Baselines
All-Text 28.07 10.02 24.49 - - - - - -
Prefix 26.28 9.54 24.73 20.82 6.14 18.44 22.18 6.30 19.33

Lead50 30.22 10.99 27.40 20.92 6.22 18.59 22.26 6.33 19.38
Unsupervised

SEQ3 30.23 10.24 27.26 20.89 6.07 18.54 22.12 6.17 19.29
DAE 26.84 7.35 23.15 18.45 3.94 15.79 20.06 4.73 17.03

SCAR 29.80 7.52 26.10 21.71 4.73 18.81 22.92 5.52 19.85
Supervised

Seq2Seq 33.72 14.18 30.65 26.12 9.67 23.37 27.31 10.43 24.18
Ablation
w/o Llnk 27.24 5.16 23.87 20.31 3.41 17.60 19.94 3.25 17.07
w/o Dstop 28.86 7.02 25.29 21.46 4.66 18.62 21.94 4.70 19.10
r = 0.3 27.80 5.07 24.39 20.25 3.16 17.46 20.28 3.09 17.53
r = 0.2 25.36 3.36 22.38 18.97 2.31 16.23 18.43 2.20 15.90

Table 1: Average ROUGE scores on Gigaword and DUC datasets.

bytes. We report average ROUGE (1,2,L) F1 scores
(Lin, 2004) obtained by all the models in Table 1.

We compare our model with three standard base-
lines - Prefix (first 8 words for Gigaword/first 75
bytes for DUC), Lead50 (50% tokens) and All-
Text (entire input). To compare with supervised
approaches, we train a baseline Seq2Seq model,
similar to (Fevry and Phang, 2018). Finally, we
compare our model with the recent unsupervised
approaches, DAE (Fevry and Phang, 2018) 2, and
SEQ3 (Baziotis et al., 2019) 3.

4.1 Pitfalls of SEQ3

Lead50 achieves the highest ROUGE scores, but it
does not make for a viable compression method as
it blindly drops the latter half of the sentence. The
scores obtained by SEQ3 are strikingly similar
to Lead50. The authors of SEQ3 note that “the
model tends to copy the first words of the input
sentence in the compressed text”. We observed that
SEQ3 introduces very little abstractiveness (only
0.001% of the words are different from the input)
and copies the first half of the sentence.

To corroborate our findings, we introduce the
notion of summary coverage. It is a measure of
how well each position of the input is represented
in the compression. We divide the input sentence
into equal-sized segments and measure how often

2https://github.com/zphang/usc dae
3https://github.com/cbaziotis/seq3.git

Figure 4: We divide the input sentence into equal-sized
segments and measure how often each segment (x-axis)
is included in the compression (y-axis).

each segment is included in the compression. We
plot the summary coverage for Lead50, SEQ3, and
SCAR, as shown in Fig.4. A visualization is shown
in Fig.5. Lead50 and SEQ3 only cover the first
half (initial segments) of the input, leading to in-
complete/incorrect compressions. SCAR has more
uniform coverage and represents all segments of
the input well, leading to more informative com-
pressions.

4.2 Quantitative evaluation

Given the pitfalls of SEQ3, SCAR achieves state-
of-the-art performance in unsupervised sentence
compression on Gigaword and DUC datasets.
SCAR’s R-2 scores on both benchmark sets are
low because it tends to drop the inferable portion

https://github.com/zphang/usc_dae
https://github.com/cbaziotis/seq3.git

93

LEAD50: malaysia ’s government on monday announced an immediate ##-million dollar plan to expand roads , build

underground bypasses and overhead bridges to ease kuala lumpur ’s traffic jams .

SEQ3: malaysia ’s government on monday announced an immediate ##-million dollar plan to expand roads ,

build underground bypasses and overhead bridges to ease kuala lumpur ’s traffic jams .

SCAR malaysia ’s government on monday announced an immediate ##-million dollar plan to expand roads ,

build underground bypasses and overhead bridges to ease kuala lumpur ’s traffic jams .

Headline: malaysia announces ##-million dollar plan to ease kuala lumpur traffic woes

Figure 5: Visualization of summary coverage by overlaying the compressions onto the reference.

Ref (SCAR
Highlight)

president bill clinton this week unveils a budget proposal offering nearly ### billion dollars in

tax relief over the next six years and calling for the elimination of the federal deficit by #### .

SEQ3 president bill clinton this week unveils a budget proposal offering nearly ### billion dollars in tax relief

deficit (Wrong content retained)

DAE president bill clinton unveils the federal budget deficit this week by offering nearly ### billion dollars

(Wrong content retained)

SCAR bill this budget proposal nearly billion tax relief next six calling elimination federal deficit

Headline clinton calls for elimination of the federal deficit by ####

Figure 6: An example of the reference (with SCAR highlight), compressions, and headline.

Correct Unsure Time
Reference 93.4% 6.6% 2m 31s

SCAR (Highlight) 93.4% 6.6% 1m 54s
Compressions

SEQ3 53.3% 46.67% 2m 13s
DAE 26.67% 73.34% 2m 29s

SCAR 66.67% 33.33% 2m 42s

Table 2: Average correctness and time scores.

of a bi-gram. Without Linkage loss (Llnk), SCAR
loses its ability to drop inferable portions of the
input. Without Dstop, a mechanism to re-distribute
probability mass from stop words, SCAR tends
only to drop stopwords. Lower values of r, cause
the model to generate smaller compressions. As
expected, all of the above factors cause a dip in
performance.

4.3 Qualitative evaluation

ROUGE only measures the content overlap and
does not account for coherence. We conduct a
Qualitative study to address the known issues with
ROUGE (Schluter, 2017) and evaluate SCAR’s
effectiveness as a speed reading system.

Human evaluators are asked to match the ref-
erence/compression that they are shown with the
correct headline from a set of 5 options. 3 incor-
rect options are generated by selecting Gigaword
headlines that share tokens with the reference. The

fifth option is ”unsure.” Fifteen English speaking
participants were divided into 5 sets. They were
shown the reference (1), the reference with SCAR
highlighting (2), compressions generated by SCAR
(3), SEQ3 (4), and DAE (5), respectively. Each
user was asked to match 10 samples.

An example is shown in Fig.6. Compressions
generated by DAE fail to preserve the meaning and
intent of the reference. SEQ3 habitually retains
the first half of the input, and the evaluators fail to
match the headline if it corresponds to the latter
half. Due to collocation, SCAR tends to drop the
inferable portion of a bi-gram. For example, ”Bill”
is retained, and ”Clinton” is dropped. The average
correctness and time scores are reported in Table
2. Compared to other compressions, SCAR has the
highest score in terms of correctness. Using SCAR
to highlight, reduces reading time by 25%.

5 Conclusion and Future Work

SCAR addresses a significant limitation of the un-
availability of labeled data for sentence compres-
sion. It outperforms the existing state-of-the-art
unsupervised models. Since SCAR learns to drop
inferable components of the input and therefore
reduces noise, it can be used as a preprocessing
step for machine translation and other information
retrieval tasks.

94

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-

gio. 2014. Neural machine translation by jointly
learning to align and translate. arXiv preprint
arXiv:1409.0473.

Christos Baziotis, Ion Androutsopoulos, Ioannis Kon-
stas, and Alexandros Potamianos. 2019. Seqˆ
3: Differentiable sequence-to-sequence-to-sequence
autoencoder for unsupervised abstractive sentence
compression. arXiv preprint arXiv:1904.03651.

Taylor Berg-Kirkpatrick, Dan Gillick, and Dan Klein.
2011. Jointly learning to extract and compress. In
Proceedings of the 49th Annual Meeting of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies-Volume 1, pages 481–490. As-
sociation for Computational Linguistics.

Trevor Cohn and Mirella Lapata. 2008. Sentence com-
pression beyond word deletion. In Proceedings
of the 22nd International Conference on Computa-
tional Linguistics-Volume 1, pages 137–144. Associ-
ation for Computational Linguistics.

Bonnie Dorr, David Zajic, and Richard Schwartz.
2003. Hedge trimmer: A parse-and-trim approach
to headline generation. In Proceedings of the HLT-
NAACL 03 on Text summarization workshop-Volume
5, pages 1–8. Association for Computational Lin-
guistics.

Thibault Fevry and Jason Phang. 2018. Unsuper-
vised sentence compression using denoising auto-
encoders. In Proceedings of the 22nd Conference on
Computational Natural Language Learning, pages
413–422, Brussels, Belgium. Association for Com-
putational Linguistics.

Katja Filippova, Enrique Alfonseca, Carlos A Col-
menares, Lukasz Kaiser, and Oriol Vinyals. 2015.
Sentence compression by deletion with lstms. In
Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing, pages
360–368.

Katja Filippova and Yasemin Altun. 2013. Overcom-
ing the lack of parallel data in sentence compression.
In Proceedings of the 2013 Conference on Empiri-
cal Methods in Natural Language Processing, pages
1481–1491.

Hongyan Jing. 2000. Sentence reduction for automatic
text summarization. In Proceedings of the sixth
conference on Applied natural language processing,
pages 310–315. Association for Computational Lin-
guistics.

Diederik P Kingma and Jimmy Ba. Adam: A method
for stochastic optimization. In Proceedings of the
3rd International Conference on Learning Represen-
tations (ICLR), arXiv preprint arXiv, volume 1412.

Kevin Knight and Daniel Marcu. 2000. Statistics-
based summarization – step one: Sentence compres-
sion. In In Proceedings of AAAI.

Kevin Knight and Daniel Marcu. 2002. Summariza-
tion beyond sentence extraction: A probabilistic ap-
proach to sentence compression. Artificial Intelli-
gence, 139(1):91–107.

Chin-Yew Lin. 2004. ROUGE: A package for auto-
matic evaluation of summaries. In Text Summariza-
tion Branches Out, pages 74–81, Barcelona, Spain.
Association for Computational Linguistics.

Ryan McDonald. 2006. Discriminative sentence com-
pression with soft syntactic evidence. In 11th Con-
ference of the European Chapter of the Association
for Computational Linguistics.

Yishu Miao and Phil Blunsom. 2016. Language as a
latent variable: Discrete generative models for sen-
tence compression. In Proceedings of the 2016 Con-
ference on Empirical Methods in Natural Language
Processing, pages 319–328, Austin, Texas. Associa-
tion for Computational Linguistics.

Paul Over, Hoa Dang, and Donna Harman. 2007. Duc
in context. Information Processing & Management,
43(6):1506–1520.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word rep-
resentation. In Proceedings of the 2014 conference
on empirical methods in natural language process-
ing (EMNLP), pages 1532–1543.

Alexander M. Rush, Sumit Chopra, and Jason Weston.
2015. A neural attention model for abstractive sen-
tence summarization. In Proceedings of the 2015
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 379–389, Lisbon, Portugal.
Association for Computational Linguistics.

Natalie Schluter. 2017. The limits of automatic sum-
marisation according to rouge. In Proceedings of
the 15th Conference of the European Chapter of the
Association for Computational Linguistics: Volume
2, Short Papers, pages 41–45.

Abigail See, Peter Liu, and Christoper Manning. 2017.
Get to the point: Summarization with pointer-
generator networks. pages 1073–1083.

George K. Zipf. 1949. Human Behaviour and the Prin-
ciple of Least Effort. Addison-Wesley.

https://doi.org/10.18653/v1/K18-1040
https://doi.org/10.18653/v1/K18-1040
https://doi.org/10.18653/v1/K18-1040
https://doi.org/10.18653/v1/D16-1031
https://doi.org/10.18653/v1/D16-1031
https://doi.org/10.18653/v1/D16-1031
https://doi.org/10.18653/v1/D15-1044
https://doi.org/10.18653/v1/D15-1044
https://doi.org/10.18653/v1/P17-1099
https://doi.org/10.18653/v1/P17-1099

