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Abstract

Previous work on answering complex ques-
tions from knowledge bases usually separately
addresses two types of complexity: questions
with constraints and questions with multiple
hops of relations. In this paper, we handle
both types of complexity at the same time.
Motivated by the observation that early incor-
poration of constraints into query graphs can
more effectively prune the search space, we
propose a modified staged query graph gener-
ation method with more flexible ways to gen-
erate query graphs. Our experiments clearly
show that our method achieves the state of the
art on three benchmark KBQA datasets.

1 Introduction

Knowledge base question answering (KBQA) aims
at answering factoid questions from a knowledge
base (KB). It has attracted much attention in recent
years (Bordes et al., 2014; Xu et al., 2016; Yu et al.,
2017; Liang et al., 2017; Hu et al., 2018; Petrochuk
and Zettlemoyer, 2018). Early work on KBQA
focused on simple questions containing a single
relation (Yih et al., 2014; Bordes et al., 2015; Dong
et al., 2015; Hao et al., 2017). However, real ques-
tions are often more complex and recently some
studies looked into complex KBQA.

Two different types of complexity have been
studied: (1) Single-relation questions with con-
straints. For example, in the question “Who was
the first president of the U.S.?” there is a single
relation “president of” between the answer entity
and the entity “U.S.,” but we also have the con-
straint “first” that needs to be satisfied. For this
type of complex questions, a staged query graph
generation method has been proposed, which first
identifies a single-hop relation path and then adds
constraints to it to form a query graph (Yih et al.,
2015; Bao et al., 2016; Luo et al., 2018). (2) Ques-
tions with multiple hops of relations. For example,

for the question “Who is the wife of the founder
of Facebook?” the answer is related to “Facebook”
through two hops of relations, namely, “wife of”
and “founder of.” To answer this type of multi-
hop questions, we need to consider longer relation
paths in order to reach the correct answers. The
main challenge here is how to restrict the search
space, i.e., to reduce the number of multi-hop re-
lation paths to be considered, because the search
space grows exponentially with the length of rela-
tion paths. One idea is to use beam search. For
example, Chen et al. (2019) and Lan et al. (2019b)
proposed to consider only the best matching re-
lation instead of all relations when extending a
relation path. However, little work has been done
to deal with both types of complexity together.

In this paper, we handle both constraints and
multi-hop relations together for complex KBQA.
We propose to modify the staged query graph gen-
eration method by allowing longer relation paths.
However, instead of adding constraints only after
relation paths have been constructed, we propose
to incorporate constraints and extend relation paths
at the same time. This allows us to more effectively
reduce the search space. On the ComplexWebQues-
tions dataset, which has a high percentage of com-
plex questions with both types of complexity, our
method substantially outperforms existing methods
with an improvement of 3.3 percentage points in
Prec@1 and 3.9 percentage points in F1. On two
other benchmark KBQA datasets, our method also
achieves the state of the art1.

2 Method

2.1 Preliminaries

A KB can be represented as a set of triplets K =
{(h, r, t)} where h and t are entities from E (the

1Our code is available at https://github.com/
lanyunshi/Multi-hopComplexKBQA.

https://github.com/lanyunshi/Multi-hopComplexKBQA.
https://github.com/lanyunshi/Multi-hopComplexKBQA.
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Who is the first wife of TV producer that was nominated for The
Jeff Probst Show ?

The Jeff
Probst Show

TV
producer
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is_a married_until
nominee𝑦#(CVT) 𝑦$ 𝑦%(CVT)
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constraint 1 constraint 2

Figure 1: An example query graph for the question
shown above. Assuming we start from the topic entity
The Jeff Probst Show, the core relation path is the path
linking The Jeff Probst Show to the lambda variable x.
There are two constraints in the query graph. Note that
y1 and y3 are CVT nodes used for n-ary relations.

entity set) and r is a relation from R (the relation
set). Given a question Q, KBQA tries to find an
entity a ∈ E that answers the question.

Our method is largely inspired by an existing
staged query graph generation method (Yih et al.,
2015; Bao et al., 2016; Luo et al., 2018), which
we briefly introduce here first. A query graph has
four types of nodes: A grounded entity (shaded
rectangle) is an existing entity in the KB. An ex-
istential variable (unshaded rectangle) is an un-
grounded entity. A lambda variable (circle) is also
an ungrounded entity but it represents the answer.
Finally, an aggregation function (diamond) is a
function such as argmin and count that oper-
ates on a set of entities. The edges of a query
graph are relations from R. A query graph should
have exactly one lambda variable to denote the
answer, at least one grounded entity, and zero or
more existential variables and aggregation func-
tions. Figure 1 shows an example query graph for
the question “Who is the first wife of TV producer
that was nomiated for The Jeff Probst Show?”

We summarize the staged query graph genera-
tion method as follows. More details can be found
in (Yih et al., 2015; Bao et al., 2016).

1) Starting from a grounded entity found in the
question (referred to as a topic entity), identify
a core relation path2 linking the topic entity to a
lambda variable. Existing work considers core re-
lation paths containing a single relation (Yih et al.,
2015; Bao et al., 2016; Luo et al., 2018).3

2) From a core relation path identified in Step 1,
attach one or more constraints found in the question.
A constraint consists of either a grounded entity or

2This path is called the core inferential chain by Yih et al.
(2015) and basic query graph by Bao et al. (2016).

3They also consider paths with two relations connected by
a so-called CVT node, which is a special dummy entity used
in Freebase for n-ary relations. For simplicity, we treat these
also as single-relation paths.

an aggregation function together with a relation.
See examples in Figure 1.

3) With all the candidate query graphs generated
from Step 1 and Step 24, rank them by measuring
their similarities with the question. This is typically
done through a neural network model such as a
CNN (Yih et al., 2015; Bao et al., 2016).

4) Execute the top-ranked query graph against
the KB to obtain the answer entities.

2.2 Motivation

The major challenge we face when directly ap-
plying the existing method outlined above to con-
strained multi-hop KBQA is that questions contain-
ing multiple hops of relations (such as the example
in Figure 1) cannot be handled, because existing
work considers only core relation paths with a sin-
gle hop (or two hops with a CVT node). If we
make a naive modification by allowing core rela-
tion paths to be longer, the search space suddenly
becomes much larger. For example, on the Com-
plexWebQuestions dataset, if we allow core rela-
tion paths up to 3 hops, on average we will have
around 10, 000 core relation paths per question,
which is computationally very expensive.

Recent work on multi-hop KBQA tackles this
problem by beam search, i.e., keeping only the
top-K t-hop relation paths before generating the
(t+ 1)-hop relation paths (Chen et al., 2019; Lan
et al., 2019b). However, this approach ignores
constraints when generating the relation paths. We
observe that constraints found in a question can
often help reduce the search space and guide the
generation of the core relation paths towards the
right direction.

Take the question in Figure 1 for example. Given
a partial core relation path (The Jeff Probst Show,
nominated for, y1, nominee, y2), if we were to ex-
tend this path at y2 with one more relation, we
would need to consider all relations in the KB
linked to bindings of y2, which include all enti-
ties nominated for The Jeff Probst Show. But if
we attach the constraint (is a, TV producer) to y2
first, then we would need to consider only those
relations linked to TV producers nominated for The
Jeff Probst Show.

We therefore propose a modified staged query
graph generation method, which does not wait for
each core relation path to be generated completely

4In (Yih et al., 2015), a priority queue is used to keep only
the top-ranked query graphs.
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Figure 2: Examples of the extend, connect and aggregate actions. Note that query graph (d) corresponds to the
question “Who is the first person that was nominated for The Jeff Probst Show?”

before attaching a constraint to it. This more flexi-
ble way of generating query graphs, coupled with a
beam search mechanism and a semantic matching
model to guide pruning, explores a much smaller
search space while still maintaining a high chance
of finding the correct query graph.

2.3 Query Graph Generation

Formally, our method uses beam search to generate
candidate query graphs iteratively. We assume that
the t-th iteration produces a set of K query graphs,
denoted as Gt. At the (t+ 1)-th iteration, for each
g ∈ Gt, we apply one of the {extend, connect,
aggregate} actions (explained below) to grow g by
one more edge and one more node. We do this for
all g ∈ Gt and all actions that are applicable to each
g. Let G′

t+1 denote the set of all resulting query
graphs. We then use a scoring function (explained
in Section 2.4) to rank all the query graphs in G′

t+1

and place the top-K of them in Gt+1. We continue
the iterations until there is no g ∈ Gt+1 that is
scored higher than any g ∈ Gt.

We allow the following actions to grow a query
graph. Figure 2 shows examples of these actions.
(1) An extend action extends the core relation path
by one more relation in R. If the current query
graph contains only a topic entity e, an extend ac-
tion finds a relation r linked to e in the KB and
grows the path by r5. It also makes the other end of
r the lambda variable x. If the current query graph
has a lambda variable x, an extend action changes
x into an existential variable y, finds all bindings of
y in the KB by executing the current query graph
against the KB, finds a relation r linked to one of
these entities, and finally attaches r to y. The other
end of r becomes the new lambda variable x.
(2) Besides the topic entity at the start of the cur-
rent core relation path, there are oftentimes other
grounded entities found in the question. A connect
action links such a grounded entity e to either the

5We also allow r to be two relations connected through a
CVT node.

lambda variable x or an existential variable con-
nected to x that is a CVT node.6 To decide which
relation r to use to link e and x, again we can find
all bindings of x by executing the current query
graph and then find a relation that exists between
one of these entities and e.
(3) Following Luo et al. (2018), we can detect an
aggregation function from the question using a set
of predefined keywords. An aggregate action at-
taches the detected aggregation function as a new
node to either the lambda variable x or an existen-
tial variable connected to x that is a CVT node.

The novelty of our method is that the extend ac-
tion can be applied after the connect and aggregate
actions, which previous methods do not allow.

2.4 Query Graph Ranking

At the end of the t-th iteration, we rank the candi-
date query graphs in G′

t by deriving a 7-dimensional
feature vector vg for each graph g ∈ G′

t and feeding
these vectors into a fully-connected layer followed
by softmax to derive p(g|Q).

The first dimension of vg comes from a BERT-
based semantic matching model. Specifically, we
convert g into a sequence of tokens by following the
sequence of actions that has been taken to construct
g and adding the textual descriptions of the entities
and relations involved at each step sequentially
to the sequence. Existential variables and lambda
variables are ignored. For example, the query graph
shown in Figure 2(a) of the paper is converted to
the following sequence: (the, jeff, probst, show,
nominated, for, nominee).7

6Here we only consider the existential variable connected
to the lambda variable as we should have already considered
the other existential variables in past iterations.

7This example is for illustration purpose. In the actual data,
the relation descriptions are different from what we show in
Figure 1. Therefore the actual token sequence is different for
this example. We also convert the question into a sequence
of tokens. For example, the question “Who is the wife of the
founder of Facebook?” becomes (who, is, the, wife, of, the,
founder, of, facebook). We then concatenate the query graph
sequence and the question sequence into a single sequence,
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The other 6 dimensions of vg are as follows: The
first one is the accumulated entity linking scores
of all grounded entities in the query graph. The
second one is the number of grounded entities ap-
pearing in the query graph. The third to the fifth
ones are the numbers of entity types, temporal ex-
pressions and superlatives in the query graph, re-
spectively. The last feature is the number of answer
entities of the query graph.

2.5 Learning

To train our model, we make use of paired ques-
tions and their correct answers without any ground
truth query graphs. Following the framework of
Das et al. (2018), we use REINFORCE algorithm
to learn a policy function pθ(g|Q) in an end-to-end
manner, where θ is the set of parameters we want
to learn, including the BERT parameters to be up-
dated and the parameters of the fully-connected
layer for the 7-dimensional vector vg. We use F1
score of the predicted answers with respect to the
ground truth answers as reward.

3 Experiments

3.1 Implementation Details

Our method requires entities to be identified from
the questions and linked to their corresponding en-
tries in the KB. For named entity linking, we use
an existing linking tool8 for the ComplexWebQues-
tions dataset and the already extracted topic entities
released together with the dataset for the other two
datasets. For entity type linking, we make use of
the training questions and their answers to learn
a linking model. For temporal expressions and
superlative linking, we simply use regular expres-
sions and a superlative word list. The superlative
words are manually mapped to two aggregation
functions: argmax and argmin.

We initialize the BERT module in the ranker
with the BERT base model9. Other parameters are
initialized randomly. For the hyper-parameters in
BERT model, we set the dropout ratio as 0.1, the
hidden size as 768. The number of layers and the

with the special token [CLS] separating them, as how BERT
is used typically to handle two sequences. We then use the
standard BERT model (Devlin et al., 2019) to process the
entire sequence and derive a score at the top layer. Note that
we fine-tune the pre-trained BERT parameters during learning.

8The tool can be found at https://developers.
google.com/knowledge-graph.

9The pre-trained BERT base model could be
found at https://github.com/huggingface/
pytorch-transformers.

number of multi-attention heads are set as 6 and 12,
respectively. we use the latest dump of Freebase10

as our KB for all the datasets. For beam search, we
set the beam size K to be 3.

3.2 Datasets

We use three datasets to evaluate our method:
ComplexWebQuestons (CWQ) (Talmor and Berant,
2018), WebQuestionsSP (WQSP) (Yih et al., 2015)
and ComplexQuestions (CQ) (Bao et al., 2016). We
treat CWQ as the major evaluation dataset because
CWQ has a significantly higher percentage of com-
plex questions with multiple hops of relations and
constraints, as shown in Table 1a.11 For example,
more than 30% of the questions in CWQ has 2-hop
relations with constraints, compared with just 0.5%
in WQSP. Note that we cannot collect similar statis-
tics for the CQ dataset because it does not provide
the ground truth query graphs, but we observe that
major questions in CQ have 1-hop relations.

3.3 Methods for Comparison

We compare our method with the following exist-
ing work. First, we compare with existing staged
query graph generation methods (Yih et al., 2015;
Bao et al., 2016; Luo et al., 2018), which cannot
handle multi-hop questions. Next, we compare
with (Lan et al., 2019a), which handles constraints
and considers multi-hop relation paths, but uses
neither beam search nor constraints to reduce the
search space. We also compare with (Chen et al.,
2019), which uses beam search with a beam size of
1 to handle multi-hop questions but does not han-
dle constraints. Finally, we compare with (Bhutani
et al., 2019) and (Ansari et al., 2019). Bhutani et al.
(2019) decomposed complex questions into sim-
ple questions and achieved the SOTA in terms of
Prec@1 on CWQ12. Ansari et al. (2019) generated
query programs from questions token by token and
achieved the SOTA on WQSP.

3.4 Main Results

We show the overall comparison in Table 1b. We
can see that on the CWQ dataset, our method
clearly achieves the best performance in terms of

10The KB can be downloaded from https:
//developers.google.com/freebase/.

11Note that we treat 2-hop relation paths with CVT nodes
as 1-hop paths.

12We note that on the leaderboard of CWQ the best Prec@1
was achieved by Sun et al. (2019). However, their method
uses annotated topic entities and is thus not comparable here.

https://developers.google.com/knowledge-graph
https://developers.google.com/knowledge-graph
https://github.com/huggingface/pytorch-transformers
https://github.com/huggingface/pytorch-transformers
https://developers.google.com/freebase/
https://developers.google.com/freebase/
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QType CWQ WQSP

1-hop 0.1% 71.3%w/o CONS
1-hop 35.9% 28.2%w/ CONS
2-hop 33.5% 0.0%w/o CONS
2-hop 30.5% 0.5%w/ CONS

(a)

Method CWQ WQSP CQ
Prec@1/F1 F1 F1

Yih et al. (2015) −/− 69.0 −
Bao et al. (2016) −/− − 40.9
Luo et al. (2018) −/− − 42.8
Lan et al. (2019a) 39.3/36.5 67.9 −
Chen et al. (2019)† 30.5/29.8 68.5 35.3
Bhutani et al. (2019) 40.8/33.9 60.3 −
Ansari et al. (2019) −/− 72.6 −

Our Method 44.1/40.4 74.0 43.3

(b)

Method CWQ
Prec@1/F1

SOTA 40.8/36.5

w/ BERT 44.1/40.4
w/ LSTM 42.1/38.7

w/o extend 25.2/22.8
w/o connect 33.2/31.3
w/o aggregate 42.4/39.6

(c)

Table 1: (a) Some statistics of CWQ and WQSP. CONS stands for constraints. (b) Comparison between our method
and existing work. † denotes our re-implementation. (c) Ablation study on the CWQ dataset.

both Prec@1 and F1. The amount of improve-
ment is also substantial, with 3.3 percentage points
in Prec@1 and 3.9 percentage points in F1. This
validates our hypothesis that our method works
particularly well for complex questions with both
constraints and multi-hop relations. For the other
two datasets, WQSP and CQ, our method also
achieves the SOTA, outperforming previous meth-
ods, demonstrating the robustness of our method.

3.5 Ablation Study

We also conduct an ablation study to better under-
stand our model. To verify that the effectiveness of
our method is not mainly due to the use of BERT,
we replace BERT with LSTM. We can see in Ta-
ble 1c that the LSTM-based version of our method
can still outperform the previous state of the art.
This shows that the effectiveness of our model is
not simply because of the use of BERT. We also
test three versions of our method, each with one
action removed, in order to understand if all three
actions are necessary. The results are also shown
in Table 1c. We can see that the aggregate action
is the least important action whereas the extend ac-
tion is the most important one. However, we need
to combine all three actions together to achieve the
best performance.

3.6 Error Analysis

We randomly sampled 100 error cases for man-
ual inspection. We summarize the errors into the
following categories.
Ranking Error: There are 65% of errors coming
from mis-prediction of query graphs. We look at
these error cases closely. We find that some re-
lations are hard to be detected even with human
judgment. For example, our model mis-predicts the
relation in the question “Who was VP for Nixon?”
as “profession” while the correct relation is “vice

president”. To understand “VP” is the abbreviation
of “vice president” needs external knowledge, if
this mapping has not been observed in the training
data. Topic Linking Error: We observe that there
are 27% of errors occurring due to the entity or
expression linking error. E.g., “What guitar does
Corey Taylor play?” has the constraint type “gui-
tar”, but it is not detected in the linking procedure.
Generation Limitation: The limitation of query
graph generation strategies leads to 6% of errors.
For the question “What jobs did John Adams have
before he was president”, we are unlikely to find a
matched query graph with our strategies.

4 Conclusion

In this paper we proposed a modified staged query
graph generation method to deal with complex
questions with both multi-hop relations and con-
straints. By incorporating constraints into query
graphs early, coupled with the help of beam search,
we are able to restrict the search space. Exper-
iments showed our method substantially outper-
formed existing methods on the ComplexWebQues-
tions dataset and also outperformed the previous
state of the art on two other KBQA datasets.
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