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Abstract

Despite recent progress in conversational ques-
tion answering, most prior work does not fo-
cus on follow-up questions. Practical conver-
sational question answering systems often re-
ceive follow-up questions in an ongoing con-
versation, and it is crucial for a system to
be able to determine whether a question is
a follow-up question of the current conversa-
tion, for more effective answer finding subse-
quently. In this paper, we introduce a new
follow-up question identification task. We pro-
pose a three-way attentive pooling network
that determines the suitability of a follow-up
question by capturing pair-wise interactions
between the associated passage, the conversa-
tion history, and a candidate follow-up ques-
tion. It enables the model to capture topic
continuity and topic shift while scoring a par-
ticular candidate follow-up question. Experi-
ments show that our proposed three-way atten-
tive pooling network outperforms all baseline
systems by significant margins.

1 Introduction

Conversational question answering (QA) mimics
the process of natural human-to-human conversa-
tion. Recently, conversational QA has gained much
attention, where a system needs to answer a series
of interrelated questions from an associated text
passage or a structured knowledge graph (Choi
et al., 2018; Reddy et al., 2019; Saha et al., 2018).
However, most conversational QA tasks do not ex-
plicitly focus on requiring a model to identify the
follow-up questions. A practical conversational QA
system must possess the ability to understand the
conversation history well, and to identify whether
the current question is a follow-up of that partic-
ular conversation. Consider a user who is trying
to have a conversation with a machine (e.g., Siri,
Google Home, Alexa, Cortana, etc). First, the user
asks a question and the machine answers it. When

Passage: . . . script for Verhoeven’s first American film,
Flesh and Blood (1985), which starred Rutger Hauer
and Jennifer Jason Leigh. Verhoeven moved to Hol-
lywood for a wider range of opportunities in filmmak-
ing. Working in the U.S. he made a serious change in
style, directing big-budget, very violent, special-effects-
heavy smashes RoboCop and Total Recall. RoboCop,
for . . . Verhoeven followed those successes with the
equally intense and provocative Basic Instinct (1992)
. . . received two Academy Awards nominations, for
Film Editing and for Original Music . . .
Conversation history:
Q: What was the first film Verhoeven did in the US?
A: Flesh and Blood
Q: What genre of films did he make?
A: big-budget, very violent, special-effects-heavy
smashes
Candidate follow-up question examples:
What year did his first film debut? – Valid
Did he make any films during his final years? – Invalid
What did she do after her debut film? – Invalid

Figure 1: Examples illustrating the follow-up question
identification task.

the user asks the second question, it is very im-
portant for the machine to understand whether it
is a follow-up of the first question and its answer.
Further, this needs to be determined for every ques-
tion posed by the user in that ongoing conversation.
By identifying whether the question is a follow-up
question, a machine determines whether the conver-
sation history is relevant to the question. Based on
this decision, it is expected to use a suitable answer
finding strategy for answering the question. Addi-
tionally, a QA system first retrieves some relevant
documents using an information retrieval (IR) en-
gine to answer a question. If a follow-up question
identifier predicts the question as an invalid follow-
up question given the retrieved documents, it can
communicate to the IR engine to retrieve additional
supporting documents.

A few example instances are given in Figure 1 to
illustrate the follow-up question identification task
in a conversational reading comprehension setting.
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We present a new dataset for learning to identify
follow-up questions, namely LIF. Given a text pas-
sage as knowledge and a series of question-answer
pairs as conversation history, it requires a model
to identify whether a candidate follow-up question
is valid or invalid. The proposed dataset requires
a model to understand both topic continuity and
topic shift to correctly identify a follow-up ques-
tion. For instance, in the first example given in
Figure 1, a model needs to capture the topic conti-
nuity from the first question-answer pair (i.e., first
film is Flesh and Blood) and the topic shift from the
second question-answer pair (i.e., genre of films)
of the conversation history. The candidate follow-
up question in the second example is invalid since
the associated passage does not provide any infor-
mation about his final years. The last follow-up
question example is invalid since Verhoeven is a he,
not she.

There has been some research in the past which
focuses on identifying what part of the conversa-
tion history is important for processing follow-up
questions (Bertomeu et al., 2006; Kirschner and
Bernardi, 2007). However, the recently proposed
neural network-based models for conversational
QA have not explicitly focused on follow-up ques-
tions. In this paper, we propose a three-way atten-
tive pooling network for follow-up question identi-
fication in a conversational reading comprehension
setting. It evaluates each candidate follow-up ques-
tion based on two perspectives – topic shift and
topic continuity. The proposed model makes use
of two attention matrices, which are conditioned
over the associated passage, to capture topic shift
in a follow-up question. It also relies on another
attention matrix to capture topic continuity, directly
from the previous question-answer pairs in the con-
versation history. For comparison, we have devel-
oped several strong baseline systems for follow-up
question identification.

The contributions of this paper are as follows:

1. We propose a new task for follow-up question
identification in a conversational reading com-
prehension setting which supports automatic
evaluation.

2. We present a new dataset, namely LIF, which
is derived from the recently released conversa-
tional QA dataset QuAC (Choi et al., 2018).

3. We propose a three-way attentive pooling net-
work which aims to capture topic shift and

topic continuity for follow-up question iden-
tification. The proposed model significantly
outperforms all the baseline systems.

2 Task Overview

Given a passage, a sequence of question-answer
pairs in a conversation history, and a candidate
follow-up question, the task is to identify whether
or not the candidate follow-up question is a valid
follow-up question. We denote the passage as
P which consists of T tokens. Let the sequence
of previous questions and their corresponding an-
swers be denoted as {Q1,Q2, . . . , QM} and
{A1,A2, . . . , AM}, where M is the number of
previous question-answer pairs in the conversation
history. The candidate follow-up question is de-
noted as C. We formulate this task as a binary
classification task, which is to classify C as valid or
invalid. In the remainder of this paper, we denote
the length of the candidate follow-up question as V .
In our model, we concatenate all previous questions
and their answers with special separator tokens as
follows: Q1 | A1 || Q2 | A2 || . . . || QM | AM .
The combined length of the previous question-
answer pairs in the conversation history is denoted
as U .

3 LIF Dataset

In this section, we describe how we prepared the
LIF dataset, followed by an analysis of the dataset.

3.1 Data Preparation

We rely on the QuAC dataset (Choi et al., 2018)
to prepare the LIF dataset. Each question in the
QuAC dataset is assigned one of three categories:
should ask, could ask, or should not ask a follow-
up question. We construct the valid instances of
the dataset using the should ask follow-up question
instances. Since the test set of QuAC is hidden, we
split the QuAC development set into two halves
to generate the development set and the test set of
LIF. The split is done at the passage level to ensure
that there is no overlap in the passages used in the
development and test set.

To create each instance in LIF from QuAC, we
take the associated passage, the previous question-
answer pairs till it says should ask a follow-up
question, and the next question as the gold valid
candidate follow-up question. For each instance,
we sample invalid follow-up questions from two
sources:
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1. Questions from other conversations in QuAC
which can serve as potential distractors, and

2. Non-follow-up questions from the same con-
versation in QuAC which occurs after the gold
valid follow-up question.

The sampling from the first source involves a
two-step filtering process. We first compare the co-
sine similarity between the associated passage and
all the questions from the other conversations by us-
ing embeddings generated by InferSent (Conneau
et al., 2017). We take the top 200 questions based
on higher similarity scores. In the second step,
we concatenate the gold valid candidate follow-up
question with the question-answer pairs in the con-
versation history to form an augmented follow-up
question. Then, we calculate the token overlap
count between each ranked question obtained in
the first step and the augmented follow-up question.
We normalize the token overlap count by dividing
it by the length of the ranked question (after remov-
ing stop words). For each valid instance, we fix a
threshold and take at least one but up to two ques-
tions with the highest normalized token overlap
count as invalid candidate follow-up questions.

We also introduce potential distractors from the
same conversation in QuAC. We check through the
remaining question-answer pairs which occur after
the valid follow-up question. We tag a question
as an invalid candidate if the question appears just
before it is labeled with should not ask a follow-up
question. Throughout the invalid question sam-
pling process, we exclude generic follow-up ques-
tions containing keywords such as what else, any
other, interesting aspects and so on, to avoid select-
ing follow-up questions which can be potentially
valid (e.g., Any other insteresting aspects about
this article?).

For the training and the development sets, we
combine all candidate follow-up questions from
both other conversations and the same conversation.
We keep three test sets with candidates from dif-
ferent sources: from both other conversations and
the same conversation (Test-I), from other conver-
sations only (Test-II), and from the same conver-
sation only (Test-III). The overall dataset statistics
are given in Table 1. We randomly sampled 100
invalid follow-up questions from Test-I set, and
manually checked them. We verified that 97% of
them are truly invalid.

LIF Train/Dev/Test-I/Test-II/Test-III
#Instances 126,632/5,861/5,992/5,247/2,685
Avg #prev QA 3.6/3.7/3.7/3.9/3.5
Avg passage len 447.4/521.9/533.2/533.7/532.0
Avg question len 7.2/7.3/7.3/7.3/7.3
Avg answer len 16.3/15.8/15.6/15.7/15.6
Avg FUQ† len 8.8/8.4/8.4/8.6/7.4

Table 1: LIF dataset statistics. †follow-up question

3.2 Challenges of the Dataset
To identify whether a question is a valid follow-up
question, a model needs the ability to capture its
relevance to the associated passage and the conver-
sation history. The model is required to identify
whether the subject of the question is the same as
in the associated passage or in the conversation his-
tory, which is often distracted by the introduction of
pronouns (e.g., I, he, she) and possessive pronouns
(e.g., my, his, her). Such resolution of pronouns
is a critical aspect while determining the validity
of a follow-up question. It also needs to examine
whether the actions and the characteristics of the
subject described in the candidate follow-up ques-
tion can be logically inferred from the associated
passage or the conversation history. Moreover, cap-
turing topic continuity and topic shift is necessary
to determine the validity of a follow-up question.
The subjects and their actions or characteristics in
the invalid follow-up questions are often mentioned
in the passages, but associated with different topics.

3.3 Data Analysis
We randomly sampled 100 invalid instances from
the Test-I set, and manually analyzed them based
on different properties as given in Table 2. We
found that 35% of the invalid questions have iden-
tical topics as the associated passages, 42% of the
questions require pronoun resolution, 11% of the
questions have the same subject entity as the gold
follow-up question, and 5% of the questions have
the same subject entity as the last question in the
conversation history. Pronouns in 8% of the invalid
questions match the pronouns in the corresponding
valid follow-up questions, and match the last ques-
tion in the conversation history for another 8% of
the cases. For 7% of the cases, the question types
are the same as the valid questions, and for 6% of
the cases they are the same as the last question in
the conversation history. We also observed that 4%
of the invalid questions mention the same actions
as in the corresponding valid ones, and they are
the same as the last question in the conversation
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Properties % Example

Identical
topic 35

P: ... the band released their second
album ...
Q̃: Is “A Rush of Blood to the Head”
their album name?

Pronoun
resolution 42 Q̃: Was he the wealthiest person?

Q̃: Did she go to college?

Entity
match
(gold)

11

G: What was in the song that caused
a feud?
Q̃: What was some of the songs on
this album?

Entity
match
(last)

5
L: Did her writing win any awards?
Q̃: Did he win any awards?

Pronoun
match
(gold)

8
G: How many goals did he make?
Q̃: Was he married for many years?

Pronoun
match
(last)

8
L: Where was he born?
Q̃: Why did he live in Exile?

Q-type
match
(gold)

7
G: In what year did this happen?
Q̃: What year did he enact the
reproductive health act?

Q-type
match
(last)

6
L: What happened after that fight?
Q̃: What happened in this episode?

Action
match
(gold)

4
G: Did he go on any tours?
Q̃: When did Mr Brando go to New
York?

Action
match
(last)

3
L: When did he release?
Q̃: When was their next album
released?

Table 2: An analysis of the LIF dataset. The percent-
ages do not add up to 100% since many examples con-
sist of multiple properties. (Q̃ – invalid follow-up ques-
tion; P – associated passage; G – gold valid follow-up
question; L – last question in the conversation history.)

history for 3% of the cases. The distribution of
these properties shows the challenges in tackling
this task.

4 Three-Way Attentive Pooling Network

In this section, we describe our proposed three-way
attentive pooling network1. First, we apply an em-
bedding layer to the associated passage, the conver-
sation history, and the candidate follow-up question.
Further, they are encoded to derive sequence-level
encoding vectors. Then the proposed three-way
attentive pooling network is applied to score each
candidate follow-up question.

4.1 Embedding and Encoding
We use both character and word embeddings2. Sim-
ilar to Kim (2014), we obtain the character-level

1The source code and data are released at https://
github.com/nusnlp/LIF

2We also experimented with ELMO and BERT but did not
observe any consistent improvement.

embedding using convolutional neural networks
(CNN). First, characters are embedded as vectors
using a character-based lookup table, which are
fed to a CNN, and whose size is the input channel
size of the CNN. Then the CNN outputs are max-
pooled over the entire width to obtain a fixed-size
vector for each token. We use pre-trained vectors
from GloVe (Pennington et al., 2014) to obtain a
fixed-length word embedding vector for each token.
Finally, both word and character embeddings are
concatenated to obtain the final embeddings.

For encoding the conversation history and the
candidate follow-up question, we use bidirectional
LSTMs (Hochreiter and Schmidhuber, 1997). We
represent the sequence-level encoding of the con-
versation history and the candidate follow-up ques-
tion as Q ∈ RU×H and C ∈ RV×H , respectively,
where H is the number of hidden units. Similarly,
we compute the sequence-level passage encoding,
resulting in D ∈ RT×H . Then a similarity matrix
A ∈ RT×U is derived, where A = DQ>.

4.1.1 Joint Encoding
We then jointly encode the passage and the con-
versation history. We apply a row-wise softmax
function on A to obtain R ∈ RT×U . Now,
for all the passage words, the aggregated repre-
sentation of the conversation history is given as
G = RQ ∈ RT×H . The aggregated vectors corre-
sponding to the passage words in G are then con-
catenated with the passage vectors in D, followed
by another BiLSTM to obtain a joint representation
V ∈ RT×H .

4.1.2 Multi-Factor Attention
In addition, multi-factor self-attentive encoding
(Kundu and Ng, 2018) is applied on the joint rep-
resentation. If m represents the number of factors,
multi-factor attention F[1:m] ∈ RT×m×T is formu-
lated as:

F[1:m] = VW
[1:m]
f V> (1)

where W
[1:m]
f ∈ RH×m×H is a 3-way tensor.

A max-pooling operation is performed on F[1:m],
over the number of factors, resulting in the self-
attention matrix F ∈ RT×T . We normalize F by
applying a row-wise softmax function, resulting
in F̃ ∈ RT×T . Now the self-attentive encoding
can be given as M = F̃V ∈ RT×H . The self-
attentive encoding vectors are then concatenated
with the joint encoding vectors, and a feed-forward

https://github.com/nusnlp/LIF
https://github.com/nusnlp/LIF
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neural network-based gating is applied to control
the overall impact, resulting in Y ∈ RT×2H . The
final passage encoding P ∈ RT×H is obtained by
applying another BiLSTM layer on Y.

4.2 Three-Way Attentive Pooling

Now, we use our proposed three-way attentive pool-
ing network to score every candidate follow-up
question. The architecture of the network is de-
picted in Figure 2.

Attentive pooling (AP) was first proposed by dos
Santos et al. (2016) and successfully used for the
answer sentence selection task. AP is essentially
an attention mechanism that enables joint learning
of the representations of a pair of inputs as well as
their similarity measurement. The primary idea is
to project the paired inputs into a common repre-
sentation space to compare them more plausibly
even if both inputs are not semantically compara-
ble, such as a question-answer pair. In this paper,
we extend the idea of attentive pooling network
to the proposed three-way attentive pooling net-
work for the follow-up question identification task,
where the model needs to capture the suitability
of a candidate follow-up question by comparing
with the conversation history and the associated
passage. In particular, the proposed model aims
to capture topic shift and topic continuation in the
follow-up question. dos Santos et al. (2016) used a
single attention matrix to compare a pair of inputs.
In contrast, our proposed model relies on three
attention matrices, where the two additional atten-
tion matrices make use of the associated passage.
Moreover, our proposed model is developed to deal
with a more complex follow-up question identifi-
cation task, in contrast to the proposed model in
dos Santos et al. (2016). We score each candidate
follow-up question based on its relevance to the
conversation history in two different perspectives:
(1) considering the associated passage (i.e., knowl-
edge) and (2) without considering the passage.

Attention Matrix Computation

In this step, we compute three different attention
matrices for capturing the similarity between the
conversation history and the candidate follow-up
question – two matrices when the associated pas-
sage is taken into consideration, and another one
when the passage is not considered. The attention
matrix Aq,p ∈ RT×U , which captures the token-
wise contextual similarity between the conversation

history and the passage, is given as:

Aq,p = fattn(Q,P) , (2)

where the fattn(.) function can be written as
fattn(Q,P) = P Q>. Intuitively, Aq,p(i, j) cap-
tures the contextual similarity score between the
i-th token in the passage (i.e., i-th row of P) and
the j-th token in the conversation history (i.e.,
j-th row of Q). Similarly, the attention matrix
Ac,p ∈ RT×V , which captures the contextual sim-
ilarity of a candidate follow-up question and the
associated passage, is given as:

Ac,p = fattn(C,P) (3)

Note that, Aq,p and Ac,p will be used jointly to
capture the similarity between Q and C, given P.

The attention matrix Ac,q ∈ RU×V , which cap-
tures the similarity between a candidate follow-up
question and the conversation history without con-
sidering the associated passage, is given as:

Ac,q = fattn(C,Q) (4)

Attention Pooling
After obtaining the attention matrices, we apply
column-wise or row-wise max-pooling. When the
associated passage is considered to capture the sim-
ilarity between the conversation history and the
candidate follow-up question, we perform column-
wise max-pooling over Aq,p and Ac,p, followed by
normalization with softmax, resulting in rqp ∈ RU

and rcp ∈ RV , respectively. For instance, rqp is
given as (1 ≤ i ≤ U ):

rqp = softmax (. . . , max
1 ≤ j ≤T

[Aq,p(j, i)], . . .)

(5)
Intuitively, the i-th element in rqp represents the
relative importance score of the contextual encod-
ing of the i-th token in the conversation history
with respect to the passage encoding vectors. Ev-
ery element of rcp can be interpreted in the same
fashion. When the associated passage encoding
is not considered, we perform both row-wise and
column-wise max-pooling over Ac,q to generate
rqc ∈ RU and rcq ∈ RV , respectively.

Candidate Scoring
In this step, we score each candidate follow-up
question. Each candidate C is scored based on two
perspectives – with and without consideration of
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Figure 2: Architecture of the three-way attentive pooling network.

the associated passage encoding P:

score(C) = s1 + s2

= fsim(C,Q | P) + fsim(C,Q) , (6)

where C is the encoding of C. The similarity func-
tion fsim(C,Q |P) = xy>, where x = rqp Q ∈
RH and y = rcp C ∈ RH . The other sim-
ilarity function fsim(C,Q) = m n>, where
m = rqc Q ∈ RH and n = rcq C ∈ RH .

We use binary cross entropy loss for training
the model. For prediction, we find a threshold to
maximize the scores on the development set. For
the test instances, we use the threshold to predict
whether a follow-up question is valid or invalid.

5 Baseline Models

We develop several rule-based, statistical machine
learning, and neural baseline models. For all the
models, a threshold is determined based on the best
performance on the development set.

5.1 Rule-Based Models
We develop two models based on word overlap
counts – between the candidate follow-up ques-

tion and the passage, and between the candidate
follow-up question and the conversation history.
We normalize the count values based on the length
of the candidate follow-up question.

Next, we develop two models based on the con-
textual similarity scores using InferSent sentence
embeddings (Conneau et al., 2017). The two mod-
els compare the candidate follow-up question with
the associated passage and the conversation history,
respectively. The similarity scores are computed
based on vector cosine similarity.

We also develop another rule-based model using
tf-idf weighted token overlap scores. We prepend
the last question from the conversation history to
the candidate follow-up question and add the tf-
idf of overlapping words between the concatenated
context and the passage.

5.2 Statistical Machine Learning Models

We handcraft two sets of features for the statisti-
cal machine learning models. One set of features
consists of tf-idf weighted GloVe vectors. Since
we adopt 300 dimensional GloVe vectors in our
experiments, these features are of dimension 300.
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Dev Test-I Test-II Test-III
Models V-P/-R/-F1/Macro F1 V-P/-R/-F1/Macro F1 V-P/-R/-F1/Macro F1 V-P/-R/-F1/Macro F1
Norm. overlap (Psg) 34.4/46.4/39.5/50.9 36.0/52.1/42.6/52.5 40.5/60.3/48.5/52.3 71.5/65.4/68.3/48.6
Norm. overlap (Hist) 34.1/40.7/37.1/51.0 33.8/43.1/37.9/50.8 40.6/33.2/36.6/52.2 78.6/67.4/72.6/58.3
InferSent (Psg) 28.4/42.7/34.1/44.2 28.5/47.0/35.5/43.6 30.0/40.6/34.5/42.0 72.3/71.4/71.9/50.1
InferSent (Hist) 22.0/11.9/15.5/43.5 25.2/12.7/16.9/45.1 26.6/10.5/15.1/42.8 72.1/69.6/70.8/49.7
Tf-idf + Overlap 32.6/61.7/42.7/45.5 32.5/66.3/43.7/44.6 37.5/66.3/47.9/46.7 72.1/85.6/78.2/48.2
Logistic Regression

Tf-idf + GloVe 58.4/67.5/62.6/71.1 53.5/61.1/57.0/67.1 63.7/66.0/64.8/71.8 73.5/95.1/82.9/50.1
Overlap count 41.0/61.9/49.4/57.1 39.7/58.4/47.3/56.1 49.1/57.6/53.0/60.7 73.1/98.5/83.9/47.0

CNN-Maxpool 61.6/67.3/64.3/72.9 58.0/62.3/60.1/69.9 69.0/62.4/65.5/73.4 78.4/62.2/69.4/56.5
CNN-Attnpool 52.8/56.9/54.8/65.7 48.3/54.0/51.0/62.7 56.2/54.3/55.2/64.9 77.6/53.7/63.5/53.0
LSTM-MaxPool 75.1/70.0/72.4/79.9 72.9/66.1/69.3/77.8 89.9/66.1/76.2/82.5 79.3/66.1/72.1/58.7
LSTM-AttnPool 72.6/65.7/69.0/77.5 72.1/66.2/66.8/76.2 89.2/62.2/73.3/80.6 79.0/62.2/69.6/57.1
BERT 74.2/76.4/75.3/81.5 72.4/76.1/74.2/80.7 88.5/76.1/81.8/86.2 79.9/76.1/78.0/62.6
Three-way AP 76.2/77.3/76.8/82.7 74.4/75.7/75.0/81.4 89.0/75.7/81.8/86.2 81.9/75.7/78.7/65.0

Table 3: Comparison results for the follow-up question identification task. We compare the performance of three-
way attentive pooling network with several rule-based, statistical machine learning, and neural models (V – Valid,
P – Precision, R – Recall, Psg – Passage, Hist – Conversation history).

Another set of features consists of word overlap
counts. We compute the pairwise word overlap
counts among the candidate follow-up question,
the associated passage, and the conversation his-
tory. The overlap count-based features are of di-
mension 3. We experiment with logistic regression
using the derived features.

5.3 Neural Models

We also develop several neural baseline models.
We first concatenate the associated passage, the
conversation history, and the candidate follow-up
question, followed by embedding (the same as de-
scribed earlier). Then, we apply sequence-level
encoding with either BiLSTM or CNN. For CNN,
we use equal numbers of unigram, bigram, and tri-
gram filters, and the outputs are concatenated to
obtain the final encoding. Next, we apply either
global max-pooling or attentive pooling to obtain
an aggregated vector representation, followed by a
feed-forward layer to score the candidate follow-up
question. Let the sequence encoding of the con-
catenated text be E ∈ RL×H , and et be the tth row
of E. The aggregated vector ẽ ∈ RH for attentive-
pooling can be obtained as:

at ∝ exp(et w>) ; ẽ = a E , (7)

where w ∈ RH is a learnable vector. We also de-
velop a baseline model using BERT (Devlin et al.,
2019). We first concatenate all the inputs and then
apply BERT to derive the contextual vectors. Next,
we aggregate them into a single vector using atten-
tion. Then a feed-forward layer is used to score
each candidate follow-up question.

6 Experiments

In this section, we present the experimental settings,
results, and performance analysis.

6.1 Experimental Settings

We do not update the GloVe vectors during training.
We use 100-dimension character-level embedding
vectors. The number of hidden units in all the
LSTMs is 150 (H = 300). We use dropout (Srivas-
tava et al., 2014) with probability 0.3. Following
Kundu and Ng (2018), we set the number of factors
as 4 in multi-factor attentive encoding. We use the
Adam optimizer (Kingma and Ba, 2015) with learn-
ing rate 0.001 and clipnorm 5. Following Choi et al.
(2018), we consider at most 3 previous question-
answer pairs in the conversation history. This being
a binary classification task, we use precision, recall,
F1, and macro F1 as evaluation metrics. All scores
reported in this paper are in %.

6.2 Results

Table 3 shows that our proposed model outperforms
the competing baseline models by significant mar-
gins across all test sets. We perform statistical
significance tests using paired t-test and bootstrap
resampling. Performance of our proposed model is
significantly better (p < 0.01) than the best base-
line system which provides the highest Macro-F1
score on Test-I. The LSTM-based neural baselines
perform better than the rule-based and statistical
machine learning models in most cases. On Test-
III, the statistical models tend to predict valid, and
the number of valid instances is much higher than
the invalid instances (about 75%:25%), resulting
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Model V-P V-R V-F1 Macro F1
– History 72.7 67.0 69.7 77.9
– Knowledge 75.8 73.8 74.8 81.4
– Ac,q 71.8 75.8 73.7 80.2
– Multi-factor Attn 75.6 76.4 76.0 82.1
– Joint encoding 75.3 76.6 76.0 82.1
– Char embedding 74.2 72.3 73.2 80.2
Three-way AP 76.2 77.3 76.8 82.7

Table 4: An ablation study on the development set.

in high Valid F1 scores. These baseline systems
(while performing well on valid questions) perform
poorly when evaluated using Macro F1 which mea-
sures performance on both valid and invalid follow
up questions. Macro F1 is the overall evaluation
metric used to compare all systems. Overall, iden-
tifying follow-up questions from the same conver-
sation (Test-III) is harder compared to other con-
versations (Test-II).

We perform an ablation study as shown in Table
4. The proposed model performs worst when we
do not consider the conversation history. This is
because the question-answer pairs in the conver-
sation history help to determine topic continuity
while identifying a valid follow-up question. The
performance also drops when we do not consider
the associated passage (i.e., knowledge) because it
helps to capture topic shift. The performance also
degrades when we remove Ac,q. It performs better
than the model where we do not consider the con-
versation history at all, as the conversation history
is taken into consideration in passage encoding.
The performance also degrades when we remove
other components such as multi-factor attentive en-
coding, joint encoding, and character embedding.

6.3 Qualitative Analysis

The proposed model aims to capture topic continu-
ity and topic shift by using a three-way attentive
pooling network. Attention pooling on Aq,p and
Ac,p aims to capture topic shift in the follow-up
question for a given conversation history. Con-
sider the first example in Table 5. When we do
not consider the passage, it could not identify the
follow-up question correctly while our proposed
model correctly identifies the topic shift to the du-
ration of the riot by validating with the passage
words after four days and restore order and take
back the prison on September 13. In the second
example, while our model could correctly identify
topic continuity through Schuur, the model without
history fails to identify the follow-up question.

We performed an error analysis where our pro-
posed model failed to identify the follow-up ques-
tions. We randomly sampled 50 such instances
(25 valid and 25 invalid) from the development set.
We found that 32% of them require pronoun res-
olution for the subject in the follow-up questions.
38% of the instances require validation of the ac-
tions/characteristics of the subjects (e.g., did they
have any children? vs. gave birth to her daughter).
14% of the errors occur when it requires matching
objects or predicates which occur in different forms
(e.g., hatred vs hate, television vs TV). For the re-
maining 16% of the cases, it could not correctly
capture the topic shift.

7 Related Work

Many data-driven machine learning methods have
been shown to be effective for tasks relevant for
dialog such as dialog policy learning (Young et al.,
2013), dialog state tracking (Henderson et al., 2013;
Williams et al., 2013; Kim et al., 2016), and natural
language generation (Sordoni et al., 2015; Li et al.,
2016; Bordes et al., 2017). Most of the recent
dialog systems are either not goal oriented (e.g.,
simple chit-chat bots), or domain-specific if they
are goal oriented (e.g., IT help desk). In the last few
years, there has been a surge of interest in conver-
sational question answering. Saha et al. (2018) re-
leased a Complex Sequential Question Answering
(CSQA) dataset for learning conversations through
a series of interrelated QA pairs by inferencing over
a knowledge graph. Choi et al. (2018) released
a large-scale conversational QA dataset, namely
question answering in context (QuAC), which mim-
ics a student-teacher interactive scenario. Reddy
et al. (2019) released the CoQA dataset and many
systems were evaluated on it. Zhu et al. (2018) pro-
posed SDNet to fuse context into traditional read-
ing comprehension models. Huang et al. (2019)
proposed a “Flow” mechanism that can incorporate
intermediate representations generated during the
process of answering previous questions, through
an alternating parallel processing structure. In a
conversation setting, given the previous QA pairs
as conversation history, while these models focus
on answering the next question, our work is fo-
cused on identifying follow-up questions. Recently,
Saeidi et al. (2018) proposed a dataset for regula-
tory texts that requires a model to ask follow-up
clarification questions. However, the answers are
limited to yes or no, which makes the task rather
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Passage: On September 9, 1971, prisoners at the state penitentiary at Attica, NY, took control of a cell block and
seized thirty-nine correctional officers as hostages. After four days of negotiations, Department of Correctional Services
Commissioner Russell Oswald agreed to most of the inmates’ demands for various reforms but refused to grant complete
amnesty to the rioters, with passage out of the country and removal of the prison’s superintendent. When negotiations
stalled and the hostages appeared to be in imminent danger, Rockefeller ordered New York State Police and national guard
troops to restore order and take back the prison on September 13. . . .
History:
Q: Where was the Attica Prison? A: On September 9, 1971, prisoners at the state penitentiary at Attica, NY, took . . .
Q: Why did they riot? A: the inmates’ demands for various reforms but refused to grant complete amnesty to the rioters,
with passage out of the country and removal of the prison’s superintendent.
Candidate follow-up question: How long did the riot last? – Valid
Passage: In 1975, at age 22, Schuur auditioned for drummer/bandleader Ed Shaughnessy. Escorted by her twin brother,
she went backstage to . . . singing the blues. . . . He hired her to be the vocalist in his orchestra, “Energy Force”. Jazz
trumpeter Dizzy . . .
History:
Q: When was Schuur discovered? A: In 1975, at age 22, Schuur auditioned for drummer/bandleader Ed Shaughnessy. . . .
Candidate follow-up question: Was she hired by Ed Shaughnessy? – Valid

Table 5: Examples taken from the LIF development set where our model correctly identified a valid follow-up
question.

restrictive. Moreover, while Saeidi et al. (2018)
focuses on generating a clarification question in
response to a question of a conversation, we focus
on identifying whether a question is a follow-up
question of a conversation.

8 Conclusion

In this paper, we present a new follow-up ques-
tion identification task in a conversational setting.
We developed a dataset, namely LIF, which is de-
rived from the previously released QuAC dataset.
Notably, the proposed dataset supports automatic
evaluation. We proposed a novel three-way atten-
tive pooling network which identifies whether a
follow-up question is valid or invalid by consider-
ing the associated knowledge in a passage and the
conversation history. Additionally, we developed
several strong baseline systems, and showed that
our proposed three-way attentive pooling network
outperforms all the baseline systems. Incorporat-
ing our three-way attentive pooling network into
open domain conversational QA systems will be
interesting future work.

Acknowledgments

This research is supported by the National Research
Foundation Singapore under its AI Singapore Pro-
gramme (Award Number: AISG-RP-2018-007).

References
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