
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 912–919
July 5 - 10, 2020. c©2020 Association for Computational Linguistics

912

Contextualized Sparse Representations for
Real-Time Open-Domain Question Answering

Jinhyuk Lee1 Minjoon Seo2,3 Hannaneh Hajishirzi2,4 Jaewoo Kang1

Korea University1 University of Washington2

Clova AI, NAVER3 Allen Institute for AI4

{jinhyuk lee,kangj}@korea.ac.kr
{minjoon,hannaneh}@cs.washington.edu

Abstract

Open-domain question answering can be for-
mulated as a phrase retrieval problem, in
which we can expect huge scalability and
speed benefit but often suffer from low accu-
racy due to the limitation of existing phrase
representation models. In this paper, we aim
to improve the quality of each phrase embed-
ding by augmenting it with a contextualized
sparse representation (SPARC). Unlike pre-
vious sparse vectors that are term-frequency-
based (e.g., tf-idf) or directly learned (only few
thousand dimensions), we leverage rectified
self-attention to indirectly learn sparse vec-
tors in n-gram vocabulary space. By augment-
ing the previous phrase retrieval model (Seo
et al., 2019) with SPARC, we show 4%+
improvement in CuratedTREC and SQuAD-
Open. Our CuratedTREC score is even bet-
ter than the best known retrieve & read model
with at least 45x faster inference speed.1

1 Introduction

Open-domain question answering (QA) is the task
of answering generic factoid questions by looking
up a large knowledge source, typically unstructured
text corpora such as Wikipedia, and finding the an-
swer text segment (Chen et al., 2017). One widely
adopted strategy to handle such large corpus is to
use an efficient document (or paragraph) retrieval
technique to obtain a few relevant documents, and
then use an accurate (yet expensive) QA model
to read the retrieved documents and find the an-
swer (Chen et al., 2017; Wang et al., 2018; Das
et al., 2019; Yang et al., 2019).

More recently, an alternative approach formu-
lates the task as an end-to-end phrase retrieval prob-
lem by encoding and indexing every possible text
span in a dense vector offline (Seo et al., 2018). The
approach promises a massive speed advantage with

1Code available at https://github.com/jhyuklee/sparc.

Overview Figure

Passage

Between 1991 and 2000, the total area of forest lost in the
Amazon rose from 415,000 to 587,000 square kilometres

Question

How many square kilometres of the Amazon forest was
lost by 1991?

Sparse Representations of 415,000

tf-idf: amazon rose (1.00), . . . , 1991 (0.23), 2000 (0.19)
Ours: 1991 (1.00), amazon (0.50), . . . , 2000 (0.17)

Sparse Representations of 587,000

tf-idf: amazon rose (1.00), . . . , 1991 (0.23), 2000 (0.19)
Ours: 2000 (1.00), amazon (0.53), . . . , 1991 (0.21)

Figure 1: An example of sparse vectors given a con-
text from SQuAD. While tf-idf has high weights on in-
frequent n-grams, our contextualized sparse representa-
tion (SPARC) focuses on sematically related n-grams.

several orders of magnitude lower time complexity,
but it performs poorly on entity-centric questions,
often unable to disambiguate similar but different
entities such as “1991” and “2001” in dense vec-
tor space. To alleviate this issue, Seo et al. (2019)
concatenate a term-frequency-based sparse vector
with the dense vector to capture lexical information.
However, such sparse vector is identical across
the document (or paragraph), which means every
word’s importance is equally considered regardless
of its context (Figure 1).

In this paper, we introduce a method to learn a
Contextualized Sparse Representation (SPARC) for
each phrase and show its effectiveness in open-
domain QA under phrase retrieval setup. Re-
lated previous work (for a different task) often
directly maps dense vectors to a sparse vector
space (Faruqui et al., 2015; Subramanian et al.,
2018), which can be at most only a few thousand di-
mensions due to computational cost and small gra-
dients. We instead leverage rectified self-attention
weights on the neighboring n-grams to scale up its
cardinality to n-gram vocabulary space (billions),

https://github.com/jhyuklee/sparc

913

allowing us to encode rich lexical information in
each sparse vector. We kernelize2 the inner product
space during training to avoid explicit mapping and
obtain memory- and computational efficiency.

SPARC improves the previous phrase retrieval
model, DenSPI (Seo et al., 2019) (by augmenting
its phrase embedding), by more than 4% in both
CuratedTREC and SQuAD-Open. In fact, our Cu-
ratedTREC result achieves the new state of the art
even when compared to previous retrieve & read
approaches, with at least 45x faster speed.

2 Background

We focus on open-domain QA on unstructured text
where the answer is a text span in a textual cor-
pus (e.g., Wikipedia). Formally, given a set of K
documents x1, . . . ,xK and a question q, the task
is to design a model that obtains the answer â by
â = argmaxxk

i:j
F (xk

i:j , q), where F is the score

model to learn and xk
i:j is a phrase consisting of

words from the i-th to the j-th word in the k-th
document. Pipeline-based methods (Chen et al.,
2017; Lin et al., 2018; Wang et al., 2019) typically
leverage a document retriever to reduce the number
of documents to read, but they suffer from error
propagation when wrong documents are retrieved
and can be still slow due to the heavy reader model.

Phrase-Indexed Open-domain QA As an alter-
native, Seo et al. (2018, 2019) introduce an end-
to-end, real-time open-domain QA approach to di-
rectly encode all phrases in documents agnostic of
the question, and then perform similarity search on
the encoded phrases. This is feasible by decompos-
ing the scoring function F into two functions,

â = argmaxxk
i:j
Hx(x

k
i:j) ·Hq(q)

where Hx is the query-agnostic phrase encoding,
and Hq is the question encoding, and · denotes a
fast inner product operation.

Seo et al. (2019) propose to encode each phrase
(and question) with the concatenation of a dense
vector obtained via a deep contextualized word
representation model (Devlin et al., 2019) and a
sparse vector obtained via computing the tf-idf of
the document (paragraph) that the phrase belongs
to. We argue that the inherent characteristics of
tf-idf, which is not learned and identical across the
same document, has limited representational power.

2Our method is inspired by the kernel method in
SVMs (Cortes and Vapnik, 1995).

Our goal in this paper is to propose a better and
learned sparse representation model that can further
improve the QA accuracy in the phrase retrieval
setup.

3 Sparse Encoding of Phrases

Our sparse model, unlike pre-computed sparse em-
beddings such as tf-idf, dynamically computes the
weight of each n-gram that depends on the context.

3.1 Why do we need sparse representations?
To answer the question in Figure 1, the model
should know that the target answer (415,000) cor-
responds to the year 1991 while the (confusing)
phrase 587,000 corresponds to the year 2000. The
dense phrase encoding is likely to have difficulty
in precisely differentiating between 1991 and 2000
since it needs to also encode several different kinds
of information. Window-based tf-idf would not
help because the year 2000 is closer (in word dis-
tance) to 415,000. This example illustrates the
strong need to create an n-gram-based sparse en-
coding that is highly syntax- and context-aware.

3.2 Contextualized Sparse Representations
The sparse representation of each phrase is ob-
tained as the concatenation of its start word’s
and end word’s sparse embedding, i.e. si:j =
[sstart

i , send
j]. This way, similarly to how the dense

phrase embedding is obtained in Seo et al. (2019),
we can efficiently compute them without explicitly
enumerating all possible phrases.

We obtain each (start/end) sparse embedding in
the same way (with unshared parameters), so we
just describe how we obtain the start sparse embed-
ding here and omit the superscript ‘start’. Given the
contextualized encoding of each document H =
[h1, . . . ,hN] ∈ RN×d, we obtain its (start/end)
sparse encoding S = [s1, . . . , sN] ∈ RN×F by

S = ReLU
(QK>√

d

)
F ∈ RN×F (1)

where Q,K ∈ RN×d are query, key matrices ob-
tained by applying a (different) linear transforma-
tion on H (i.e., using WQ,WK : RN×d → RN×d),
and F ∈ RN×F is an one-hot n-gram feature rep-
resentation of the input document x. That is, for
instance, if we want to encode unigram (1-gram)
features, Fi will be a one-hot representation of
the word xi, and F will be equivalent to the vo-
cabulary size. Intuitively, si contains a weighted

914

bag-of-ngram representation where each n-gram is
weighted by its relative importance on each start
or end word of a phrase. Note that F will be very
large, so it should always exist as an efficient sparse
matrix format (e.g., csc), and one should not ex-
plicitly create its dense form. Since we want to
handle several different sizes of n-grams, we create
the sparse encoding S for each n-gram and concate-
nate the resulting sparse encodings. In practice, we
experimentally find that unigram and bigram are
sufficient for most use cases.

We compute sparse encodings on the question
side (s′ ∈ RF) in a similar way to the docu-
ment side, with the only difference that we use
the [CLS] token instead of start and end words to
represent the entire question. We share the same
BERT and linear transformation weights used for
the phrase encoding.

3.3 Training
As training phrase encoders on the whole
Wikipedia is computationally prohibitive, we use
training examples from an extractive question an-
swering dataset (SQuAD) to train our encoders. We
also use an improved negative sampling method
which makes both dense and sparse representations
more robust to noisy texts.

Kernel Function Given a pair of question q and
a golden document x (a paragraph in the case of
SQuAD), we first compute the dense logit of each
phrase xi:j by li,j = hi:j ·h′. Each phrase’s sparse
embedding is trained, so it needs to be consid-
ered in the loss function. We define the sparse
logit for phrase xi:j as l

sparse
i,j = si:j · s′[CLS] =

sstart
i · s′start

[CLS] + send
j · s′

end
[CLS]. For brevity, we de-

scribe how we compute the first term sstart
i · s′start

[CLS]

corresponding to the start word (and dropping the
superscript ‘start’); the second term can be com-
puted in the same way.

sstart
i · s′start

[CLS] = (2)

ReLU
(QK>√

d

)
i
F

(
ReLU

(Q′K′>√
d

)
[CLS]

F′
)>

where Q′,K′ ∈ RM×d,F′ ∈ RM×F denote the
question side query, key, and n-gram feature ma-
trices, respectively. The output size of F is pro-
hibitively large, but we efficiently compute the loss
by precomputing FF′> ∈ RN×M . Note that FF′>

can be considered as applying a kernel function,

i.e. K(F,F′) = FF′> where its (i, j)-th entry
is 1 if and only if the n-gram at the i-th position
of the context is equivalent to the j-th n-gram of
the question, which can be efficiently computed as
well. One can also think of this as kernel trick (in
the literature of SVM (Cortes and Vapnik, 1995))
that allows us to compute the loss without explicit
mapping.

The final loss to minimize is computed from the
negative log likelihood over the sum of the dense
and sparse logits:

L = −(li∗,j∗ + l
sparse
i∗,j∗) + log

∑
i,j

exp(li,j + l
sparse
i,j)

where i∗, j∗ denote the true start and end positions
of the answer phrase. As we don’t want to sacri-
fice the quality of dense representations which is
also very critical in dense-first search explained in
Section 4.1, we add dense-only loss that omits the
sparse logits (i.e. original loss in Seo et al. (2019))
to the final loss, in which case we find that we
obtain higher-quality dense phrase representations.

Negative Sampling To learn robust phrase rep-
resentations, we concatenate negative paragraphs
to the original SQuAD paragraphs. To each para-
graph x, we concatenate the paragraph xneg which
was paired with the question whose dense repre-
sentation h′neg is most similar to the original dense
question representation h′, following Seo et al.
(2019). We find that adding tf-idf matching scores
on the word-level logits of the negative paragraphs
further improves the quality of sparse representa-
tions.

4 Experiments

4.1 Experimental Setup

Datasets SQuAD-Open is the open-domain ver-
sion of SQuAD (Rajpurkar et al., 2016). We use
87,599 examples with the golden evidence para-
graph to train our encoders and use 10,570 exam-
ples from dev set to test our model, as suggested
by Chen et al. (2017). CURATEDTREC consists of
question-answer pairs from TREC QA (Voorhees
et al., 1999) curated by Baudiš and Šedivỳ (2015).
We use 694 test set QA pairs for testing our model.
We only train on SQuAD and test on both SQuAD-
Open and CuratedTREC, relying on the general-
ization ability of our model (zero-shot) for Curat-
edTREC.

915

Model C.TREC SQuAD-Open
EM EM F1 s/Q

Models with Dedicated Search Engines

DrQA 25.4* 29.8** - 35
R3 28.4* 29.1 37.5 -
Paragraph Ranker 35.4* 30.2 - 161
Multi-Step-Reasoner - 31.9 39.2 -
BERTserini - 38.6 46.1 115
Multi-passage BERT - 53.0 60.9 84

End-to-End Models

ORQA 30.1 20.2 - 8.0
DENSPI 31.6† 36.2 44.4 0.71
DENSPI + SPARC (Ours) 35.7† 40.7 49.0 0.78
* Trained on distantly supervised training data.
** Trained on multiple datasets
† No supervision using target training data.

Table 1: Results on two open-domain QA datasets. See
Appendix A for how s/Q is computed.

Implementation Details We use and finetune
BERT-Large for our encoders. We use BERT vo-
cabulary which has 30,522 unique tokens based on
byte pair encodings. As a result, we have F ≈ 1B
when using both uni-/bigram features. We do not
finetune the word embedding during training. We
pre-compute and store all encoded phrase represen-
tations of all documents in Wikipedia (more than
5 million documents). It takes 600 GPU hours to
index all phrases in Wikipedia. We use the same
storage reduction and search techniques by Seo
et al. (2019). For search, we perform dense search
first and then rerank with sparse scores (DFS) or
perform sparse search first and rerank with dense
scores (SFS), or a combination of both (Hybrid).

Comparisons For models using dedicated search
engines, we show performances of DrQA (Chen
et al., 2017), R3 (Wang et al., 2018), Para-
graph Ranker (Lee et al., 2018), Multi-Step-
Reasoner (Das et al., 2019), BERTserini (Yang
et al., 2019), and Multi-passage BERT (Wang
et al., 2019). For end-to-end models that do not
rely on search engine results, DENSPI (Seo et al.,
2019), ORQA (Lee et al., 2019), and DENSPI +
SPARC (Ours) are evaluated. For DENSPI and
ours, ‘Hybrid’ search strategy is used.

4.2 Results

Open-Domain QA Experiments Table 1 shows
experimental results on two open-domain ques-
tion answering datasets, comparing our method
with previous pipeline and end-to-end approaches.
On both datasets, our model with contextualized

Model SQuAD1/100 SQuAD1/10

Ours 60.0 51.6
− SPARC 55.9 (−4.1) 48.4 (−3.2)
− Doc./Para. tf-idf 58.1 (−1.9) 50.9 (−0.7)
+ Trigram SPARC 58.0 (−2.0) 49.8 (−1.8)

Table 2: Ablations of our model. We show effects of
different sparse representations.

Model EM F1

Original
DrQA (Chen et al., 2017) 69.5 78.8
BERT (Devlin et al., 2019) 84.1 90.9

Query-
Agnostic

LSTM + SA + ELMo 52.7 62.7
DENSPI 73.6 81.7
DENSPI + SPARC 76.4 84.8

Table 3: Results on the SQuAD development
set. LSTM+SA+ELMo is a query-agnostic baseline
from Seo et al. (2018).

sparse representations (DENSPI + SPARC) largely
improves the performance of the phrase-indexing
baseline model (DENSPI) by more than 4%. Also,
our method runs significantly faster than other mod-
els that need to run heavy QA models during the
inference. On CuratedTREC, which is constructed
from real user queries, our model achieves state-
of-the-art performance at the time of submission.
Even though our model is only trained on SQuAD
(i.e., zero-shot), it outperforms all other models
which are either distant- or semi-supervised with
at least 45x faster inference.

On SQuAD-Open, our model outperforms
BERT-based pipeline approaches such as BERT-
serini (Yang et al., 2019) while being more than two
orders of magnitude faster. Multi-passage BERT,
which utilizes a dedicated document retriever, out-
performs all end-to-end models with a large mar-
gin in SQuAD-Open. While our main contribu-
tion is on the improvement in end-to-end, we also
note that retrieving correct documents in SQuAD-
Open is known to be often easily exploitable (Lee
et al., 2019), so we should use more open-domain-
appropriate test datasets (such as CuratedTREC)
for a more fair comparison.

Ablation Study Table 2 shows the effect of con-
textualized sparse representations by comparing
different variants of our method on SQuAD-Open.
We use a subset of Wikipedia dump (1/100 and
1/10). Interestingly, adding trigram features in
SPARC is worse than using uni-/bigram representa-
tions only, calling for a stronger regularization for

916

Q: When is Independence Day?

DrQA [Independence Day (1996 film)] Independence Day is a 1996 American science fiction ...
DENSPI + SPARC [Independence Day (India)] ... is annually observed on 15 August as a national holiday in India.

Q: What was the GDP of South Korea in 1950?

DRQA [Economy of South Korea] In 1980, the South Korean GDP per capita was $2,300.
DENSPI [Economy of South Korea] In 1980, the South Korean GDP per capita was $2,300.
DENSPI + SPARC [Developmental State] South Korea’s GDP grew from $876 in 1950 to $22,151 in 2010.

Table 4: Prediction samples from DrQA, DENSPI, and DENSPI + SPARC. Each sample shows [document title],
context, and predicted answer.

high-order n-gram features. See Appendix B on
how SPARC performs in different search strategies.

Closing the Decomposability Gap Table 3
shows the performance of DenSPI + SPARC in the
SQuAD v1.1 development set, where a single para-
graph that contains an answer is provided in each
sample. While BERT-Large that jointly encodes
a passage and a question still has a higher perfor-
mance than ours, we have closed the gap to 6.1 F1
score in a query-agnostic setting.

Qualitative Analysis Table 4 shows the outputs
of three OpenQA models: DrQA (Chen et al.,
2017), DENSPI (Seo et al., 2019), and DENSPI
+ SPARC (ours). Our model is able to retrieve vari-
ous correct answers from different documents, and
it often correctly answers questions with specific
dates or numbers compared to DENSPI showing
the effectiveness of learned sparse representations.

5 Conclusion

In this paper, we demonstrate the effectiveness of
contextualized sparse representations, SPARC, for
encoding phrase with rich lexical information in
open-domain question answering. We efficiently
train our sparse representations by kernelizing the
sparse inner product space. Experimental results
show that our fast open-domain QA model that
augments DENSPI with SPARC outperforms pre-
vious open-domain QA models, including recent
BERT-based pipeline models, with two orders of
magnitude faster inference time.

Acknowledgments

This research was supported by National Research
Foundation of Korea (NRF-2017R1A2A1A17069
645, NRF-2017M3C4A7065887), ONR N00014-
18-1-2826, DARPA N66001-19-2-403, Allen Dis-
tinguished Investigator Award, and Sloan Fellow-
ship. We thank the members of Korea University,
University of Washington, NAVER Clova AI, and

the anonymous reviewers for their insightful com-
ments.

References
Petr Baudiš and Jan Šedivỳ. 2015. Modeling of the

question answering task in the yodaqa system. In
CLEF.

Danqi Chen, Adam Fisch, Jason Weston, and Antoine
Bordes. 2017. Reading wikipedia to answer open-
domain questions. In ACL.

Corinna Cortes and Vladimir Vapnik. 1995. Support-
vector networks. Machine learning.

Rajarshi Das, Shehzaad Dhuliawala, Manzil Zaheer,
and Andrew McCallum. 2019. Multi-step retriever-
reader interaction for scalable open-domain question
answering. In ICLR.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. In NAACL.

Manaal Faruqui, Yulia Tsvetkov, Dani Yogatama, Chris
Dyer, and Noah A Smith. 2015. Sparse overcom-
plete word vector representations. In ACL-IJCNLP.

Jinhyuk Lee, Seongjun Yun, Hyunjae Kim, Miyoung
Ko, and Jaewoo Kang. 2018. Ranking paragraphs
for improving answer recall in open-domain ques-
tion answering. In EMNLP.

Kenton Lee, Ming-Wei Chang, and Kristina Toutanova.
2019. Latent retrieval for weakly supervised open
domain question answering. In ACL.

Yankai Lin, Haozhe Ji, Zhiyuan Liu, and Maosong Sun.
2018. Denoising distantly supervised open-domain
question answering. In ACL.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. Squad: 100,000+ questions for
machine comprehension of text. In ACL.

Minjoon Seo, Tom Kwiatkowski, Ankur Parikh, Ali
Farhadi, and Hannaneh Hajishirzi. 2018. Phrase-
indexed question answering: A new challenge for
scalable document comprehension. In EMNLP.

917

Minjoon Seo, Jinhyuk Lee, Tom Kwiatkowski,
Ankur P Parikh, Ali Farhadi, and Hannaneh Ha-
jishirzi. 2019. Real-time open-domain question an-
swering with dense-sparse phrase index. In ACL.

Anant Subramanian, Danish Pruthi, Harsh Jhamtani,
Taylor Berg-Kirkpatrick, and Eduard Hovy. 2018.
Spine: Sparse interpretable neural embeddings. In
AAAI.

Ellen M Voorhees et al. 1999. The trec-8 question an-
swering track report. In Trec.

Shuohang Wang, Mo Yu, Xiaoxiao Guo, Zhiguo Wang,
Tim Klinger, Wei Zhang, Shiyu Chang, Gerry
Tesauro, Bowen Zhou, and Jing Jiang. 2018. R 3:
Reinforced ranker-reader for open-domain question
answering. In AAAI.

Zhiguo Wang, Patrick Ng, Xiaofei Ma, Ramesh Nal-
lapati, and Bing Xiang. 2019. Multi-passage bert:
A globally normalized bert model for open-domain
question answering. In EMNLP.

Wei Yang, Yuqing Xie, Aileen Lin, Xingyu Li, Luchen
Tan, Kun Xiong, Ming Li, and Jimmy Lin. 2019.
End-to-end open-domain question answering with
bertserini. In NAACL Demo.

918

A Inference Speed Benchmark of
Open-Domain QA Models

Table 6 shows how the inference speed of each
open-domain QA model is estimated in our bench-
marks. Many of these models are not open-sourced
but based on BERT, so we use the speed of BERT
on the given length token as the basis for computing
the inference speed.

We also note that our reported number for the
inference speed of DenSPI (Seo et al., 2019) is
slightly faster than that reported in the original
paper. This is mostly because we are using a PCIe-
based SSD (NVMe) instead of SATA-based. We
also expect that the speed-up can be greater with
Intel Optane which has faster random access time.

B Model Performances in Different
Search Strategies

Model SQuAD-Open CuratedTREC
DENSPI + SPARC DENSPI + SPARC

SFS 33.3 36.9 (+3.6) 28.8 30.0 (+1.2)
DFS 28.5 34.4 (+5.9) 29.5 34.3 (+4.8)
HYBRID 36.2 40.7 (+4.5) 31.6 35.7 (+4.1)

Table 5: Exact match scores of SPARC in different
search strategies. SFS: Sparse First Search. DFS:
Dense First Search. HYBRID: Combination of SFS +
DFS. Exact match scores are reported.

In Table 5, we show how we consistently im-
prove over DENSPI when SPARC is added in
different search strategies. Note that on Curat-
edTREC where the questions more resemble real
user queries, DFS outperforms SFS showing the
effectiveness of dense search when not knowing
which documents to read.

919

Models using Bi-LSTM as Base Encoders

Model # of Docs. to Read # of Docs. to Re-rank s/Q

DrQA 5 None 35
Paragraph Ranker ≈ 3 20 161

Models using BERT as Base Encoders

Model # of Docs. to Read # of Docs. to Re-rank Max. Sequence Length/Doc. Stride s/Q

BertSerini 100 paragraphs* 100 paragraphs* 384/128 115
Multi-Passage BERT 30 passages** 100 passages** 100/50 84
ORQA k blocks† None 384/128 8
* Assumed 1 paragraph = 200 BERT tokens.
** 1 passage = 100 BERT tokens.
† 1 block = 288 BERT tokens. Assumed k = 10.

Table 6: Details on how the inference speed of each open-domain QA model is estimated using a single CPU. We
use the default 384/128 (Max. Sequence Length/Doc. Stride) setting for both BertSerini and ORQA.

