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Abstract

Several recent studies have shown that strong
natural language understanding (NLU) models
are prone to relying on unwanted dataset biases
without learning the underlying task, resulting in
models that fail to generalize to out-of-domain
datasets and are likely to perform poorly in
real-world scenarios. We propose two learning
strategies to train neural models, which are
more robust to such biases and transfer better to
out-of-domain datasets. The biases are specified
in terms of one or more bias-only models, which
learn to leverage the dataset biases. During train-
ing, the bias-only models’ predictions are used
to adjust the loss of the base model to reduce its
reliance on biases by down-weighting the biased
examples and focusing training on the hard exam-
ples. We experiment on large-scale natural lan-
guage inference and fact verification benchmarks,
evaluating on out-of-domain datasets that are
specifically designed to assess the robustness of
models against known biases in the training data.
Results show that our debiasing methods greatly
improve robustness in all settings and better
transfer to other textual entailment datasets. Our
code and data are publicly available in https:

//github.com/rabeehk/robust-nli.

1 Introduction

Recent neural models (Devlin et al., 2019; Radford
et al., 2018; Chen et al., 2017) have achieved high
and even near human-performance on several large-
scale natural language understanding benchmarks.
However, it has been demonstrated that neural models
tend to rely on existing idiosyncratic biases in the
datasets, and leverage superficial correlations between
the label and existing shortcuts in the training dataset
to perform surprisingly well,1 without learning the un-
derlying task (Kaushik and Lipton, 2018; Gururangan
et al., 2018; Poliak et al., 2018; Schuster et al., 2019;

1We use biases, heuristics or shortcuts interchangeably.

McCoy et al., 2019b). For instance, natural language
inference (NLI) is supposed to test the ability of a
model to determine whether a hypothesis sentence
(There is no teacher in the room) can be inferred
from a premise sentence (Kids work at computers
with a teacher’s help) (Dagan et al., 2006).2 However,
recent work has demonstrated that large-scale NLI
benchmarks contain annotation artifacts; certain
words in the hypothesis that are highly indicative of
inference class and allow models that do not consider
the premise to perform unexpectedly well (Poliak
et al., 2018; Gururangan et al., 2018). As an example,
in some NLI benchmarks, negation words such as
“nobody”, “no”, and “not” in the hypothesis are often
highly correlated with the contradiction label.

As a result of the existence of such biases, models
exploiting statistical shortcuts during training often
perform poorly on out-of-domain datasets, especially
if the datasets are carefully designed to limit the spu-
rious cues. To allow proper evaluation, recent studies
have tried to create new evaluation datasets that do not
contain such biases (Gururangan et al., 2018; Schuster
et al., 2019; McCoy et al., 2019b). Unfortunately, it is
hard to avoid spurious statistical cues in the construc-
tion of large-scale benchmarks, and collecting new
datasets is costly (Sharma et al., 2018). It is, therefore,
crucial to develop techniques to reduce the reliance
on biases during the training of the neural models.

We propose two end-to-end debiasing techniques
that can be used when the existing bias patterns are
identified. These methods work by adjusting the cross-
entropy loss to reduce the biases learned from the train-
ing dataset, down-weighting the biased examples so
that the model focuses on learning the hard examples.
Figure 1 illustrates an example of applying our strat-
egy to prevent an NLI model from predicting the la-
bels using existing biases in the hypotheses, where the
bias-only model only sees the hypothesis. Our strat-

2The given sentences are in the contradictory relation, and
the hypothesis cannot be inferred from the premise.
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Figure 1: An illustration of our debiasing strategies applied to an NLI model. The bias-only model only sees the hypoth-
esis, where negation words like “not” are highly correlated with the contradiction label. We train a robust NLI model by
training it in combination with the bias-only model and motivate it to learn different strategies than the ones used in the
bias-only model. The robust NLI model does not rely on the shortcuts and obtains improved performance on the test set.

egy involves adding this bias-only branch fB on top of
the base model fM during training. We then compute
the combination of the two models fC in a way that
motivates the base model to learn different strategies
than the ones used by the bias-only branch fB. At the
end of the training, we remove the bias-only classifier
and use the predictions of the base model.

In our first proposed method, Product of Experts,
the training loss is computed on an ensemble of
the base model and the bias-only model, which
reduces the base model’s loss for the examples that
the bias-only model classifies correctly. For the
second method, Debiased Focal Loss, the bias-only
predictions are used to directly weight the loss of the
base model, explicitly modulating the loss depending
on the accuracy of the bias-only model. We also
extend these methods to be robust against multiple
sources of bias by training multiple bias-only models.

Our approaches are simple and highly effective.
They require training only a simple model on top of
the base model. They are model agnostic and general
enough to be applicable for addressing common
biases seen in many datasets in different domains.

We evaluate our models on challenging bench-
marks in textual entailment and fact verification, in-
cluding HANS (Heuristic Analysis for NLI Systems)
(McCoy et al., 2019b), hard NLI sets (Gururangan
et al., 2018) of Stanford Natural Language Inference
(SNLI) (Bowman et al., 2015) and MultiNLI (MNLI)
(Williams et al., 2018), and FEVER Symmetric test
set (Schuster et al., 2019). The selected datasets are
highly challenging and have been carefully designed
to be unbiased to allow proper evaluation of the
out-of-domain performance of the models. We ad-

ditionally construct hard MNLI datasets from MNLI
development sets to facilitate the out-of-domain
evaluation on this dataset.3 We show that including
our strategies on training baseline models, including
BERT (Devlin et al., 2019), provides a substantial gain
on out-of-domain performance in all the experiments.

In summary, we make the following contributions:
1) Proposing two debiasing strategies to train neural
models robust to dataset bias. 2) An empirical evalu-
ation of the methods on two large-scale NLI datasets
and a fact verification benchmark; obtaining a sub-
stantial gain on their challenging out-of-domain data,
including 7.4 points on HANS, 4.8 points on SNLI
hard set, and 9.8 points on FEVER symmetric test set,
setting a new state-of-the-art. 3) Proposing debiasing
strategies capable of combating multiple sources of
bias. 4) Evaluating the transfer performance of the de-
biased models on 12 NLI datasets and demonstrating
improved transfer to other NLI benchmarks. To facil-
itate future work, we release our datasets and code.

2 Related Work

To address dataset biases, researchers have proposed
to augment datasets by balancing the existing
cues (Schuster et al., 2019) or to create an adversarial
dataset (Jia and Liang, 2017). However, collecting
new datasets, especially at a large scale, is costly,
and thus remains an unsatisfactory solution. It
is, therefore, crucial to develop strategies to allow
models to be trained on the existing biased datasets.

3Removing the need to submit to an online evaluation system
for MNLI hard test sets.



Schuster et al. (2019) propose to first compute the
n-grams in the dataset’s claims that are the most as-
sociated with each fact-verification label. They then
solve an optimization problem to assign a balancing
weight to each training sample to alleviate the biases.
In contrast, we propose several end-to-end debiasing
strategies. Additionally, Belinkov et al. (2019a) pro-
pose adversarial techniques to remove from the NLI
sentence encoder the features that allow a hypothesis-
only model to succeed. However, we believe that
in general, the features used by the hypothesis-only
model can include some information necessary to per-
form the NLI task, and removing such information
from the sentence representation can hurt the perfor-
mance of the full model. Their approach consequently
degrades the performance on the hard SNLI set, which
is expected to be less biased. In contrast, we propose
to train a bias-only model to use its predictions to
dynamically adapt the classification loss to reduce the
importance of the most biased examples.

Concurrently to our work, Clark et al. (2019)
and He et al. (2019) have also proposed to use
the product of experts (PoE) models for avoiding
biases. They train their models in two stages, first
training a bias-only model and then using it to train
a robust model. In contrast, our methods are trained
in an end-to-end manner, which is convenient in
practice. We additionally show that our proposed
Debiased Focal Loss model is an effective method
to reduce biases, sometimes superior to PoE. We have
evaluated on new domains of NLI hard sets and fact
verification. Moreover, we have included an analysis
showing that our debiased models indeed have lower
correlations with the bias-only models, and have
extended our methods to guard against multiple
bias patterns simultaneously. We furthermore study
transfer performance to other NLI datasets.

3 Reducing Biases

Problem formulation We consider a general
multi-class classification problem. Given a dataset
D={xi,yi}Ni=1 consisting of the input data xi∈X ,
and labels yi ∈ Y, the goal of the base model is
to learn a mapping fM parameterized by θM that
computes the predictions over the label space given
the input data, shown as fM :X →R|Y|. Our goal
is to optimize θM parameters such that we build a
model that is more resistant to benchmark dataset
biases, to improve its robustness to domain changes
where the biases typically observed in the training
data do not exist in the evaluation dataset.

The key idea of our approach, depicted in Figure 1,
is first to identify the dataset biases that the base
model is susceptible to relying on, and define a bias-
only model to capture them. We then propose two
strategies to incorporate this bias-only knowledge into
the training of the base model to make it robust against
the biases. After training, we remove the bias-only
model and use the predictions of the base model.

3.1 Bias-only Branch

We assume that we do not have access to any data
from the out-of-domain dataset, so we need to know a
priori about the possible types of shortcuts we would
like the base model to avoid relying on. Once these
patterns are identified, we train a bias-only model
designed to capture the identified shortcuts that only
uses biased features. For instance, a hypothesis-only
model in the large-scale NLI datasets can correctly
classify the majority of samples using annotation
artifacts (Poliak et al., 2018; Gururangan et al., 2018).
Motivated by this work, our bias-only model for
NLI only uses hypothesis sentences. Note that the
bias-only model can, in general, have any form, and
is not limited to models using only a part of the
input data. For instance, on the HANS dataset, our
bias-only model makes use of syntactic heuristics and
similarity features (see Section 4.3).

Let xb
i ∈ X b be biased features of xi that are

predictive of yi. We then formalize this bias-only
model as a mapping fB :X b→R|Y|, parameterized
by θB and trained using cross-entropy (CE) loss LB:

LB(θB)=−
1

N

N∑
i=1

log(σ(fyiB (xb
i ;θB))), (1)

where fjB(x
b
i ,θB) is the jth element of fB(.), and

σ(uj)=eu
j
/
∑|Y|

k=1e
uk is the softmax function.

3.2 Proposed Debiasing Strategies

We propose two strategies to incorporate the bias-only
fB knowledge into the training of the base model
fM . In our strategies, the predictions of the bias-only
model are combined with either the predictions of the
base model or its error, to down-weight the loss for
the examples that the bias-only model can predict cor-
rectly. We then update parameters of the base model
θM based on this modified loss LC. Our learning
strategies are end-to-end. Therefore, to prevent the
base model from learning the biases, the bias-only loss
LB is not back-propagated to any shared parameters
of the base model, such as a shared sentence encoder.



3.2.1 Method 1: Product of Experts
Our first approach is based on the product of experts
(PoE) method (Hinton, 2002). Here, we use this
method to combine the bias-only and base model’s
predictions by computing the element-wise product�
between their predictions as σ(fB(xb

i))�σ(fM(xi)).
We compute this combination in the logarithmic
space, making it appropriate for the normalized
exponential below:

fC(xi,x
b
i)=log(σ(fB(x

b
i)))+log(σ(fM(xi))),

The key intuition behind this model is to combine
the probability distributions of the bias-only and the
base model to allow them to make predictions based
on different characteristics of the input; the bias-only
branch covers prediction based on biases, and the
base model focuses on learning the actual task. Then
the base model parameters θM are trained using the
cross-entropy loss LC of the combined classifier fC:

LC(θM ;θB)=−
1

N

N∑
i=1

log(σ(fyiC (xi,x
b
i))). (2)

When updating the base model parameters using this
loss, the predictions of the bias-only model decrease
the updates for examples that it can accurately predict.

Justification: Probability of label yi for the
example xi in the PoE model is computed as:

σ(fyiC (xi,x
b
i))=

σ(fyiB (xb
i))σ(f

yi
M(xi))∑|Y|

k=1σ(f
k
B(x

b
i))σ(f

k
M(xi))

Then the gradient of cross-entropy loss of the
combined classifier (2) w.r.t θM is (Hinton, 2002):

∇θMLC(θM ;θB)=−
1

N

N∑
i=1

|Y|∑
k=1

[
(
δyik−σ(f

k
C(xi,x

b
i))
)
∇θM log(σ(fkM(xi)))

]
,

where δyik is 1 when k=yi and 0 otherwise. Generally,
the closer the ensemble’s prediction σ(fkC(.)) is to the
target δyik, the more the gradient is decreased through
the modulating term, which only happens when the
bias-only and base models are both capturing biases.

In the extreme case, when the bias-only model
correctly classifies the sample, σ(fyiC (xi,x

b
i)) = 1

and therefore ∇θMLC(θM ; θB) = 0, the biased
examples are ignored during training. Conversely,
when the example is fully unbiased, the bias-only

classifier predicts the uniform distribution over
all labels σ(fkB(x

b
i)) = 1

|Y| for k ∈ Y, therefore
σ(fyiC (xi,x

b
i)) = σ(fyiM(xi)) and the gradient of

ensemble classifier remains the same as the CE loss.

3.2.2 Method 2: Debiased Focal Loss
Focal loss was originally proposed in Lin et al. (2017)
to improve a single classifier by down-weighting the
well-classified points. We propose a novel variant
of this loss that leverages the bias-only branch’s
predictions to reduce the relative importance of the
most biased examples and allows the model to focus
on learning the hard examples. We define Debiased
Focal Loss (DFL) as:

LC(θM ;θB)= (3)

− 1

N

N∑
i=1

(
1−σ(fyiB (xb

i))
)γ

log(σ(fyiM(xi)))

where γ is the focusing parameter, which impacts the
down-weighting rate. When γ is set to 0, DFL is equiv-
alent to the cross-entropy loss. For γ>0, as the value
of γ is increased, the effect of down-weighting is in-
creased. We set γ=2 through all experiments, which
works well in practice, and avoid fine-tuning it further.
We note the properties of this loss: (1) When the
examplexi is unbiased, and the bias-only branch does
not do well, σ(fyiB (xb

i)) is small, therefore the scaling
factor is close to 1, and the loss remains unaffected.
(2) As the sample is more biased and σ(fyiB (xb

i)) is
closer to 1, the modulating factor approaches 0 and the
loss for the most biased examples is down-weighted.

3.3 RUBi baseline (Cadene et al., 2019)
We compare our models to RUBi (Cadene et al.,
2019), a recently proposed model to alleviate uni-
modal biases learned by Visual Question Answering
(VQA) models. Cadene et al. (2019)’s study is
limited to VQA datasets. We, however, evaluate
the effectiveness of their formulation on multiple
challenging NLU benchmarks. RUBi consists in
first applying a sigmoid function φ to the bias-only
model’s predictions to obtain a mask containing an
importance weight between 0 and 1 for each label.
It then computes the element-wise product between
the obtained mask and the base model’s predictions:

fC(xi,x
b
i)=fM(xi)�φ(fB(xb

i)),

The main intuition is to dynamically adjust the
predictions of the base model to prevent it from
leveraging the shortcuts. Then the parameters of the



base model θM are updated by back-propagating the
cross-entropy loss LC of the combined classifier.

3.4 Joint Debiasing Strategies

Neural models can, in practice, be prone to multiple
types of biases in the datasets. We, therefore, propose
methods for combining several bias-only models. To
avoid learning relations between biased features, we
do not consider training a classifier on top of their
concatenation.

Instead, let {xbj
i }

K
j=1 be different sets of biased

features of xi that are predictive of yi, and let fBj be

an individual bias-only model capturing x
bj
i . Next,

we extend our debiasing strategies to handle multiple
bias patterns.

Method 1: Joint Product of Experts We extend
our proposed PoE model to multiple bias-only models
by computing the element-wise product between the
predictions of bias-only models and the base model
as: σ(fB1(x

b1
i ))�···�σ(fBK

(xbK
i ))�σ(fM(xi)),

computed in the logarithmic space:

fC(xi,{x
bj
i }

K
j=1)=

K∑
j=1

log(σ(fBj(x
bj
i )))

+log(σ(fM(xi))).

Then the base model parameters θM are trained using
the cross-entropy loss of the combined classifier fC .

Method 2: Joint Debiased Focal Loss To extend
DFL to handle multiple bias patterns, we first
compute the element-wise average of the predictions
of the multiple bias-only models: fB({x

bj
i }

K
j=1) =

1
K

∑K
j=1 fBj(x

bj
i ), and then compute the DFL (3)

using the computed joint bias-only model.

4 Evaluation on Unbiased Datasets

We provide experiments on a fact verification
(FEVER) and two large-scale NLI datasets (SNLI
and MNLI). We evaluate the models’ performance
on recently-proposed challenging unbiased evaluation
sets. We use the BERT (Devlin et al., 2019)
implementation of Wolf et al. (2019) as our main
baseline, known to work well for these tasks. In all
the experiments, we use the default hyperparameters
of the baselines.

4.1 Fact Verification

Dataset: The FEVER dataset contains claim-
evidence pairs generated from Wikipedia. Schuster

et al. (2019) collected a new evaluation set for the
FEVER dataset to avoid the idiosyncrasies observed
in the claims of this benchmark. They made the orig-
inal claim-evidence pairs of the FEVER evaluation
dataset symmetric, by augmenting them and making
each claim and evidence appear with each label.
Therefore, by balancing the artifacts, relying on statis-
tical cues in claims to classify samples is equivalent to
a random guess. The collected dataset is challenging,
and the performance of the models relying on biases
evaluated on this dataset drops significantly.

Base models: We consider BERT as the base
model, which works the best on this dataset (Schuster
et al., 2019), and predicts the relations based on the
concatenation of the claim and the evidence with a
delimiter token (see Appendix A).

Bias-only model: The bias-only model predicts the
labels using only claims as input.

Results: Table 1 shows the results. Our proposed
debiasing methods, PoE and DFL, are highly effective,
boosting the performance of the baseline by 9.8 and
7.5 points respectively, significantly surpassing the
prior work of Schuster et al. (2019).

Loss Dev Test ∆

CE 85.99 56.49
RUBi 86.23 57.60 +1.1
Schuster et al. (2019) 84.6 61.6 +5.1

DFL 83.07 64.02 +7.5
PoE 86.46 66.25 +9.8

Table 1: Results on FEVER development and symmetric
test set. ∆ are absolute differences with CE loss.

4.2 Natural Language Inference
Datasets: We evaluate on hard datasets of SNLI
and MNLI (Gururangan et al., 2018), which are
the splits of these datasets where a hypothesis-only
model cannot correctly predict the labels. Gururangan
et al. (2018) show that the success of the recent
textual entailment models is attributed to the biased
examples, and the performance of these models is
substantially lower on the hard sets.

Base models: We consider BERT and In-
ferSent (Conneau et al., 2017) as our base models.
We choose InferSent to be able to compare with the
prior work of Belinkov et al. (2019b).

Bias-only model: The bias-only model predicts the
labels using the hypothesis (Appendix B).



Results on SNLI: Table 2 shows the SNLI results.
With InferSent, DFL and PoE result in 4.1 and 4.8
points gain. With BERT, DFL and PoE improve the
results by 2.5 and 1.6 absolute points. Compared to
the prior work of Belinkov et al. (2019b) (AdvCls),
our PoE model obtains a 7.4 points gain, setting a
new state-of-the-art.

Loss BERT InferSent

Test Hard ∆ Test Hard ∆

CE 90.53 80.53 84.24 68.91
RUBi 90.69 80.62 +0.1 83.93 69.64 +0.7
AdvCls* — — — 83.56 66.27 -2.6
AdvDat* — — — 78.30 55.60 -13.3

DFL 89.57 83.01 +2.5 73.54 73.05 +4.1
PoE 90.11 82.15 +1.6 80.35 73.69 +4.8

Table 2: Results on the SNLI test, hard set, and differences
with CE loss. *: results from Belinkov et al. (2019b).

Results on MNLI: We construct hard sets from the
validation sets of MNLI Matched and Mismatched
(MNLI-M). Following Gururangan et al. (2018), we
train a fastText classifier (Joulin et al., 2017)
that predicts the labels using only the hypothesis and
consider the subset on which it fails as hard examples.

We report the results on MNLI mismatched sets in
Table 3 (see Appendix B for similar results on MNLI
matched). With BERT, DFL and PoE obtain 1.4 and
1.7 points gain on the hard development set, while
with InferSent, they improve the results by 2.5 and 2.6
points. To comply with limited access to the MNLI
submission system, we evaluate only the best result
of the baselines and our models on the test sets. Our
PoE model improves the performance on the hard test
set by 1.1 points while retaining in-domain accuracy.

BERT InferSent

Loss MNLI Hard ∆ MNLI Hard ∆

Development set results
CE 84.53 77.55 69.99 56.53
RUBi 85.17 78.63 +1.1 70.53 58.08 +1.5

DFL 84.85 78.92 +1.4 61.12 59.05 +2.5
PoE 84.85 79.23 +1.7 65.85 59.14 +2.6

Test set results
CE 83.51 75.75 — — —
PoE 83.47 76.83 +1.1 — — —

Table 3: Results on MNLI mismatched benchmark and
MNLI mismatched hard set. ∆ are absolute differences
with CE loss.

4.3 Syntactic Bias in NLI

Dataset: McCoy et al. (2019b) show that NLI mod-
els trained on MNLI can adopt superficial syntactic
heuristics. They introduce HANS, consisting of sev-
eral examples on which the syntactic heuristics fail.

Base model: We use BERT as our base model and
train it on the MNLI dataset.

Bias-only model: We consider the following
features for the bias-only model. The first four
features are based on the syntactic heuristics proposed
in McCoy et al. (2019b): 1) Whether all words in
the hypothesis are included in the premise; 2) If
the hypothesis is the contiguous subsequence of
the premise; 3) If the hypothesis is a subtree in the
premise’s parse tree; 4) The number of tokens shared
between premise and hypothesis normalized by the
number of tokens in the premise. We additionally
include some similarity features: 5) The cosine
similarity between premise and hypothesis’s pooled
token representations from BERT followed by min,
mean, and max-pooling. We consider the same weight
for contradiction and neutral labels in the bias-only
loss to allow the model to recognize entailment from
not-entailment. During the evaluation, we map the
neutral and contradiction labels to not-entailment.

Results: McCoy et al. (2019a) observe large vari-
ability in the linguistic generalization of neural models.
We, therefore, report the averaged results across 4 runs
with the standard deviation in Table 4. PoE and DFL
obtain 4.4 and 7.4 points gain (see Appendix C for
accuracy on individual heuristics of HANS).

Loss MNLI HANS ∆

CE 84.51 61.88±1.9
RUBi 84.53 61.76±2.7 -0.1
Reweight £ 83.54 69.19 +7.3
Learned-Mixin £ 84.29 64.00 +2.1
Learned-Mixin+H £ D 83.97 66.15 +4.3

PoE 84.19 66.31±0.6 +4.4
DFL 83.95 69.26±0.2 +7.4
DFLD 82.76 71.95±1.4 +10.1

Table 4: Results on MNLI Matched dev set and
HANS. £: results from Clark et al. (2019). D: perform
hyper-parameter tuning. ∆ are differences with CE loss.

We compare our results with the concurrent work
of Clark et al., who propose a PoE model similar to
ours, which gets similar results. The main difference
is that our models are trained end-to-end, which is



convenient in practice, while Clark et al.’s method
requires two steps, first training a bias-only model
and then using this pre-trained model to train a robust
model. The Reweight baseline in Clark et al. is a
special case of our DFL with γ=1 and performs sim-
ilarly to our DFL method (using default γ=2). Their
Learned-Mixin+H method requires hyperparameter
tuning. Since the assumption is not having access to
any out-of-domain test data, and there is no available
dev set for HANS, it is challenging to perform
hyper-parameter tuning. Clark et al. follow prior
work (Grand and Belinkov, 2019; Ramakrishnan
et al., 2018) and perform model section on the test set.

To provide a fair comparison, we consequently
also tuned γ in DFL by sweeping over {0.5,1,2,3,4}.
DFLD is the selected model, with γ=3. With this
hyperparameter tuning, DFL is even more effective,
and our best result performs 2.8 points better than
Clark et al. (2019).

4.4 Jointly Debiasing Multiple Bias Patterns

To evaluate combating multiple bias patterns, we
jointly debias a base model on the hypothesis artifacts
and syntactic biases.

Base model: We use BERT as our base model and
train it on the MNLI dataset.

Loss MNLI Hard ∆ HANS ∆

CE 84.53 77.55 61.88±1.9

PoE ¨ 84.85 79.23 +1.7 60.43 -1.5
DFL¨ 84.85 78.92 +1.4 60.63 -1.2

PoE ª 84.55 77.90±0.3 +0.4 66.31±0.6 +4.4
DFLª 84.30 77.66±0.6 +0.1 69.26±0.2 +7.4

PoE-Joint 84.39 78.61±0.1 +1.1 68.04±1.2 +6.2
DFL-Joint 84.49 78.36±0.4 +0.8 69.10±0.7 +7.2

Table 5: Results on MNLI mismatched dev set, MNLI mis-
matched hard set, and HANS when training independently
to debias against either hypothesis artifacts (¨) or syntactic
biases (ª), compared with jointly training to debias against
both bias types. ∆: differences with baseline CE loss.

Bias-only models: We use the hypothesis-only and
syntactic bias-only models as in Sections 4.2 and 4.3.

Results: Table 5 shows the results. Models
trained to be robust to hypothesis biases (¨) do not
generalize to HANS. On the other hand, models
trained to be robust on HANS (ª) use a powerful
bias-only model resulting in a slight improvement
on MNLI mismatched hard dev set. We expect a
slight degradation when debiasing for both biases

since models need to select samples accommodating
both debiasing needs. The jointly debiased models
successfully obtain improvements on both datasets,
which are close to the improvements on each dataset
by the individually debiased models.

5 Transfer Performance

To evaluate how well the baseline and proposed
models generalize to solving textual entailment in
domains that do not share the same annotation biases
as the large NLI training sets, we take trained NLI
models and test them on several NLI datasets.

Datasets: We consider a total of 12 different NLI
datasets. We use the 11 datasets studied by Poliak et al.
(2018). These datasets include MNLI, SNLI, SciTail
(Khot et al., 2018), AddOneRTE (ADD1) (Pavlick
and Callison-Burch, 2016), Johns Hopkins Ordinal
Commonsense Inference (JOCI) (Zhang et al., 2017),
Multiple Premise Entailment (MPE) (Lai et al., 2017),
Sentences Involving Compositional Knowledge
(SICK) (Marelli et al., 2014), and three datasets from
White et al. (2017) which are automatically generated
from existing datasets for other NLP tasks including:
Semantic Proto-Roles (SPR) (Reisinger et al., 2015),
Definite Pronoun Resolution (DPR) (Rahman and
Ng, 2012), FrameNet Plus (FN+) (Pavlick et al.,
2015), and the GLUE benchmark’s diagnostic
test (Wang et al., 2019). We additionally consider
the Quora Question Pairs (QQP) dataset, where the
task is to determine whether two given questions are
semantically matching (duplicate) or not. As in Gong
et al. (2017), we interpret duplicate question pairs as
an entailment relation and neutral otherwise. We use
the same split ratio mentioned by Wang et al. (2017).

Since the datasets considered have different label
spaces, when evaluating on each target dataset, we
map the model’s labels to the corresponding target
dataset’s space. See Appendix D for more details.

We strictly refrained from using any out-of-domain
data when evaluating on the unbiased split of the
same benchmark in Section 4. However, as shown
by prior work (Belinkov et al., 2019a), since different
NLI target datasets contain different amounts of
the bias found in the large-scale NLI dataset, we
need to adjust the amount of debiasing according
to each target dataset. We consequently introduce a
hyperparameter α for PoE to modulate the strength
of the bias-only model in ensembling. We follow
prior work (Belinkov et al., 2019a) and perform
model selection on the dev set of each target dataset



Data CE DFL ∆ PoE ∆

SICK 57.05 57.91 +0.9 57.28 +0.2
ADD1 87.34 88.89 +1.5 87.86 +0.5
DPR 49.50 50.68 +1.2 50.14 +0.6
SPR 59.85 61.41 +1.6 62.45 +2.6
FN+ 53.16 54.77 +1.6 53.51 +0.4
JOCI 50.06 51.13 +1.1 50.85 +0.8
MPE 69.50 70.2 +0.7 70.1 +0.6
SCITAIL 67.64 69.33 +1.7 71.40 +3.8
GLUE 54.08 54.80 +0.7 54.71 +0.6
QQP 67.78 69.28 +1.5 68.61 +0.8
MNLI 74.40 73.58 -0.8 73.61 -0.8
MNLI-M 73.98 74.0 0.0 73.49 -0.5

Table 6: Accuracy results of models with BERT trans-
ferring to new target datasets. All models are trained on
SNLI and tested on the target datasets. ∆ are absolute
differences between our methods and the CE loss baseline.

and then report results on the test set.4 We select
hyper-parameters γ, α from {0.4,0.6,0.8,2,3,4,5}.

Results: Table 6 shows the results of the debiased
models and baseline with BERT. As shown in prior
work (Belinkov et al., 2019a), the MNLI datasets
have very similar biases to SNLI, which the models
are trained on, so we do not expect any improvement
in the relative performance of our models and
the baseline for MNLI and MNLI-M. On all the
remaining datasets, our proposed models perform
better than the baseline, showing a substantial
improvement in generalization by using our debasing
techniques. We additionally compare with Belinkov
et al. (2019a) in Appendix D and show that our
methods substantially surpass their results.
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Figure 2: Accuracy of InferSent model trained with DFL,
on the SNLI test and SNLI hard sets for different γ.

4Since the test sets are not available for MNLI, we tune on
the matched dev set and evaluate on the mismatched dev set or
vice versa. For GLUE, we tune on MNLI mismatched dev set.

6 Discussion

Analysis of Debiased Focal Loss: As expected, im-
proving the out-of-domain performance could come
at the expense of decreased in-domain performance
since the removed biases are useful for performing
the in-domain task. This happens especially for
DFL, in which there is a trade-off between in-domain
and out-of-domain performance that depends on the
parameter γ, and when the baseline model is not very
powerful like InferSent. To understand the impact
of γ in DFL, we train an InferSent model using DFL
for different values of γ on the SNLI dataset and
evaluate its performance on SNLI test and SNLI hard
sets. As illustrated in Figure 2, increasing γ increases
debiasing and thus hurts in-domain accuracy on SNLI,
but out-of-domain accuracy on the SNLI hard set is
increased within a wide range of values (see a similar
plot for BERT in Appendix E).

Correlation Analysis: In contrast to Belinkov et al.
(2019a), who encourage only the encoder to not
capture the unwanted biases, our learning strategies
influence the parameters of the full model to reduce
the reliance on unwanted patterns more effectively.
To test this assumption, in Figure 3, we report the
correlation between the element-wise loss of the
debiased models and the loss of a bias-only model
on the considered datasets.
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Figure 3: Pearson correlation between the element-wise
cross-entropy loss of the debiasing models and the
bias-only model trained on each dataset.

The results show that compared to the baselines,
our debiasing methods, DFL and PoE, reduce the
correlation to the bias-only model, confirming that our
models are effective at reducing biases. Interestingly,
on MNLI, PoE has less correlation with the bias-only
model than DFL and also has better performance on
the unbiased split of this dataset. On the other hand,
on the HANS dataset, DFL loss is less correlated with
the bias-only model than PoE and also obtains higher



performance on the HANS dataset.

7 Conclusion

We propose two novel techniques, product-of-experts
and debiased focal loss, to reduce biases learned by
neural models, which are applicable whenever one can
specify the biases in the form of one or more bias-only
models. The bias-only models are designed to lever-
age biases and shortcuts in the datasets. Our debiasing
strategies then work by adjusting the cross-entropy
loss based on the performance of these bias-only mod-
els, to focus learning on the hard examples and down-
weight the importance of the biased examples. Addi-
tionally, we extend our methods to combat multiple
bias patterns simultaneously. Our proposed debiasing
techniques are model agnostic, simple, and highly ef-
fective. Extensive experiments show that our methods
substantially improve the model robustness to domain-
shift, including 9.8 points gain on FEVER symmetric
test set, 7.4 on HANS dataset, and 4.8 points on SNLI
hard set. Furthermore, we show that our debiasing
techniques result in better generalization to other NLI
datasets. Future work may include developing debi-
asing strategies that do not require prior knowledge of
bias patterns and can automatically identify them.
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A Fact Verification

Base model: We fine-tune all models using BERT
for 3 epochs and use the default parameters and
default learning rate of 2e−5.

Bias-only model: Our bias-only classifier is a
shallow nonlinear classifier with 768, 384, 192 hidden
units with Tanh nonlinearity.

B Natural Language Inference

Base model: InferSent uses a separate BiLSTM en-
coder to learn sentence representations for premise
and hypothesis. It then combines these embeddings
following Mou et al. (2016) and feeds them to the de-
fault nonlinear classifier. With InferSent we train all
models for 20 epochs as default without using early-
stopping. We use the default hyper-parameters and
following Wang et al. (2019), we set the BiLSTM di-
mension to 512. We use the default nonlinear classifier
with 512 and 512 hidden neurons with Tanh nonlinear-
ity. With BERT, we finetune all models for 3 epochs.

Bias-only model: For debiasing models using
BERT, we use the same shallow nonlinear classifier
explained in Appendix A, and for the ones using
InferSent, we use a shallow linear classifier with 512
and 512 hidden units.

Results: Table 7 shows results on the MNLI
matched development and hard test sets.

BERT InferSent

Loss MNLI Hard ∆ MNLI Hard ∆

Development set results
CE 84.41 76.56 69.97 57.03
RUBi 84.48 77.13 +0.6 70.51 57.97 +0.9

DFL 83.72 77.37 +0.8 60.78 57.88 +0.9
PoE 84.58 78.02 +1.5 66.02 59.37 +2.3

Test set results
None 84.11 75.88 — — —
PoE 84.11 76.81 +0.9 — — —

Table 7: Results on the MNLI matched benchmark and
MNLI matched hard set. ∆ are absolute differences with
CE loss.

C Syntactic Bias in NLI

Base model: We finetune all models for 3 epochs.

Bias-only model: We use a nonlinear classifier
with 6 and 6 hidden units with Tanh nonlinearity.

Results: Table 8 shows the performance for each
label (entailment and non entailment) on individual
heuristics of the HANS dataset.

Loss HANS

Constituent Lexical Subsequence
gold label: Entailment

CE 98.98±0.6 96.41±0.8 99.72±0.1
RUBi 99.22±0.3 95.59±0.8 99.50±0.3

DFL 90.90±4.3 84.78±5.0 94.33±4.9
PoE 97.24±1.9 92.16±0.9 98.58±0.5

gold label: Non-entailment
CE 20.12±5.8 48.86±5.7 7.18±0.7
RUBi 21.89±7.0 46.82±12.5 7.58±2.3

DFL 50.20±9.2 71.06±3.1 24.28±4.4
PoE 36.08±5.1 59.18±8.0 14.63±3.0

Table 8: Accuracy for each label (entailment or
non-entailment) on individual heuristics of HANS.

D Transfer Performance

Mapping: We train all models on SNLI and
evaluate their performance on other target datasets.
SNLI contains three labels, contradiction, neutral,
and entailment. Some of the datasets we consider
contain only two labels. In the case of labels entailed
and not-entailed, as in DPR, we map contradiction
and neutral to the not-entailed class. In the case of
labels entailment and neutral, as in SciTail, we map
contradiction to neutral.

Comparison with Belinkov et al. (2019a): We
modified the implementations of Belinkov et al.
(2019a) and corrected some implementation issues
in the InferSent baseline (Conneau et al., 2017).
Compared to the original InferSent implementation,
the main differences in our implementation include:
(a) We incorporated the fixes suggested for the bugs
in the implementation of mean/max-pooling over
BiLSTM in the InferSent baseline5 (b). We addi-
tionally observed that the aggregation of losses over
each batch was computed with the average instead
of the intended summation and we corrected it.6 (c)
We followed the implementation of InferSent and we
removed out-of-vocabulary (OOV) words from the
sentence representation, while Belinkov et al. keep

5https://github.com/facebookresearch/
InferSent/issues/51

6The same observation is reported in https://github.
com/facebookresearch/InferSent/pull/107.

https://github.com/facebookresearch/InferSent/issues/51
https://github.com/facebookresearch/InferSent/issues/51
https://github.com/facebookresearch/InferSent/pull/107
https://github.com/facebookresearch/InferSent/pull/107


Data CE DFL ∆% PoE ∆% M1 ∆% M2 ∆%

SICK 54.09 55.00 1.68 55.79 3.14 49.77 -7.99 49.77 -7.99
ADD1 75.19 78.29 4.12 77.00 2.41 67.44 -10.31 67.44 -10.31
DPR 49.95 50.59 1.28 49.95 0.00 50.87 1.84 50.87 1.84
SPR 41.31 47.95 16.07 50.50 22.25 51.51 24.69 51.51 24.69
FN+ 48.65 49.58 1.91 49.35 1.44 53.23 9.41 53.23 9.41
JOCI 46.47 46.48 0.02 47.53 2.28 44.83 -3.53 44.83 -3.53
MPE 60.60 60.70 0.17 61.80 1.98 56.40 -6.93 56.40 -6.93
SCITAIL 64.25 65.19 1.46 63.17 -1.68 56.40 -12.22 56.40 -12.22
GLUE 48.73 46.83 -3.90 49.09 0.74 43.93 -9.85 43.93 -9.85
QQP 61.80 66.24 7.18 66.36 7.38 62.46 1.07 62.46 1.07
MNLI 56.99 56.70 -0.51 56.59 -0.70 51.72 -9.25 51.72 -9.25
MNLI-M 57.01 57.75 1.30 57.84 1.46 53.99 -5.30 53.99 -5.30

Average — — 2.57 — 3.39 — -2.36 — -2.36

Table 9: Accuracy results of models with InferSent transferring to new target datasets. All models are trained on SNLI
and tested on the target datasets. M1 and M2 are our re-implementation of Belinkov et al. (2019a). ∆ are relative
differences in percentage with respect to CE loss.

.

them by introducing an OOV token. We additionally
observed during the pre-processing of some of the tar-
get datasets in the implementation of Belinkov et al.,
some of the samples are not considered due to the
preprocessing issues. We fix the pre-processing issues
and evaluate our models and our reimplementations
of Belinkov et al. (2019a) on the same corpora. We
set the BiLSTM dimension to 512 across all models.
Note that Belinkov et al. use BiLSTM dimension
of 2048, and due to the mentioned differences in
implementations and datasets, the results reported
in Belinkov et al. (2019a) are not comparable. How-
ever, we still on average surpass their reported results
substantially. Our reimplementations and scripts to
reproduce the results are publicly available in https:

//github.com/rabeehk/robust-nli-fixed.

As used in prior work to adjust the learning-rate of
the bias-only and baseline models (Belinkov et al.,
2019a), we introduce a hyperparameter β for the
bias-only model to modulate the loss of the bias-only
model in ensembling. We sweep hyper-parameters
γ, α over {0.02, 0.05, 0.1, 0.6, 2.0, 4.0, 5.0} and β
over {0.05,0.2,0.4,0.8,1.0}. Table 9 shows the re-
sults of our debiasing models (DFL, PoE), our re-
implementations of proposed methods in Belinkov
et al. (2019a) (M1, M2), and the baseline with In-
ferSent (CE). The DFL model outperforms the base-
line in 10 out of 12 datasets, while the PoE model out-
performs the baseline in 9 datasets and does equally
well on the DPR dataset. As shown in prior work (Be-
linkov et al., 2019a), the MNLI dataset has very sim-

ilar biases to SNLI, which the models are trained on,
so we do not expect any improvement in the relative
performance of our models and the baseline for MNLI
dataset. Interestingly, our methods obtain improve-
ment on MNLI-M, in which the test data differs from
training distribution. Our proposed debiasing meth-
ods, PoE and DFL, are highly effective, boosting the
relative generalization performance of the baseline by
3.39% and 2.57% respectively, significantly surpass-
ing the prior work of Belinkov et al. (2019a). Com-
pared to M1 and M2, our methods outperform them on
9 datasets, while they do better on two datasets of SPR
and FN+, and slightly better on the DPR dataset. How-
ever, note that DPR is a very small dataset and all mod-
els perform close to random-chance on this dataset.

E Analysis of Debiased Focal Loss

Figure 4 shows the impact of γ on BERT trained
with DFL.
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Figure 4: Accuracy of the BERT model trained with DFL,
on SNLI and SNLI hard sets for different γ.

https://github.com/rabeehk/robust-nli-fixed
https://github.com/rabeehk/robust-nli-fixed

