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Abstract

Named entity recognition is a key component
of many text processing pipelines and it is thus
essential for this component to be robust to dif-
ferent types of input. However, domain trans-
fer of NER models with data from multiple
genres has not been widely studied. To this
end, we conduct NER experiments in three pre-
dictive setups on data from: a) multiple do-
mains; b) multiple domains where the genre la-
bel is unknown at inference time; c) domains
not encountered in training. We introduce a
new architecture tailored to this task by us-
ing shared and private domain parameters and
multi-task learning. This consistently outper-
forms all other baseline and competitive meth-
ods on all three experimental setups, with dif-
ferences ranging between +1.95 to +3.11 aver-
age F1 across multiple genres when compared
to standard approaches. These results illustrate
the challenges that need to be taken into ac-
count when building real-world NLP applica-
tions that are robust to various types of text and
the methods that can help, at least partially, al-
leviate these issues.

1 Introduction

Accurately identifying named entities and their
type in texts is a key processing step for many
NLP applications. Named entity recognition (NER)
is an important component in several tasks in-
cluding named entity linking (Cucerzan, 2007),
co-reference resolution (Ng and Cardie, 2002),
question answering (Krishnamurthy and Mitchell,
2015), relation extraction (Culotta and Sorensen,
2004) and usually sits upstream of analytics such as
sentiment (Pang and Lee, 2004) or stance (Moham-
mad et al., 2016). Building robust NER models to
accurately tag and adapt to heterogeneous types of
text is thus paramount. Recent research focused on

∗*Equal Contribution

improving the overall performance of NER models
on specific data sets. Yet NER models show rela-
tively high variance even when trained on the same
data (Reimers and Gurevych, 2017) and poorly gen-
eralize when tested on data from different genres1,
especially if these contain entity mentions unseen
in the test data (Augenstein et al., 2017; Agarwal
et al., 2020).

Despite this, research on NER models robust to
different types of input is usually limited to the stan-
dard domain adaptation scenario: a single source
domain rich in training data and a single target do-
main with limited or no training data (Lin and Lu,
2018). We argue that this is an over-simplified ex-
perimental setup that is not typical for how NER
models are used in real-world applications. Ide-
ally, NER models use all available data, regardless
of genre, and perform inference on data from any
genre, even if this was not encountered in training.
In this scenario, simply pooling all the available
data is likely sub-optimal as genre-specific differ-
ences in named entity mentions are useful to model.
Conversely, models limited to only data from the
same genre as the test set are likely to underper-
form, as using more data is usually beneficial.

This work introduces three experimental setups
for the NER task where models are trained on data
from multiple genres and evaluated as follows:
a) Multi-Domain – evaluation is performed across

multiple genres, all seen in training.
b) Multi-Domain with Unknown Domain La-

bels – evaluation is carried out across multiple
genres, all seen in training, but the genre label
for each document is unknown at inference time.

c) Zero-shot Domain – evaluation is performed on
documents from genres unseen in training.

1Throughout this paper, we refer by genre to a collection
of documents with variations in style or structure that might
impact modelling (Santini et al., 2006); we use domain when
referring to modeling concepts.
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We propose a neural architecture for NER tai-
lored to these three experimental setups, based on
the popular BiLSTM-CRF architecture (Lample
et al., 2016). We augment the base architecture
to learn both domain-specific and independent fea-
tures through shared and private domain compo-
nents including projections and CRFs. Further, we
add a multi-task learning objective for domain pre-
diction to guide this separation. This model can
perform inference on a text without knowledge of
its corresponding domain label by using the shared
components. We compare this model with several
competitive methods that use a similar base archi-
tecture while holding the embeddings constant (i.e.
GloVe embeddings). These include models trained
on data from each domain independently, models
that pool all data and models that use domain iden-
tities as features through to source-target domain
adaptation methods.

Extensive results on all three experimental setups
on a collection of data from a total of twelve genres
demonstrate that our proposed architecture outper-
forms all others by a respectable margin. Finally,
through an error analysis of our results, we aim to
understand the contributions of each proposed com-
ponent and the margins for future improvements.

2 Related Work

Setups for Domain Adaptation Domain adap-
tation, formulated as learning a single model for
the same task across multiple domains, is a well-
studied research area in NLP (Chelba and Acero,
2004; Florian et al., 2004; Blitzer et al., 2006;
Daumé III, 2007). The standard setup for domain
adaptation is to maximize performance on data
from a single low-resource (target) domain, by us-
ing data from a single high-resource (source) do-
main (Blitzer et al., 2007; Peng and Dredze, 2017).
Extensions consider a single source and multi-
ple different target domains (Yang and Eisenstein,
2015) or multiple sources and a single target do-
main (Mansour et al., 2009). The multi-domain text
classification task studied in (Li and Zong, 2008;
Wu and Huang, 2015; Chen and Cardie, 2018) is
the analogous setup for the text classification task
to the first experimental setup we propose for NER.
Under this setup, training and evaluation is done
across data from multiple domains.
Multi-Domain Adaptation Methods for multi-
domain text classification use data fusion either
at the feature or classifier level (Li and Zong,

2008), decomposing the classifier into a shared
one and multiple domain-specific ones (Wu and
Huang, 2015), further guided by a domain discrimi-
nator (Chen and Cardie, 2018) which is also used in
multi-lingual NER (Chen et al., 2019). Further, Mc-
Closky et al. (2010) explored sequence tagging
tasks on data from unknown domains and Chen
and Cardie (2018) experiment with sentiment clas-
sification on data from unknown domains, similar
to our third experimental setup for NER. To the
best of our knowledge, our second setup where the
domain label is not available at inference time was
never explicitly studied. We note that most of these
approaches make use of additional unlabeled data
from each domain to learn domain-specific repre-
sentations. We do not use these resources in our
methods, as we assume the end-user of the model
is agnostic to the data used in training and wants
to run inference without having to provide entire
comparable corpora.

Domain Adaptation for NER Models for do-
main adaptation in NER using neural architec-
tures were studied recently, albeit mostly for cover-
ing the single-source and single-target setup. The
INIT method trains a model using the source do-
main data, and its parameters are used to initialize
a target model which is fine-tuned on the target
data (Mou et al., 2016). The MULT method trains
jointly one model for each domain with shared pa-
rameters (Lee et al., 2018). For sequence tagging,
one CRF for each of the two domains is used to ob-
tain the predictions (Yang et al., 2017). Adaptation
can also be made at the embeddings stage (Lin and
Lu, 2018) or by using additional unlabeled data
from the source domain and out-of-domain anno-
tated data (He and Sun, 2017). However, as men-
tioned above, this assumes that unlabeled training
data can be provided for each domain, which may
not be realistic. The model adds layers between em-
beddings and the BiLSTM layers, between the BiL-
STM and the CRF for the target domain and sepa-
rate CRF layers, the latter two of which we adapt to
our proposed architecture for multi-domain adap-
tation. A hierarchical Bayesian prior approach is
used in (Finkel and Manning, 2009) to tie feature
weights across domains when information is sparse
and also allow the model to take advantage if sub-
stantial data is available in one domain. Their ex-
periments on NER focused only on three data sets:
CoNLL, MUC-6 and MUC-7 and only the first of
our three setups. A multi-task domain adaptation
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method for NER and word segmentation is used in
(Peng and Dredze, 2017). The proposed architec-
ture learns a shared representation across domains
and experiments with linear domain projections for
each domain to guide learning of shared represen-
tations. The output of these linear layers is fed
to a CRF. We adopt the linear domain projection
method, but extend this to also include a shared
projection, followed by domain-specific CRFs and
multi-task learning. Finally, another type of do-
main adaptation is temporal adaptation of models
tested on data that is more recent than the training
data, when each temporal slice can be considered as
a different domain (Rijwhani and Preoţiuc-Pietro,
2020).

3 Methods

This section describes the proposed NER architec-
ture tailored the architecture to our multi-domain
experimental setups, which is independent of input
embedding representation.

3.1 Base Architecture

The basic component of our NER models is an ar-
chitecture which has reached state-of-the-art perfor-
mance several times over the last few years (Lam-
ple et al., 2016; Peters et al., 2018; Akbik et al.,
2018). Named entity recognition task is a struc-
tured prediction task and earlier statistical ap-
proaches are based models like Conditional Ran-
dom Fields (Lafferty et al., 2001), which rely on
features often designed based on domain-specific
knowledge (Luo et al., 2015). The current domi-
nant approach to the NER task consists of neural ar-
chitectures based on recurrent neural networks with
different choices of input representations (Huang
et al., 2015; Ma and Hovy, 2016; Lample et al.,
2016; Peters et al., 2018; Akbik et al., 2018, 2019).

The input consists of a concatenation of pre-
trained word embeddings and character embed-
dings. Character embeddings are trained using
an LSTM from randomly initialized vectors as
in (Lample et al., 2016). Word embeddings are
derived from a combination GloVe (Pennington
et al., 2014) and FastText (Bojanowski et al., 2017)
pre-trained word embeddings, as used in (Ma and
Hovy, 2016). The choice of embeddings is orthog-
onal to the architecture and thus, we hold these
constant in all experiments.

This representation is passed through two LSTM
layers that process the input sequence in differ-

Figure 1: MultDomain–SP–Aux Architecture for 2 do-
mains (A & B) and shared layers denoted by Sh

ent directions (Huang et al., 2015). The outputs
of these layers are concatenated and, in order to
map the word representation obtained from the
LSTM module into the label distribution, passed to
a one-layer feed-forward network. A Conditional
Random Field is applied to the class predictions to
jointly assign the sequence tags using a transition
matrix. This CRF layer improves performance of
the model (Lample et al., 2016) as it ensures the
output sequence takes into account dependencies
between the tags and also models the constraints
the output sequence adheres to (e.g. I-PER can not
follow B-LOC).

3.2 Proposed Architecture
(MultDomain–SP–Aux)

We propose a new architecture based on the
BiLSTM–CRF model tailored to the three proposed
experimental setups. Our proposed architecture en-
hances the base architecture with three components:
a) domain -specific and -independent feed-forward
layers that process the BiLSTM outputs; b) do-
main -specific and -independent feed forward lay-
ers CRFs; c) a multi-task learning objective that
learns domain labels as an auxiliary task.

The proposed architecture changes are motivated
by the aim of capturing commonalities in which
named entities are referred to, in any given genre,
while still allowing for the model to tease apart
and exploit domain-specific aspects. The archi-
tecture is also designed to capture these common-
alities across label relationships, which can vary
across domains. In addition, the multi-task objec-
tive further assists the model to leverage domain-
dependent and -independent components. The
choice of input representation is orthogonal to the
proposed architecture and our extensions to the
architecture can be combined with any input repre-
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sentation.
The model architecture is presented in Figure 1

and described below:
Private and Shared Layers We rely on the
shared-private paradigm where the model learns
both a shared representation across all domains and
is useful when the domain of the input is unknown
or unseen in training, and a private domain repre-
sentation that mostly helps tagging in that domain.

We model the shared and private features at both
the feature mapping stage connecting the BiLSTM
outputs to the CRF(s) and at the CRF level. We
expect the features extracted by the BiLSTM layers
to model the structure of the input across all do-
mains. The feed-forward layers capture the domain-
specific and -independent information by using pri-
vate output layers for each domain and one shared
output layer. In training, the BiLSTM outputs are
projected to both the shared layer and the private
layer based on the domain label provided in train-
ing. The CRF layer is used to make a global de-
cision for the entire tag sequence by modelling
label dependencies. We expect that this decision
is, at least partially, dependent on domain-specific
relationships in the label space. Hence, each feed-
forward layer feeds into either private CRFs (one
for each domain) or a shared CRF. The separation
of the shared and private layers could happen be-
fore the CRF stage (late separation) or before the
feed-forward layer stage (early separation). We in-
vestigate the influence of each individual addition
on the multi-domain performance in our analysis
section through ablation studies.

Given an input, both the shared and the private
parameters are used in learning to predict the out-
put. The set of private parameters for each domain
are only updated by data from the same domain
while the set of shared parameters are updated in a
pooled way by taking all available data points in the
training stage regardless of the domain character-
istics. For a given data point, inference can be run
either by: a) passing it though the private compo-
nents if the domain label is known; b) through the
shared components if the domain label in unknown
or the domain of the data is unseen in training. To
this end, the objective function for the private and
shared layers is:

LNER SP (x, y) = LNER S(x, y) + LNER P (x, y) (1)

where LNER S and LNER P stand for the shared
layer loss and private layer loss respectively.

Multi-Task Learning of Domain Labels Further,
to better guide the learning process, we augment
our architecture with a multi-task learning objec-
tive. Through this, the model learns to predict
the domain label of each sample in training as
an auxiliary task. The architecture uses average
pooling on BiLSTM outputs followed by a fully
connected layer. Finally, softmax is applied over
the learned domain feature to obtain a probabil-
ity distribution of all domain labels. The domain
classification objective is to minimize the cross-
entropy loss Ldomain(x, yd) for an input x with
domain label yd. The global objective function
is the combination of the NER loss function and
domain loss:

L(x; y, yd) = LNER SP (x, y) + Ldomain(x, yd) (2)

4 Experimental setup

4.1 Data
We use a collection of data sets spanning eight gen-
res to evaluate our methods. In addition, in order
to test the feasibility of NER tagging in a zero-shot
domain setup, we present additional data cover-
ing four other genres. Each genre of documents is
considered a domain in modelling.

4.1.1 Data Sets
The data set collection used in learning the multi-

domain models (denoted as ‘Open Data’ in the rest
of the paper) includes the following three data sets:
CoNLL 2003 We use the data set released as part
of CoNLL 2003 shared task for English (Tjong
Kim Sang and De Meulder, 2003), which is ar-
guably the most popular data set for NER and is reg-
ularly used as a benchmark for this task. This data
is a collection of news articles from the Reuters
Corpus.
Twitter The Twitter data set consists of 22,000
tweets representative of multiple English-speaking
locales and a variety of topics that span 11 years
of Twitter posts (2009–2019). This data was an-
notated with Organizations (ORG), Persons (PER)
and Locations (LOC), using the annotation guide-
lines used in annotating past data sets (Tjong
Kim Sang and De Meulder, 2003) supplemented
with examples that are specific to Twitter data.
OntoNotes (six genres) The OntoNotes data
set (Hovy et al., 2006) consists for six different
genres annotated, amongst others, with named enti-
ties and their types. In this data, each genre refers to
a different source, which includes newswire (NW),
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Data Set # Tokens Density
Entity Distribution

ORG PER LOC

CoNLL 2003 302811 14.52% 33.2% 38.8% 28.0%

Twitter 227019 8.02% 36.9% 46.5% 16.5%

OntoNotes-NW 490738 8.89% 55.1% 21.1% 23.8%

OntoNotes-BN 258625 9.06% 27.5% 37.2% 35.3%

OntoNotes-MZ 197520 7.84% 28.1% 41.9% 30.0%

OntoNotes-BC 239236 5.49% 27.5% 39.8% 32.8%

OntoNotes-TC 114463 1.59% 12.3% 45.6% 42.1%

OntoNotes-WB 490738 2.17% 25.5% 44.4% 30.1%

Zero-Shot-A 103992 3.10% 53.3% 24.4% 22.2%

Zero-Shot-B 794199 8.48% 55.5% 28.4% 16.1%

Zero-Shot-C 156032 10.06% 64.4% 14.4% 21.1%

Zero-Shot-D 27522 5.84% 38.8% 31.9% 29.4%

Table 1: Size of data sets, NE density (tokens that are
named entities) and distributions across entity types for
both open and zero-shot data sets.

broadcast news (BN), broadcast conversation (BC),
magazine (MZ), telephone conversation (TC) and
web data (WB) (Pradhan et al., 2013). Note that
we replace the ‘LOC’, ‘FAC’ and ‘GPE’ tags in the
OntoNotes data with the ‘LOC’ type in order to be
consistent with the definition of ‘LOC’ in CoNLL
2003, as also done in (Augenstein et al., 2017).
Zero Shot Genres Finally, for zero-shot genre
NER, we use a collection of internal data sets from
four different genres spanning news, closed cap-
tions and other documents. All four genres were
annotated with the same entity types and using sim-
ilar guidelines.

4.1.2 Data Set Statistics
Data set statistics are presented in Table 1. This
shows that all domains are represented with a sub-
stantial number of sentences, although the preva-
lence of named entities and their distribution across
types varies, as expected from data sets collected
from different sources and genres. We also see that
the zero-shot domains are significantly different in
entity type distribution and density than the training
data, making them well-suited for this setting.

4.1.3 Data Processing
In order to present comparable results across all
different data sets, we limit our experiments to
three different types of entities that are present in
all the above data sets and annotated using similar
guidelines: organizations (including geo-political
entities and facilities), persons and locations. In
case other types of entities exist in the data (e.g.
MISC for CoNLL, dates for OntoNotes), these are
considered to be not an entity, similar to (Augen-
stein et al., 2017).

We used the BIO tagging scheme in all our ex-
periments, as this is arguably the most popular and
differences in results between this tagging scheme
and others, such as the BILOU scheme, are very
small in practice (Ratinov and Roth, 2009).

4.1.4 Data Splits
We train our models using the open data sets from
CoNLL, Twitter and OntoNotes. The training, de-
velopment and test splits of CoNLL and OntoNotes
follows the standard splits. Similarly, we randomly
split the Twitter data set randomly into 70% for
training, 10% for development and 20% for testing.
The final train, dev and test sets are obtained by
joining all the respective splits across the individual
data sets.

4.2 Other Methods

We evaluate several baseline methods and other
competitive methods introduced in past re-
search and compare to our proposed architecture
(MultDomain–SP–Aux) described in Section 3.2.
These methods focus on different variations of the
neural model architecture, while holding the input
embeddings constant.

InDomain trains an individual NER model using
the base architecture for each of the known do-
mains. In inference, the corresponding in-domain
model is used. This allows us to establish the base-
line individual domain performance when no infor-
mation is shared between the domains in training.

InDomain-DomainClassifier uses the same
NER models as the InDomain model. The In-
Domain approach is however unable to directly
perform inference on sentences where the domain
label is unknown at inference time. We thus build
a separate domain classifier using a Bi-LSTM re-
current neural network that feeds the final hidden
state into a feed-forward network to recognize the
domain of a given input sentence and route it to the
appropriate InDomain NER model.

PoolDomain naively pools all available data, dis-
regarding the domain information and trains a
model using the base architecture. This model
thus ignores the domain information when training,
albeit uses all available training data. Data pooling
is the standard baseline in most domain adaptation
experiments.

PoolDomain-Init uses all available data and uses
the domain information to train models on data
from one domain at once. After training on data
from each domain, the model uses the weights as
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initialization for training on next domain. This is
similar to the INIT strategy for domain adaptation
used in (Mou et al., 2016; Lee et al., 2018). We
perform this weight initialization and fine-tuning
process over all the domains consecutively, where
the order is defined by the density of entities, start-
ing with the highest one.

PoolDomain-GradRev trains the base architec-
ture using a gradient reversal layer (Ganin and Lem-
pitsky, 2014). The gradient reversal technique aims
to confuse the domain discriminator while learn-
ing NER with the combination of the training data
from all domains.

PoolDomain+DomainFeat trains a base archi-
tecture model over all available data and, in ad-
dition to the text-based features, the domain in-
formation is explicitly represented by passing it
through a domain embedding. This is appended
to the word-level features that are used as input to
the BiLSTM layers. The domain embeddings are
randomly initialized.

MultDomain-SP extends the MULT
method (Yang et al., 2017) to the multi-domain
setup. This method uses a domain-specific
CRF for each domain and a shared CRF for all
domains. Both the BiLSTM and the feed-forward
layers are shared across all domains. Inference
can be done either through the private layer
corresponding to the domain of the input – denoted
as MultDomain-MultCRF (P) – or through the
shared layer – denoted as MultDomain-MultCRF
(S) – in which case this can be used when the
domain label is unknown in inference.

4.3 Implementation Details
For our experiments, we largely follow the train-
ing and evaluation procedure used in (Akbik et al.,
2018). As hyperparameters, we follow most sug-
gestions outlined in the in-depth study on model
robustness (Reimers and Gurevych, 2017). Our
training uses 256 hidden states for BiLSTM with
mini-batch size of 32. The model parameters are
updated using back-propagation and Adam opti-
mizer (Kingma and Ba, 2014). The learning rate is
1e−3 with weight decay value 1e−5. The model is
regularized with a locked dropout rate of 0.5. We
use 300-dimensional pre-trained word embeddings
as described in Section 3.1, whereas the character
LSTM is randomly initialized and has a hidden di-
mension of 64. The embeddings are updated on the
training data. When training the domain features to-
gether with the NER (PoolDomain+DomainFeat),

we set the domain embedding size to 128. We train
all models for 20 epochs and report the results for
the model performing best on the joint development
set of the open data set collection.

5 Results

In this section, we present and compare the results
of all the methods introduced previously. Experi-
ments are conducted first on the open data collec-
tion introduced in Section 4.1 in the Multi-Domain
and Multi-Domain with Unknown Label setups.
Following, we evaluate the performance of our
model on the data used for zero-shot genre NER.

The goal of these experiments is to examine the
NER performance across the three proposed ex-
perimental setups which focus on model general-
izability across multiple domains. We note that
the results below can not be directly compared to
the state-of-the-art results on each data set, as we
restrict the entity types to PER, ORG, LOC, such
that these types are constant across all data sets.

5.1 Multi-Domain with Known Domain
Labels

First, we compare models when assuming the do-
main label of each test document is known at infer-
ence time. The results are listed in Table 2.

Our proposed method – MultDomain-SP-Aux
(P) – obtains the best results across the entire
test collection in both micro-average (+0.43) and
macro-average (+1.94) compared to all other ap-
proaches and performs best on 7 out of the 8 do-
mains. The second best method is the PoolDo-
main+DomainFeat which uses the domain fea-
ture as input. Our method consistently surpasses
the in-domain classifiers (InDomain) on micro-
average (+1.48) and macro-average (+3.11), show-
ing the limitations of naive modeling approaches.
Although increases exist across all domains, these
are most prominent in domains like TC (+5.36) that
have a low density of named entities and where in-
domain models have access to limited amounts of
data. However, the in-domain performance is better
than the pooled method of training, which shows
consistent drops in performance on some domains
(-8.69 on WB, -6.77 on BC, - 1.98 on CoNLL),
where information from other domains did not ben-
efit the model.
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Model Works on Unknown
Domain Labels

CoNLL Twitter NW BN MZ BC TC WB µ–Avg M–Avg

InDomain 7 89.91 67.36 91.09 91.09 86.90 84.41 77.06 64.74 85.29 81.57

InDomain+DomainClassifier 3 88.92 66.98 90.48 90.21 85.63 84.64 76.28 59.62 83.93 80.35

PoolDomain 3 87.93 66.21 90.86 92.76 87.73 89.06 70.29 56.05 83.94 80.11

PoolDomain–Init 3 31.31 15.74 63.34 67.63 47.30 63.30 33.93 57.55 47.00 47.55

PoolDomain–GradRev 3 83.49 54.55 83.95 86.87 77.46 83.93 77.78 50.88 77.29 74.86

PoolDomain+DomainFeat 7 90.74 67.80 90.32 92.27 89.12 89.86 78.40 63.37 86.34 82.74

MultDomain–SP (P) 7 87.70 59.16 88.96 93.51 88.52 89.95 77.97 55.51 82.12 80.16

MultDomain–SP (S) 3 87.41 57.98 88.64 93.47 88.39 89.00 55.51 54.39 81.73 80.08

MultDomain–SP–Aux (P) 7 90.21 69.15 91.09 93.64 91.38 90.67 82.42 67.44 86.77 84.68
MultDomain–SP–Aux (S) 3 88.43 67.13 91.26 93.59 87.67 89.54 78.77 59.63 84.68 82.30

Table 2: Experimental results on the eight data sets, as well as micro (µ-) and macro (M-) averaged across data
sets. Performance is measured using micro F1 score. The rows with 3 indicate methods that can be applied when
the domain label is not known at inference time. (S) and (P) denote if inference is done through the shared (S) or
private (P) layers of the architecture. Results in bold are the best across all models, those underlined are best across
methods that work with unknown domain labels.

5.2 Multi-Domain with Unknown Domain
Labels

We now focus on the experimental setup where
domain labels are unknown for each data point at
inference time. This is akin to a setup where the
user is agnostic to the data the model was trained
on. As only a subset of the models can perform
inference in this scenario, the results are a subset
of those in Table 2.

Our model – MultDomain-SP-Aux (S) – gains
the best overall performance in this setup, with
1.95 macro-average F1 increase over the next
best method (InDomain+DomainClassifier). The
other standard baseline for domain adaptation
(PoolDomain) obtains a similar performance
(−2.19 compared to our method) to the in-domain
approach, which shows the benefits of multi-
domain adaptation.

PoolDomain-Init is performing overall poorly,
which shows that the INIT transfer learning strat-
egy that is somewhat effective for source-target
domain adaptation does not work well in the multi-
domain setup. Our intuition is that this technique is
unable to learn robust features sequentially across
N domains, as it performs poorly on the initial
trained domains. PoolDomain-GradRev gains rel-
atively weak performance overall, lower than the
in-domain baseline.

5.3 Zero-Shot Domain
Finally, we show the results on the experimental
setup where the test data is the four ‘Zero-Shot
Genres’, which were not used in during training.
Table 3 shows the experimental results of all meth-
ods that can run inference with unknown domain

Models
Zero-Shot Genres

M–Avg
A B C D

InDomain+DomainClassifier 47.16 60.04 62.00 59.50 57.17

PoolDomain 52.61 62.53 63.53 61.55 60.05

PoolDomain-Init 24.38 36.92 47.13 19.47 31.98

PoolDomain-GradRev 49.48 68.97 67.95 57.41 60.95

MultDomain-SP (S) 50.9 72.27 68.19 61.86 63.30

MultDomain-SP-Aux (S) 54.50 67.77 70.30 64.02 64.15

Table 3: Evaluation results on data from genres unseen
in training.

labels, as we assume that in this setup, the end-user
does not have knowledge about the domains used
in training and which of these are most similar to
the test point.

Results show that our proposed method ob-
tains again the best results, with a consis-
tent margin of 2.24 macro-average F1 improve-
ment over the next method. Pooling all data
(PoolDomain) obtains better performance than
building in-domain classifiers with domain classi-
fication (InDomain+DomainClassifier) unlike in
the other setups. This also shows that the zero-shot
domains we used are indeed different to any of the
ones in training and pooling all data manages to
build a slightly more robust model than individual
ones trained on less data. The in-domain models
perform 5.21 F1 points lower than our approach,
the largest gap in all experimental setups, highlight-
ing the robustness of the multi-domain modeling
approach. The MultDomain-SP (S) model is sec-
ond best, and as this is the base for our method, we
discuss its performance in the ablation study from
the next section.
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6 Analysis

6.1 Ablation Experiments

We first focus on understanding the impact of
each component added to our proposed method
over the base architecture through an ablation
study. Table 4 shows results using the private layer
(MultDomain-SP-Aux (P)) when each of the three
components are alternatively turned off: Shared-
Private Linear layer, Shared-Private CRF and the
domain prediction auxiliary task.

Shared vs. Shared-Private CRF With the rest
of the architecture fixed, the results show that the
shared-private CRF performs close to the shared
CRF when the shared linear layer is used (80.08 vs.
80.16; 82.04 vs. 82.74; all comparisons in this sec-
tion are on macro-average). However, once we use
a separate linear layer between the BiLSTM and
each CRF, the difference between having the shared
and the shared-private CRFs increases drastically
(81.36 vs. 83.11; 82.30 vs. 84.68). With only
this late separation, the inputs to CRF decoders are
still domain-independent features, which makes it
hard for the linear CRF to adapt. When the inputs
are already domain-dependent, the linear CRF can
better use this information in performing the joint
inference of the sequence. We note that only using
shared-private CRF with the base architecture is
equivalent to the MultDomain-SP method (Yang
et al., 2017).

Shared vs. Shared-Private Linear Projections
The results show that regardless of the other pa-
rameters, adding shared and private linear layers
between the BiLSTM layers and the CRF(s) is al-
ways beneficial (80.08 vs. 81.36; 80.16 vs. 83.11;
82.04 vs. 82.30; 82.74 vs. 84.68). The improve-
ments are relatively larger when combined with
shared and private CRF, as previously seen.

Multi-Task Learning of Domain Labels Finally,
we compare the impact of adding the multi-task
learning objective. We find that, similar to the
linear layers, adding the domain prediction task is
always beneficial for the model with the increase
being larger if is only a shared linear layer.

We expect that the two tasks at different levels
of granularity rely on shared structure in the orig-
inal semantic space. The document-level domain
labels can help regularize the training, providing
generic information about which low-level features
are valuable to entity-level recognition.

6.2 InDomain with Oracle Choice

In order to understand the limitations of the multi-
domain setup, we study whether the models we can
build from the available data could theoretically
achieve better overall performance. We use an
oracle-based selection technique on the in-domain
models to select, after the prediction and using
the gold labels the model which performed best
for each test instance, as selected using F1 score or,
if there are no entities, the model with most O pre-
dictions. If multiple models are tied, we choose one
at random. The oracle thus provides the counter-
factually “Optimal” strategy of model selection for
each test instance and represents an upper bound
on strategies relying on InDomain models.

Table 5 compares the oracle strategy predictions
with the InDomain+DomainClassifier and the
MultDomain-SP-Aux model. The results show
that even though our model improves substan-
tially over the in-domain models, an oracle selec-
tion method would push performance much higher
(+6.73 F1 on the open data). This highlights both
the variability of NER models trained on different
data sets and that there is potentially more room
for improvements in the multi-domain setup.

6.3 InDomain Models

The Supplementary Material shows a breakdown
of the domain prediction labels for three methods:
domain classification, domain prediction in the pro-
posed MultDomain-SP-Aux model and the oracle
in-domain choice on gold data. The oracle strategy
selects the predictions from all in-domain models.
Based on this, we analyzed the performance of each
individual in-domain model when tested on all do-
mains in Table 6. We find that although the Oracle
strategy uses a mix of models, any model alone is
unable to generalize to other domains (67.19 vs.
84.68 best InDomain model compared to the best
overall model). In the zero-shot genres, the Twitter
model performs close to the MultDomain-SP-Aux
model (-0.56 F1), albeit it is 24 F1 lower on the
multi-domain setup. This reinforces that learning
shared domain features as opposed to learning indi-
vidual models helps boost performance and is more
robust to different types of inputs.

7 Runtime Comparison

Finally, we compare the runtime difference across
various methods listed in the experiment section
to test the practical implications of using our pro-
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Auxiliary Task Linear CRF CoNLL Twitter NW BN MZ BC TC WB µ–Avg M–Avg

7 Shared
Shared 87.41 57.98 88.64 93.47 88.39 89.00 55.51 54.39 81.73 80.08

Sh-Private 87.70 59.16 88.96 93.51 88.52 89.95 77.97 55.51 82.12 80.16

7 Sh-Private
Shared 87.65 64.45 90.88 92.82 87.92 88.75 80.60 57.81 83.77 81.36

Sh-Private 89.57 67.78 90.98 92.45 90.10 88.75 80.86 64.38 85.95 83.11

3 Shared
Shared 89.00 67.27 91.10 93.00 89.15 89.00 78.36 59.48 85.69 82.04

Sh-Private 89.48 67.19 91.31 93.48 89.99 89.48 79.18 61.84 86.55 82.74

3 Sh-Private
Shared 88.43 67.13 91.26 93.59 87.67 89.54 78.77 59.63 84.68 82.30

Sh-Private 90.21 69.15 91.09 93.64 91.38 90.67 82.42 67.44 86.77 84.68

Table 4: Ablation study comparing the performance (F1 score) of models trained with and without: shared-private
linear projections of BiLSTM outputs, shared-private CRF heads and multi-task domain classification.

Model Open Data Zero-Shot

InDomain + DomainClassifier 80.35 57.17

MultDomain-SP-Aux 84.68 64.15

Oracle with InDomain 91.41 80.27

Table 5: Performance in macro-average F1 of the InDo-
main models with an oracle model selection strategy
using gold test data compared to selected methods.

Model Open Data Zero-Shot
CoNLL 64.26 61.40

Twitter 60.59 63.59

NW 67.19 59.00

BN 66.08 54.82

MZ 57.52 48.62

BC 59.19 46.30

TC 47.25 37.41

WB 44.09 25.41

Table 6: Results of InDomain models trained on each
domain independently on the open data set collection
and the zero-shot genres reported in macro average of
F1 for each domain.

posed multi-domain modelling approach. In test
phase, we set the batch size as 128. Table 7 shows
the average time of inference time used for each
model. Our proposed model architecture takes 0.15
ms (33% increase) longer for inference than InDo-
main or PoolDomain models, which is a result of
more model parameters. However, our proposed
architecture is still 0.19 ms faster than using the
InDomain+DomainClassifier approach.

In addition to inference runtime, we also find that
the training time is not significantly more than the
combined training time of N in-domain models.
The main additions are that of the shared layers
and the auxiliary task to the components of the N
in-domain models and is thus a constant addition
in the number of parameters to the total of N in-
domain models. Hence, the model would scale by
a constant with respect to the number of input do-
mains (N+1 number of components, where N is the
number of domains). This should allow our pro-

posed model to scale to a large number of domains.
This highlights that the proposed MultDomain–

SP–Aux model is a viable option for real-world
applications.

Model Runtime (ms)
InDomain 0.45
InDomain+DomainClassifier 0.79
PoolDomain 0.45
PoolDomain–Init 0.43
PoolDomain–GradRev 0.47
PoolDomain+DomainFeat 0.45
MultDomain–SP 0.56
MultDomain–SP–Aux 0.60

Table 7: Averaged inference time (in ms) per sentence
query on Open Dataset.

8 Conclusions

Robustness of NLP models is essential to their
wider adoption and usability. Existing NER ap-
proaches are widely faced with limited scalability
when applied to data that spans multiple domains.
This paper introduced three experimental setups
that provide a framework for evaluating the robust-
ness of NER models. These include learning from
data in multiple domains and testing on all domains,
when the domain label of the test point is unknown
and when this does not belong to a domain seen in
training. Building on past research, we proposed
a new neural architecture that achieves substantial
improvements of up to 5 F1 points when compared
to standard methods. Future work will focus on
domain adaptation at the embedding layer.
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A Domain Prediction
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ces between the domain predictions of three se-
tups: domain classification, domain prediction in
the proposed MultDomain-SP-Aux model and the
oracle in-domain choice on gold data. Figure 2
shows that the Oracle model relies on the corre-
sponding InDomain model to only a limited extent

Figure 2: Domain label confusion matrices on the
CoNLL-Twitter-OntoNotes data collection.

for each model. In uniformly many cases, predic-
tions from other in-domain models are better than
the existing in-domain one, showing the variability
of the NER models. The domain classifier pre-
dictions align closer to the actual domains. The
MultDomain-SP-Aux model also tends to predict
the domain correctly, but we see that it better learns
the NW, WB and BN domains. Note noting that
the MultDomain-SP-Aux model does not use these
domain predictions in inference and the model uses
the shared components for unknown domains or
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Figure 3: Zero-Shot Domain data domain-label frequency prediction comparison

labels.
Finally, we plot the domain prediction distribu-

tion on the zero-shot genre data in Figure 3. We
find that similar to the confusion matrices, the ora-
cle strategy has a more even spread in domain selec-
tion. We observe similar patterns to the confusion
matrices for the InDomain+DomainClassifier
and MultDomain-SP-Aux models.


