
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 8452–8464
July 5 - 10, 2020. c©2020 Association for Computational Linguistics

8452

A Generate-and-Rank Framework with Semantic Type Regularization for
Biomedical Concept Normalization

Dongfang Xu and Zeyu Zhang and Steven Bethard
School of Information
University of Arizona

Tucson, AZ
{dongfangxu9,zeyuzhang,bethard}@email.arizona.edu

Abstract

Concept normalization, the task of linking tex-
tual mentions of concepts to concepts in an on-
tology, is challenging because ontologies are
large. In most cases, annotated datasets cover
only a small sample of the concepts, yet con-
cept normalizers are expected to predict all
concepts in the ontology. In this paper, we
propose an architecture consisting of a candi-
date generator and a list-wise ranker based on
BERT. The ranker considers pairings of con-
cept mentions and candidate concepts, allow-
ing it to make predictions for any concept, not
just those seen during training. We further en-
hance this list-wise approach with a semantic
type regularizer that allows the model to in-
corporate semantic type information from the
ontology during training. Our proposed con-
cept normalization framework achieves state-
of-the-art performance on multiple datasets.

1 Introduction

Mining and analyzing the constantly-growing un-
structured text in the bio-medical domain offers
great opportunities to advance scientific discovery
(Gonzalez et al., 2015; Fleuren and Alkema, 2015)
and improve the clinical care (Rumshisky et al.,
2016; Liu et al., 2019). However, lexical and gram-
matical variations are pervasive in such text, posing
key challenges for data interoperability and the de-
velopment of natural language processing (NLP)
techniques. For instance, heart attack, MI, myocar-
dial infarction, and cardiovascular stroke all refer
to the same concept. It is critical to disambiguate
these terms by linking them with their correspond-
ing concepts in an ontology or knowledge base.
Such linking allows downstream tasks (relation ex-
traction, information retrieval, text classification,
etc.) to access the ontology’s rich knowledge about
biomedical entities, their synonyms, semantic types
and mutual relationships.

Concept normalization is a task that maps con-
cept mentions, the in-text natural-language men-
tions of ontological concepts, to concept entries in
a standardized ontology or knowledge base. Tech-
niques for concept normalization have been ad-
vancing, thanks in part to recent shared tasks in-
cluding clinical disorder normalization in 2013
ShARe/CLEF (Suominen et al., 2013) and 2014
SemEval Task 7 Analysis of Clinical Text (Pradhan
et al., 2014), and adverse drug event normaliza-
tion in Social Media Mining for Health (SMM4H)
(Sarker et al., 2018; Weissenbacher et al., 2019).
Most existing systems use a string-matching or
dictionary look-up approach (Leal et al., 2015;
D’Souza and Ng, 2015; Lee et al., 2016), which
are limited to matching morphologically similar
terms, or supervised multi-class classifiers (Be-
lousov et al., 2017; Tutubalina et al., 2018; Niu
et al., 2019; Luo et al., 2019a), which may not
generalize well when there are many concepts in
the ontology and the concept types that must be
predicted do not all appear in the training data.

We propose an architecture (shown in Figure 1)
that is able to consider both morphological and se-
mantic information. We first apply a candidate gen-
erator to generate a list of candidate concepts, and
then use a BERT-based list-wise classifier to rank
the candidate concepts. This two-step architecture
allows unlikely concept candidates to be filtered
out prior to the final classification, a necessary step
when dealing with ontologies with millions of con-
cepts. In contrast to previous list-wise classifiers
(Murty et al., 2018) which only take the concept
mention as input, our BERT-based list-wise clas-
sifier takes both the concept mention and the can-
didate concept name as input, and is thus able to
handle concepts that never appear in the training
data. We further enhance this list-wise approach
with a semantic type regularizer that allows our
ranker to leverage semantic type information from



8453

head spinning a little
C0220870
C0012833
C0018681
C0393760
. . .

Candidate Generator
(multi-class BERT classifier or Lucene)

[CLS] head spinning a little [SEP] Lightheadedness [SEP] Light-headed feeling . . .
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Figure 1: Proposed architecture for concept normalization: candidate generation and ranking.

the ontology during training.
Our work makes the following contributions:

• Our proposed concept normalization frame-
work achieves state-of-the-art performance on
multiple datasets.

• We propose a concept normalization frame-
work consisting of a candidate generator and
a list-wise classifier. Our framework is easier
to train and the list-wise classifier is able to
predict concepts never seen during training.

• We introduce a semantic type regularizer
which encourages the model to consider the
semantic type information of the candidate
concepts. This semantic type regularizer im-
proves performance over the BERT-based list-
wise classifier on multiple datasets.

The code for our proposed generate-and-rank
framework is available at https://github.com/
dongfang91/Generate-and-Rank-ConNorm.

2 Related work

Traditional approaches for concept normalization
involve string match and dictionary look-up. These
approaches differ in how they construct dictionar-
ies, such as collecting concept mentions from the
labeled data as extra synonyms (Leal et al., 2015;
Lee et al., 2016), and in different string matching
techniques, such as string overlap and edit distance
(Kate, 2016). Two of the most commonly used
knowledge-intensive concept normalization tools,
MetaMap (Aronson, 2001) and cTAKES (Savova
et al., 2010) both employ rules to first generate lex-
ical variants for each noun phrase and then conduct
dictionary look-up for each variant. Several sys-
tems (D’Souza and Ng, 2015; Jonnagaddala et al.,
2016) have demonstrated that rule-based concept
normalization systems achieve performance com-
petitive with other approaches in a sieve-based ap-
proach that carefully selects combinations and or-
ders of dictionaries, exact and partial matching,

and heuristic rules. However, such rule-based ap-
proaches struggle when there are great variations
between concept mention and concept, which is
common, for example, when comparing social me-
dia text to medical ontologies.

Due to the availability of shared tasks and an-
notated data, the field has shifted toward machine
learning techniques. We divide the machine learn-
ing approaches into two categories, classification
(Savova et al., 2008; Stevenson et al., 2009; Lim-
sopatham and Collier, 2016; Yepes, 2017; Festag
and Spreckelsen, 2017; Lee et al., 2017; Tutubalina
et al., 2018; Niu et al., 2019) and learning to rank
(Leaman et al., 2013; Liu and Xu, 2017; Li et al.,
2017; Nguyen et al., 2018; Murty et al., 2018).

Most classification-based approaches using deep
neural networks have shown strong performance.
They differ in using different architectures, such
as Gated Recurrent Units (GRU) with attention
mechanisms (Tutubalina et al., 2018), multi-task
learning with auxiliary tasks to generate attention
weights (Niu et al., 2019), or pre-trained trans-
former networks (Li et al., 2019; Miftahutdinov
and Tutubalina, 2019); different sources for train-
ing word embeddings, such as Google News (Lim-
sopatham and Collier, 2016) or concept defini-
tions from the Unified Medical Language System
(UMLS) Metathesaurus (Festag and Spreckelsen,
2017); and different input representations, such
as using character embeddings (Niu et al., 2019).
All classification approaches share the disadvan-
tage that the output space must be the same size as
the number of concepts to be predicted, and thus
the output space tends to be small such as 2,200
concepts in (Limsopatham and Collier, 2016) and
around 22,500 concepts in (Weissenbacher et al.,
2019). Classification approaches also struggle with
concepts that have only a few example mentions in
the training data.

Researchers have applied point-wise learning
to rank (Liu and Xu, 2017; Li et al., 2017), pair-
wise learning to rank (Leaman et al., 2013; Nguyen

https://github.com/dongfang91/Generate-and-Rank-ConNorm
https://github.com/dongfang91/Generate-and-Rank-ConNorm
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et al., 2018), and list-wise learning to rank (Murty
et al., 2018; Ji et al., 2019) on concept normaliza-
tion. Generally, the learning-to-rank approach has
the advantage of reducing the output space by first
obtaining a smaller list of possible candidate con-
cepts via a candidate generator and then ranking
them. DNorm (Leaman et al., 2013), based on a
pair-wise learning-to-rank model where both men-
tions and concept names were represented as TF-
IDF vectors, was the first to use learning-to-rank
for concept normalization and achieved the best
performance in the ShARe/CLEF eHealth 2013
shared task. List-wise learning-to-rank approaches
are both computationally more efficient than pair-
wise learning-to-rank (Cao et al., 2007) and em-
pirically outperform both point-wise and pair-wise
approaches (Xia et al., 2008). There are two im-
plementations of list-wise classifiers using neural
networks for concept normalization: Murty et al.
(2018) treat the selection of the best candidate con-
cept as a flat classification problem, losing the abil-
ity to handle concepts not seen during training; Ji
et al. (2019) take a generate-and-rank approach
similar to ours, but they do not leverage resources
such as synonyms or semantic type information
from UMLS in their BERT-based ranker.

3 Proposed methods

3.1 Concept normalization framework

We define a concept mention m as an abbrevia-
tion such as “MI”, a noun phrase such as “heart
attack”, or even a short text such as “an obstruc-
tion of the blood supply to the heart”. The goal
is then to assign m with a concept c. Formally,
given a list of pre-identified concept mentions
M = {m1,m2, ...,mn} in the text and an on-
tology or knowledge base with a set of concepts
C = {c1, c2, ..., ct}, the goal of concept normaliza-
tion is to find a mapping function cj = f(mi) that
maps each textual mention to its correct concept.

We approach concept normalization in two steps:
we first use a candidate generator G(m,C)→ Cm

to generate a list of candidate concepts Cm for
each mention m, where Cm ⊆ C and |Cm| � |C|.
We then use a candidate ranker R(m,Cm)→ Ĉm,
where Ĉm is a re-ranked list of candidate concepts
sorted by their relevance, preference, or importance.
But unlike information retrieval tasks where the
order of candidate concepts in the sorted list Ĉm is
crucial, in concept normalization we care only that
the one true concept is at the top of the list.

The main idea of the two-step approach is that
we first use a simple and fast system with high re-
call to generate candidates, and then a more precise
system with more discriminative input to rank the
candidates.

3.2 Candidate generator

We implement two kinds of candidate generators: a
BERT-based multi-class classifier when the number
of concepts in the ontology is small, and a Lucene-
based1 dictionary look-up when there are hundreds
of thousands of concepts in the ontology.

3.2.1 BERT-based multi-class classifier
BERT (Devlin et al., 2019) is a contextualized
word representation model that has shown great
performance in many NLP tasks. Here, we use
BERT in a multi-class text-classification configu-
ration as our candidate concept generator. We use
the final hidden vector Vm ∈ RH corresponding
to the first input token ([CLS]) generated from
BERT (m) and a classification layer with weights
W ∈ R|C|×H , and train the model using a standard
classification loss:

LG = y ∗ log(softmax(VmW T )) (1)

where y is a one-hot vector, and |y| = |C|. The
score for all concepts is calculated as:

p(C) = softmax(VmW
T ) (2)

We select the top k most probable concepts in p(C)
and feed that list Cm to the ranker.

3.2.2 Lucene-based dictionary look-up
system

Multi-pass sieve rule based systems (D’Souza and
Ng, 2015; Jonnagaddala et al., 2016; Luo et al.,
2019b) achieve competitive performance when
used with the right combinations and orders of
different dictionaries, exact and partial matching,
and heuristic rules. Such systems relying on basic
lexical matching algorithms are simple and fast to
implement, but they are only able to generate can-
didate concepts which are morphologically similar
to a given mention.

Inspired by the work of Luo et al. (2019b), we
implement a Lucene-based sieve normalization sys-
tem which consists of the following components
(see Appendix A.1 for details):

1https://lucene.apache.org/

https://lucene.apache.org/
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a. Lucene index over the training data finds all
mentions that exactly match m.

b. Lucene index over ontology finds concepts
whose preferred name exactly matches m.

c. Lucene index over ontology finds concepts
where at least one synonym of the concept
exactly matches m.

d. Lucene index over ontology finds concepts
where at least one synonym of the concept has
high character overlap with m.

The ranked list Cm generated by this system is fed
as input to the candidate ranker.

3.3 Candidate ranker
After the candidate generator produces a list of con-
cepts, we use a BERT-based list-wise classifier to
select the most likely candidate. BERT allows us to
match morphologically dissimilar (but semantically
similar) mentions and concepts, and the list-wise
classifier takes both mention and candidate con-
cepts as input, allowing us to handle concepts that
appear infrequently (or never) in the training data.

Here, we use BERT similar to a question an-
swering configuration, where given a concept men-
tion m, the task is to choose the most likely
candidate concept cm from all candidate con-
cepts Cm. As shown in Figure 1, our classi-
fier input includes the text of the mention m and
all synonyms of the candidate concept cm, and
takes the form [CLS] m [SEP] syn1(cm) [SEP]

... [SEP] syns(cm) [SEP], where syni(cm) is
the ith synonym of concept cm2. We calculate the
final hidden vector V(m,cm) ∈ RH corresponding
to the first input token ([CLS]) generated from
BERT for each such input, and then concatenate
the hidden vectors of all candidate concepts to form
a matrix V(m,Cm) ∈ R|Cm|×H . We use this matrix
and classification layer weights W ∈ RH , and
compute a standard classification loss:

LR = y ∗ log(softmax(V(m,Cm)W
T )). (3)

where y is a one-hot vector, and |y| = |Cm|.

3.4 Semantic type regularizer
To encourage the list-wise classifier towards a more
informative ranking than just getting the correct

2In preliminary experiments, we tried only the concept’s
preferred term and several other ways of separating synonyms,
but none of these resulted in better performance.

concept at the top of the list, we propose a semantic
type regularizer that is optimized when candidate
concepts with the correct semantic type are ranked
above candidate concepts with incorrect types. The
semantic type of the candidate concept is assumed
correct only if it exactly matches the semantic type
of the gold truth concept. If the concept has multi-
ple semantic types, all must match. Our semantic
type regularizer consists of two components:

Rp(ŷt, ŷp) =
∑

p∈P (y)

(m1 + ŷp − ŷt) (4)

Rn(ŷp, ŷn) =
∑

p∈P (y)

max
n∈N(y)

(m2 + ŷn − ŷp) (5)

where ŷ = V(m,cm)W
T , N(y) is the set of indexes

of candidate concepts with incorrect semantic types
(negative candidates), P (y) (positive candidates)
is the complement of N(y), ŷt is the score of the
gold truth candidate concept, and thus t ∈ P (y).
The margins m1 and m2 are hyper-parameters for
controlling the minimal distances between ŷt and
ŷp and between ŷp and ŷn, respectively. Intuitively,
Rp tries to push the score of the gold truth concept
above all positive candidates at least by m1, and
Rn tries to push the best scored negative candidate
below all positive candidates by m2.

The final loss function we optimize for the BERT-
based list-wise classifier is:

L = LR + λRp(ŷt, ŷp) + µRn(ŷp, ŷn) (6)

where λ and µ are hyper-parameters to control the
tradeoff between standard classification loss and
the semantic type regularizer.

4 Experiments

4.1 Datasets

Our experiments are conducted on three social me-
dia datasets, AskAPatient (Limsopatham and Col-
lier, 2016), TwADR-L (Limsopatham and Collier,
2016), and SMM4H-17 (Sarker et al., 2018), and
one clinical notes dataset, MCN (Luo et al., 2019b).
We summarize dataset characteristics in Table 1.

AskAPatient The AskAPatient dataset3 contains
17,324 adverse drug reaction (ADR) annota-
tions collected from blog posts. The mentions
are mapped to 1,036 medical concepts with

3http://dx.doi.org/10.5281/zenodo.
55013

http://dx.doi.org/10.5281/zenodo.55013
http://dx.doi.org/10.5281/zenodo.55013
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Dataset AskAPatient TwADR-L SMM4H-17 MCN

Ontology SNOMED-CT & AMT MedDRA MedDRA (PT) SNOMED-CT & RxNorm
Subset Y Y N N
|Contology| 1,036 2,220 22,500 434,056
|STontology| 22 18 61 125
|Cdataset| 1,036 2,220 513 3,792
|M | 17,324 5,074 9,149 13,609
|Mtrain| 15665.2 4805.7 5,319 5,334
|Mtest| 866.2 142.7 2,500 6,925
|M |/|Cdataset| 16.72 2.29 17.83 3.59
|Ctest − Ctrain| 0 0 43 2,256
|Mtest −Mtrain|/Mtest 39.7% 39.5% 34.7% 53.9%
|Mambiguous|/|M | 1.2% 12.8% 0.8% 4.5%

Table 1: Dataset statistics, where C is a set of concepts, ST is a set of semantic types, and M is a set of mentions.

22 semantic types from the subset of System-
atized Nomenclature Of Medicine-Clinical Term
(SNOMED-CT) and the Australian Medicines
Terminology (AMT). We follow the 10-fold
cross validation (CV) configuration in Lim-
sopatham and Collier (2016) which provides 10
sets of train/dev/test splits.

TwADR-L The TwADR-L dataset3 contains
5,074 ADR expressions from social media. The
mentions are mapped to 2,220 Medical Dictio-
nary for Regulatory Activities (MedDRA) con-
cepts with 18 semantic types. We again fol-
low the 10-fold cross validation configuration
defined by Limsopatham and Collier (2016).

SMM4H-17 The SMM4H-17 dataset 4 consists of
9,149 manually curated ADR expressions from
tweets. The mentions are mapped to 22,500 con-
cepts with 61 semantic types from MedDRA
Preferred Terms (PTs). We use the 5,319 men-
tions from the released set as our training data,
and keep the 2,500 mentions from the original
test set as evaluation.

MCN The MCN dataset consists of 13,609 con-
cept mentions drawn from 100 discharge sum-
maries from the fourth i2b2/VA shared task
(Uzuner et al., 2011). The mentions are mapped
to 3792 unique concepts out of 434,056 possible
concepts with 125 semantic types in SNOMED-
CT and RxNorm. We take 40 clinical notes from
the released data as training, consisting of 5,334
mentions, and the standard evaluation data with
6,925 mentions as our test set. Around 2.7% of
mentions in MCN could not be mapped to any

4http://dx.doi.org/10.17632/rxwfb3tysd.
1

concepts in the terminology, and are assigned
the CUI-less label.

A major difference between the datasets is the
space of concepts that systems must consider. For
AskAPatient and TwADR-L, all concepts in the
test data are also in the training data, and in both
cases only a couple thousand concepts have to be
considered. Both SMM4H-17 and MCN define
a much larger concept space: SMM4H-17 con-
siders 22,500 concepts (though only 513 appear
in the data) and MCN considers 434,056 (though
only 3,792 appear in the data). AskAPatient and
TwADR-L have no unseen concepts in their test
data, SMM4H-17 has a few (43), while MCN has
a huge number (2,256). Even a classifier that per-
fectly learned all concepts in the training data could
achieve only 70.15% accuracy on MCN. MCN also
has more unseen mentions: 53.9%, where the other
datasets have less than 40%. The MCN dataset is
thus harder to memorize, as systems must consider
many mentions and concepts never seen in training.

Unlike the clinical MCN dataset, in the three
social media datasets – AskAPatient, TwADR-L,
and SMM4H-17 – it is common for the ADR ex-
pressions to share no words with their target med-
ical concepts. For instance, the ADR expression
“makes me like a zombie” is assigned the concept
“C1443060” with preferred term “feeling abnor-
mal”. The social media datasets do not include con-
text, only the mentions themselves, while the MCN
dataset provides the entire note surrounding each
mention. Since only 4.5% of mentions in the MCN
dataset are ambiguous, for the current experiments
we ignore this additional context information.

4.2 Unified Medical Language System
The UMLS Metathesaurus (Bodenreider, 2004)
links similar names for the same concept

http://dx.doi.org/10.17632/rxwfb3tysd.1
http://dx.doi.org/10.17632/rxwfb3tysd.1
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from nearly 200 different vocabularies such as
SNOMED-CT, MedDRA, RxNorm, etc. There
are over 3.5 million concepts in UMLS, and for
each concept, UMLS also provides the definition,
preferred term, synonyms, semantic type, relation-
ships with other concepts, etc.

In our experiments, we make use of synonyms
and semantic type information from UMLS. We
restrict our concepts to the three vocabularies, Med-
DRA, SNOMED-CT, and RxNorm in the UMLS
version 2017AB. For each concept in the ontolo-
gies of the four datasets, we first find its concept
unique identifier (CUI) in UMLS. We then extract
synonyms and semantic type information according
to the CUI. Synonyms (English only) are collected
from level 0 terminologies containing vocabulary
sources for which no additional license agreements
are necessary.

4.3 Evaluation metrics

For all four datasets, the standard evaluation of
concept normalization systems is accuracy. For the
AskAPatient and TwADR-L datasets, which use
10-fold cross validation, the accuracy metrics are
averaged over 10 folds.

4.4 Implementation details

We use the BERT-based multi-class classifier as
the candidate generator on the three social media
datasets AskAPatient, TwADR-L, and SMM4H-
17, and the Lucene-based candidate generator for
the MCN dataset. In the social media datasets,
the number of concepts in the data is small, few
test concepts are unseen in the training data, and
there is a greater need to match expressions that are
morphologically dissimilar from medical concepts.
In the clinical MCN dataset, the opposites are true.

For all experiments, we use BioBERT-base (Lee
et al., 2019), which further pre-trains BERT on
PubMed abstracts (PubMed) and PubMed Central
full-text articles (PMC). We use huggingface’s py-
torch implementation of BERT5. We select the best
hyper-parameters based on the performance on dev
set. See Appendix A.2 for hyperparameter settings.

4.5 Comparisons with related methods

We compare our proposed architecture with the
following state-of-the-art systems.

5https://github.com/huggingface/
transformers

WordCNN Limsopatham and Collier (2016) use
convolutional neural networks over pre-trained
word embeddings to generate a vector represen-
tation for each mention, and then feed these into
a softmax layer for multi-class classification.

WordGRU+Attend+TF-IDF Tutubalina et al.
(2018) use a bidirectional GRU with attention
over pre-trained word embeddings to generate a
vector representation for each mention, concate-
nate such vector representations with the cosine
similarities of the TF-IDF vectors between the
mention and all other concept names, and then
feed the concatenated vector to a softmax layer
for multi-class classification.

BERT+TF-IDF Miftahutdinov and Tutubalina
(2019) take similar approach as Tutubalina et al.
(2018), but use BERT to generate a vector rep-
resentation for each mention. They concatenate
the vector representations with the cosine simi-
larities of the TF-IDF vectors between the men-
tion and all other concept names, and then feed
the concatenated vector to a softmax layer for
multi-class classification.

CharCNN+Attend+MT Niu et al. (2019) use a
multi-task attentional character-level convolu-
tion neural network. They first convert the men-
tion into a character embedding matrix. The aux-
iliary task network takes the embedding matrix
as input for a CNN to learn to generate character-
level domain-related importance weights. Such
learned importance weights are concatenated
with the character embedding matrix and fed
as input to another CNN model with a softmax
layer for multi-class classification.

CharLSTM+WordLSTM Han et al. (2017) first
use a forward LSTM over each character of the
mention and its corresponding character class
such as lowercase or uppercase to generate a
character-level vector representation, then use
another bi-directional LSTM over each word of
the mention to generate a word-level representa-
tion. They concatenate character-level and word-
level representations and feed them as input to a
softmax layer for multi-class classification.

LR+MeanEmbedding Belousov et al. (2017) cal-
culate the mean of three different weighted word
embeddings pre-trained on GoogleNews, Twit-
ter and DrugTwitter as vector representations for

https://github.com/huggingface/transformers
https://github.com/huggingface/transformers


8458

TwADR-L AskAPatient SMM4H-17

Approach Dev Test Dev Test Dev Test

WordCNN (Limsopatham and Collier, 2016) - 44.78 - 81.41 - -
WordGRU+Attend+TF-IDF (Tutubalina et al., 2018) - - - 85.71 - -
BERT+TF-IDF (Miftahutdinov and Tutubalina, 2019) - - - - - 89.64
CharCNN+Attend+MT (Niu et al., 2019) - 46.46 - 84.65 - -
CharLSTM+WordLSTM (Han et al., 2017) - - - - - 87.20
LR+MeanEmbedding (Belousov et al., 2017) - - - - - 87.70

BERT 47.08 44.05 88.63 87.52 84.74 87.36
BERT + BERT-rank 48.07 46.32 88.14 87.10 84.44 87.66
BERT + BERT-rank + ST-reg 47.98 47.02 88.26 87.46 84.66 88.24

BERT + gold + BERT-rank 52.70 49.69 89.06 87.92 88.57 90.16
BERT + gold + BERT-rank + ST-reg 52.84 50.81 89.68 88.51 88.87 91.08

Table 2: Comparisons of our proposed concept normalization architecture against the current state-of-the-art per-
formances on TwADR-L, AskAPatient, and SMM4H-17 datasets.

the mention, where word weights are calculated
as inverse document frequency. Such vector rep-
resentations are fed as input to a multinomial
logistic regression (LR) model for multi-class
classification.

Sieve-based Luo et al. (2019b) build a sieve-
based normalization model which contains exact-
match and MetaMap (Aronson, 2001) modules.
Given a mention as input, the exact-match mod-
ule first looks for mentions in the training data
that exactly match the input, and then looks for
concepts from the ontology whose synonyms ex-
actly match the input. If no concepts are found,
the mention is fed into MetaMap. They run
this sieve-based normalization model twice. In
the first round, the model lower-cases the men-
tions and includes acronym/abbreviation tokens
during dictionary lookup. In the second round,
the model lower-cases the mentions spans and
also removes special tokens such as “&apos;s”,
“&quot;”, etc.

Since our focus is individual systems, not ensem-
bles, we compare only to other non-ensembles6.

4.6 Models

We separate out the different contributions from
the following components of our architecture.

BERT The BERT-based multi-class classifier.
When used alone, we select the most probable
concept as the prediction.

6An ensemble of three systems (including CharL-
STM+WordLSTM and LR+MeanEmbedding) achieved 88.7%
accuracy on the SMM4H-17 dataset (Sarker et al., 2018).

MCN

Approach Dev Test

Sieve-based (Luo et al., 2019b) - 76.35

Lucene 79.25
Lucene+BERT-rank 83.56 82.75
Lucene+BERT-rank+ST-reg 84.44 83.56

Lucene+gold+BERT-rank 86.89 84.77
Lucene+gold+BERT-rank+ST-reg 88.59 86.56

Table 3: Accuracy of our proposed concept normaliza-
tion architecture on MCN dataset.

Lucene The Lucene-based dictionary look-up.
When used alone, we take the top-ranked candi-
date concept as the prediction.

+BERT-rank The BERT-based list-wise classifier,
always used in combination with either BERT or
Lucene as a canddiate generator

+ST-reg The semantic type regularizer, always
used in combination with BERT-ranker.

We also consider the case (+gold) where we artifi-
cially inject the correct concept into the candidate
generator’s list if it was not already there.

5 Results

Table 2 shows that our complete model, BERT +
BERT-rank + ST-reg, achieves a new state-of-the-
art on two of the social media test sets, and Table 3
shows that Lucene + BERT-rank + ST-reg achieves
a new state-of-the-art on the clinical MCN test set.
The TwADR-L dataset is the most difficult, with
our complete model achieving 47.02% accuracy.
In the other datasets, performance of our complete
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model is much higher: 87.46% for AskAPatient,
88.24% for SMM4H-177.

On the TwADR-L, SMM4H-17, and MCN test
sets, adding the BERT-based ranker improves per-
formance over the candidate generator alone, and
adding the semantic type regularization further
improves performance. For example, Lucene
alone achieves 79.25% accuracy on the MCN data,
adding the BERT ranker increases this to 82.75%,
and adding the semantic type regularizer increases
this to 83.56%. On AskAPatient, performance of
the full model is similar to just the BERT multi-
class classifier, perhaps because in this case BERT
alone already successfully improves the state-of-
the-art from 85.71% to 87.52%. The +gold setting
allows us to answer how well our ranker would
perform if our candidate generator made no mis-
takes. First, we can see that if the correct concept
is always in the candidate list, our list-based ranker
(+BERT-rank) outperforms the multi-class classi-
fier (BERT) on all test sets. We also see in this
setting that the benefits of the semantic type regu-
larizer are amplified, with test sets of TwADR-L
and MCN showing more than 1.00% gain in ac-
curacy from using the regularizer. These findings
suggest that improving the quality of the candidate
generator should be a fruitful future direction.

Overall, we see the biggest performance gains
from our proposed generate-and-rank architecture
in the MCN dataset. This is the most realistic set-
ting, where the number of candidate concepts is
large and many test concepts were never seen dur-
ing training. In such cases, we cannot use a multi-
class classifier as a candidate generator since it
would never generate unseen concepts. Thus, our
ranker shines in its ability to sort through the long
list of possible concepts.

6 Qualitative analysis

Table 4 shows an example that is impossible for
the multi-class classifier approach to concept nor-
malization. The concept mention “an abdominal
wall hernia” in the clinical MCN dataset needs to
be mapped to the concept with the preferred name
“Hernia of abdominal wall”, but that concept never
appeared in the training data. The Lucene-based
candidate generator finds this concept, but only

7Miftahutdinov and Tutubalina (2019) use the same ar-
chitecture as our BERT-based multi-class classifier (row 7),
but they achieve 89.28% of accuracy on SMM4H-17. We
were unable to replicate this result as their code and parameter
settings were unavailable.

Candidates L BR

Repair of abdominal wall hernia 1 3
Repair of anterior abdominal wall hernia 2 4
Obstructed hernia of anterior abdominal wall 3 5
Hernia of abdominal wall 4 1
Abdominal wall hernia procedure 5 2

Table 4: Predicted candidate concepts for mention An
abdominal wall hernia and their rankings among the
outputs of Lucene (L) and BERT-Ranker (BR). Gold
concept is Hernia of abdominal wall.

Candidates BR STR ST

Influenza-like illness 1 2 DS
Influenza 2 4 DS
Influenza-like symptoms 3 1 SS
Feeling tired 4 5 F
Muscle cramps in feet 5 3 SS

Table 5: Predicted candidate concepts for mention felt
like I was coming down with flu and their rankings
among the outputs of BERT-Ranker (BR) and BERT-
Ranker + semantic type regularizer (STR). Gold con-
cept is flu-like symptoms. Semantic types (ST) of the
candidates include: disease or syndrome (DS), sign or
symptom (SS), finding (F)

through character overlap (step d.) and several
other concepts have high overlap as well. Thus
Lucene ranks the correct concept 4th in its list. The
BERT ranker is able to compare “an abdominal
wall hernia” to “Hernia of abdominal wall” and rec-
ognize that as a better match than the other options,
re-assigning it to rank 1.

Table 5 shows an example that illustrates why
the semantic type regularizer helps. The mention
“felt like I was coming down with flu” in the social
media AskAPatient dataset needs to be mapped to
the concept with the preferred name “influenza-like
symptoms”, which has the semantic type of a sign
or symptom. The BERT ranker ranks two disease
or syndromes higher, placing the correct concept at
rank 3. After the semantic type regularizer is added,
the system recognizes that the mention should be
mapped to a sign or symptom, and correctly ranks
it above the disease or syndromes. Note that this
happens even though the ranker does not get to see
the semantic type of the input mention at prediction
time.

7 Limitations and future research

The available concept normalization datasets are
somewhat limited. Lee et al. (2017) notes that
AskAPatient and TwADR-L have issues including
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duplicate instances, which can lead to bias in the
system; many phrases have multiple valid map-
pings to concepts but the context necessary to dis-
ambiguate is not part of the dataset; and the 10-fold
cross-validation makes training complex models
unnecessarily expensive. These datasets are also
unrealistic in that all concepts in the test data are
seen during training. Future research should focus
on more realistic datasets that follow the approach
of MCN in annotating mentions of concepts from
a large ontology and including the full context.

Our ability to explore the size of the candidate
list was limited by our available computational re-
sources. As the size of the candidate list increases,
the true concept is more likely to be included, but
the number of training instances also increases,
making the computational cost larger, especially
for the datasets using 10-fold cross-validation. We
chose candidate list sizes as large as we could af-
ford, but there are likely further gains possible with
larger candidate lists.

Our semantic type regularizer is limited to exact
matching: it checks only whether the semantic type
of a candidate exactly matches the semantic type
of the true concept. The UMLS ontology includes
many other relations, such as is-a and part-of re-
lations, and extending our regularizer to encode
such rich semantic knowledge may yield further
improvements in the BERT-based ranker.

8 Conclusion

We propose a concept normalization framework
consisting of a candidate generator and a list-wise
classifier based on BERT.

Because the candidate ranker makes predictions
over pairs of concept mentions and candidate con-
cepts, it is able to predict concepts never seen dur-
ing training. Our proposed semantic type regu-
larizer allows the ranker to incorporate semantic
type information into its predictions without re-
quiring semantic types at prediction time. This
generate-and-rank framework achieves state-of-the-
art performance on multiple concept normalization
datasets.
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ong Lu. 2013. DNorm: disease name normaliza-
tion with pairwise learning to rank. Bioinformatics,
29(22):2909–2917.

Hsin-Chun Lee, Yi-Yu Hsu, and Hung-Yu Kao. 2016.
AuDis: an automatic CRF-enhanced disease nor-
malization in biomedical text. Database, 2016.
Baw091.

Jinhyuk Lee, Wonjin Yoon, Sungdong Kim,
Donghyeon Kim, Sunkyu Kim, Chan Ho So,
and Jaewoo Kang. 2019. BioBERT: a pre-trained
biomedical language representation model for
biomedical text mining. Bioinformatics. Btz682.

Kathy Lee, Sadid A. Hasan, Oladimeji Farri, Alok
Choudhary, and Ankit Agrawal. 2017. Medical Con-
cept Normalization for Online User-Generated Texts.
In 2017 IEEE International Conference on Health-
care Informatics (ICHI), pages 462–469. IEEE.

Fei Li, Yonghao Jin, Weisong Liu, Bhanu Pratap Singh
Rawat, Pengshan Cai, and Hong Yu. 2019. Fine-
Tuning Bidirectional Encoder Representations From
Transformers (BERT)–Based Models on Large-
Scale Electronic Health Record Notes: An Empiri-
cal Study. JMIR Med Inform, 7(3):e14830.

Haodi Li, Qingcai Chen, Buzhou Tang, Xiaolong
Wang, Hua Xu, Baohua Wang, and Dong Huang.
2017. CNN-based ranking for biomedical entity nor-
malization. BMC Bioinformatics, 18(11):385.

Nut Limsopatham and Nigel Collier. 2016. Normalis-
ing medical concepts in social media texts by learn-
ing semantic representation. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
1014–1023, Berlin, Germany. Association for Com-
putational Linguistics.

Feifan Liu, Abhyuday Jagannatha, and Hong Yu. 2019.
Towards drug safety surveillance and pharmacovigi-
lance: Current progress in detecting medication and
adverse drug events from electronic health records.
Drug Saf, 42:95–97.

Hongwei Liu and Yun Xu. 2017. A Deep Learning
Way for Disease Name Representation and Normal-
ization. In Natural Language Processing and Chi-
nese Computing, pages 151–157. Springer Interna-
tional Publishing.

Yen-Fu Luo, Weiyi Sun, and Anna Rumshisky. 2019a.
A Hybrid Normalization Method for Medical Con-
cepts in Clinical Narrative using Semantic Matching.
In AMIA Joint Summits on Translational Science
proceedings, volume 2019, pages 732–740. Ameri-
can Medical Informatics Association.

Yen-Fu Luo, Weiyi Sun, and Anna Rumshisky. 2019b.
MCN: A comprehensive corpus for medical concept
normalization. Journal of Biomedical Informatics,
pages 103–132.

Zulfat Miftahutdinov and Elena Tutubalina. 2019.
Deep neural models for medical concept normal-
ization in user-generated texts. In Proceedings of
the 57th Annual Meeting of the Association for
Computational Linguistics: Student Research Work-
shop, pages 393–399, Florence, Italy. Association
for Computational Linguistics.

Shikhar Murty, Patrick Verga, Luke Vilnis, Irena
Radovanovic, and Andrew McCallum. 2018. Hier-
archical losses and new resources for fine-grained
entity typing and linking. In Proceedings of the
56th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
97–109, Melbourne, Australia. Association for Com-
putational Linguistics.

Thanh Ngan Nguyen, Minh Trang Nguyen, and
Thanh Hai Dang. 2018. Disease Named Entity Nor-
malization Using Pairwise Learning To Rank and
Deep Learning. Technical report, VNU University
of Engineering and Technology.

https://doi.org/10.1016/j.ymeth.2015.01.015
https://doi.org/10.1016/j.ymeth.2015.01.015
https://doi.org/10.1093/bib/bbv087
https://doi.org/10.1093/bib/bbv087
http://ceur-ws.org/Vol-1996/paper9.pdf
http://ceur-ws.org/Vol-1996/paper9.pdf
http://ceur-ws.org/Vol-1996/paper9.pdf
https://doi.org/10.1093/database/baw112
https://doi.org/10.1093/database/baw112
https://doi.org/10.1093/database/baw112
https://doi.org/10.1093/jamia/ocv108
https://doi.org/10.1093/jamia/ocv108
https://doi.org/10.18653/v1/S15-2070
https://doi.org/10.18653/v1/S15-2070
https://doi.org/10.1093/bioinformatics/btt474
https://doi.org/10.1093/bioinformatics/btt474
https://doi.org/10.1093/database/baw091
https://doi.org/10.1093/database/baw091
https://doi.org/10.1093/bioinformatics/btz682
https://doi.org/10.1093/bioinformatics/btz682
https://doi.org/10.1093/bioinformatics/btz682
https://doi.org/10.1109/ICHI.2017.59
https://doi.org/10.1109/ICHI.2017.59
https://doi.org/10.2196/14830
https://doi.org/10.2196/14830
https://doi.org/10.2196/14830
https://doi.org/10.2196/14830
https://doi.org/10.2196/14830
https://doi.org/10.1186/s12859-017-1805-7
https://doi.org/10.1186/s12859-017-1805-7
https://doi.org/10.18653/v1/P16-1096
https://doi.org/10.18653/v1/P16-1096
https://doi.org/10.18653/v1/P16-1096
https://doi.org/10.1007/s40264-018-0766-8
https://doi.org/10.1007/s40264-018-0766-8
https://doi.org/10.1007/s40264-018-0766-8
https://doi.org/10.1007/978-3-319-73618-1_13
https://doi.org/10.1007/978-3-319-73618-1_13
https://doi.org/10.1007/978-3-319-73618-1_13
https://doi.org/10.1016/j.jbi.2019.103132
https://doi.org/10.1016/j.jbi.2019.103132
https://doi.org/10.18653/v1/P19-2055
https://doi.org/10.18653/v1/P19-2055
https://doi.org/10.18653/v1/P18-1010
https://doi.org/10.18653/v1/P18-1010
https://doi.org/10.18653/v1/P18-1010


8462

Jinghao Niu, Yehui Yang, Siheng Zhang, Zhengya Sun,
and Wensheng Zhang. 2019. Multi-task Character-
Level Attentional Networks for Medical Concept
Normalization. Neural Process Lett, 49(3):1239–
1256.

Sameer Pradhan, Noémie Elhadad, Wendy Chapman,
Suresh Manandhar, and Guergana Savova. 2014.
SemEval-2014 task 7: Analysis of clinical text. In
Proceedings of the 8th International Workshop on
Semantic Evaluation (SemEval 2014), pages 54–62,
Dublin, Ireland. Association for Computational Lin-
guistics.

Anna Rumshisky, Marzyeh Ghassemi, Tristan Nau-
mann, Peter Szolovits, V.M. Castro, T.H. McCoy,
and R.H. Perlis. 2016. Predicting early psychi-
atric readmission with natural language processing
of narrative discharge summaries. Transl Psychia-
try, 6(10):e921–e921.

Abeed Sarker, Maksim Belousov, Jasper Friedrichs,
Kai Hakala, Svetlana Kiritchenko, Farrokh
Mehryary, Sifei Han, Tung Tran, Anthony Rios,
Ramakanth Kavuluru, Berry de Bruijn, Filip
Ginter, Debanjan Mahata, Saif M. Mohammad,
Goran Nenadic, and Graciela Gonzalez-Hernandez.
2018. Data and systems for medication-related
text classification and concept normalization from
Twitter: insights from the Social Media Mining
for Health (SMM4H)-2017 shared task. Journal
of the American Medical Informatics Association,
25(10):1274–1283.

Guergana K. Savova, Anni R. Coden, Igor L. Somin-
sky, Rie Johnson, Philip V. Ogren, Piet C. De Groen,
and Christopher G. Chute. 2008. Word sense disam-
biguation across two domains: Biomedical literature
and clinical notes. Journal of Biomedical Informat-
ics, 41(6):1088–1100.

Guergana K. Savova, James J. Masanz, Philip V. Ogren,
Jiaping Zheng, Sunghwan Sohn, Karin C. Kipper-
Schuler, and Christopher G. Chute. 2010. Mayo
clinical Text Analysis and Knowledge Extraction
System (cTAKES): architecture, component evalua-
tion and applications. Journal of the American Med-
ical Informatics Association, 17(5):507–513.

Mark Stevenson, Yikun Guo, Abdulaziz Alamri, and
Robert Gaizauskas. 2009. Disambiguation of
biomedical abbreviations. In Proceedings of the
BioNLP 2009 Workshop, pages 71–79, Boulder, Col-
orado. Association for Computational Linguistics.

Hanna Suominen, Sanna Salanterä, Sumithra Velupil-
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A Appendices

A.1 Lucene-based dictionary look-up system
The lucene-based dictionary look-up system con-
sists of the following components:

(a) Lucene index over the training data finds all
CUI-less mentions that exactly match mention
m.

(b) Lucene index over the training data finds CUIs
of all training mentions that exactly match
mention m.

(c) Lucene index over UMLS finds CUIs whose
preferred name exactly matches mention m.

(d) Lucene index over UMLS finds CUIs where at
least one synonym of the CUI exactly matches
mention m.

(e) Lucene index over UMLS finds CUIs where
at least one synonym of the CUI has high
character overlap with mention m. To check
the character overlap, we run the following
three rules sequentially: token-level matching,
fuzzy string matching with a maximum edit
distance of 2, and character 3-gram matching..

See Figure A1 for the flow of execution across the
components. Whenever there are multiple CUIs
generated from a component (a) to (e), they are fed,

along with the concept mention, to the BERT-based
reranker (f).

During training, we used component (e) alone
instead of the combination of components (b)-(e)
to generate training instances for the BERT-based
reranker (f) as it generated many more training
examples and resulted in better performance on
the dev set. During evaluation, we used the whole
pipeline.

Concept mention

(a)
Training data

CUI-less mention
exact-match

(Lucene)

(b)
Training data
CUI mention
exact-match

(Lucene)

(c)
UMLS

preferred name
exact-match

(Lucene)

(d)
UMLS

synonyms
exact-match

(Lucene)

(e)
UMLS

synonyms
partial-match

(Lucene)

(f)
BERT-based

reranker

0 0 0 0

CUI-less

1+

CUI-less

0

CUI CUI
CUI

CUI

1 2+

CUI CUI
CUI

CUI

1 2+

CUI CUI
CUI

CUI

1 2+

CUI CUI
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1 2+
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1

Figure A1: Architecture of the lucene-based dictionary look-up system. The edges out of a search process indi-
cate the number of matches necessary to follow the edge. Outlined nodes are terminal states that represent the
predictions of the system.
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Multi-class List-wise

AAP TwADR-L SMM4H-17 AAP TwADR-L SMM4H-17 MCN

learning rate 1e-4 5e-5 5e-5 5e-5 5e-5 3e-5 3e-5
num train epochs 30 30 40 10 10 20 30
per gpu train batch size 32 16 32 16 16 16 8
save steps 487 301 166 976 301 333 250
warmup steps 1463 903 664 976 301 666 750
list size (k) - - - 10 20 10 30
m1 - - - 0.0 0.0 0.0 0.1
m2 - - - 0.2 0.2 0.2 0.2
λ - - - 0.6 0.4 0.4 0.4
µ - - - 0.6 0.4 0.4 0.8

Table A1: Hyper-parameters for BERT-based multi-class and list-wise classifiers. AAP=AskAPatient. Terms with
underscores are hyper-parameters in huggingface’s pytorch implementation of BERT.

A.2 Hyper-parameters
Table A1 shows the hyper-parameters for our mod-
els. We use huggingface’s pytorch implementation
of BERT. We tune the hyperparameters via grid
search, and select the best BERT hyper-parameters
based on the performance on the dev set.

To keep the size of the candidate list equal to k
for every mention, we apply the following rules:
if the list does not contain the gold concept and
is already of length k, we inject the correct one
and remove an incorrect candidate; if the list is not
length of k, we inject the gold concept and the most
frequent concepts in the training set to reach k.


