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Abstract

We present a new problem: grounding natu-
ral language instructions to mobile user inter-
face actions, and create three new datasets for
it. For full task evaluation, we create PIX-
ELHELP, a corpus that pairs English instruc-
tions with actions performed by people on a
mobile UI emulator. To scale training, we de-
couple the language and action data by (a) an-
notating action phrase spans in HowTo instruc-
tions and (b) synthesizing grounded descrip-
tions of actions for mobile user interfaces. We
use a Transformer to extract action phrase tu-
ples from long-range natural language instruc-
tions. A grounding Transformer then contex-
tually represents UI objects using both their
content and screen position and connects them
to object descriptions. Given a starting screen
and instruction, our model achieves 70.59%
accuracy on predicting complete ground-truth
action sequences in PIXELHELP.

1 Introduction

Language helps us work together to get things done.
People instruct one another to coordinate joint ef-
forts and accomplish tasks involving complex se-
quences of actions. This takes advantage of the abil-
ities of different members of a speech community,
e.g. a child asking a parent for a cup she cannot
reach, or a visually impaired individual asking for
assistance from a friend. Building computational
agents able to help in such interactions is an impor-
tant goal that requires true language grounding in
environments where action matters.

An important area of language grounding in-
volves tasks like completion of multi-step actions in
a graphical user interface conditioned on language
instructions (Branavan et al., 2009, 2010; Liu et al.,
2018; Gur et al., 2019). These domains matter for
accessibility, where language interfaces could help
visually impaired individuals perform tasks with

open the app drawer. navigate to 
settings > network & internet > 
Wifi. click add network, and 
then enter starbucks for SSID.

Action Phrase 
Extraction Model

Screen   Operation Object  Argument
Screen_1 CLICK     OBJ_2
Screen_2 CLICK     OBJ_6
Screen_3 CLICK     OBJ_5
...
Screen_6 INPUT     OBJ_9  [Starbucks]

Instructions

Operation_Desc  Object_Desc   Argument_Desc
[open]          [app drawer]
[navigate to]   [settings]
[navigate to]   [network & 
                 internet]
[navigate to]   [wifi]
[click]         [add network]
[enter]         [ssid]        [starbucks]

Executable actions based on the 
screen at each step

Action Phrase Tuples

Grounding Model

Transition to 
next screen

…

Mobile User 
Interface at 
each step

Figure 1: Our model extracts the phrase tuple that de-
scribe each action, including its operation, object and
additional arguments, and grounds these tuples as exe-
cutable action sequences in the UI.

interfaces that are predicated on sight. This also
matters for situational impairment (Sarsenbayeva,
2018) when one cannot access a device easily while
encumbered by other factors, such as cooking.

We focus on a new domain of task automation in
which natural language instructions must be inter-
preted as a sequence of actions on a mobile touch-
screen UI. Existing web search is quite capable of
retrieving multi-step natural language instructions
for user queries, such as “How to turn on flight
mode on Android.” Crucially, the missing piece
for fulfilling the task automatically is to map the
returned instruction to a sequence of actions that
can be automatically executed on the device with
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little user intervention; this our goal in this paper.
This task automation scenario does not require a
user to maneuver through UI details, which is use-
ful for average users and is especially valuable for
visually or situationally impaired users. The abil-
ity to execute an instruction can also be useful for
other scenarios such as automatically examining
the quality of an instruction.

Our approach (Figure 1) decomposes the prob-
lem into an action phrase-extraction step and a
grounding step. The former extracts operation, ob-
ject and argument descriptions from multi-step in-
structions; for this, we use Transformers (Vaswani
et al., 2017) and test three span representations.
The latter matches extracted operation and object
descriptions with a UI object on a screen; for this,
we use a Transformer that contextually represents
UI objects and grounds object descriptions to them.

We construct three new datasets 1. To assess full
task performance on naturally occurring instruc-
tions, we create a dataset of 187 multi-step English
instructions for operating Pixel Phones and produce
their corresponding action-screen sequences using
annotators. For action phrase extraction training
and evaluation, we obtain English How-To instruc-
tions from the web and annotate action description
spans. A Transformer with spans represented by
sum pooling (Li et al., 2019) obtains 85.56% accu-
racy for predicting span sequences that completely
match the ground truth. To train the grounding
model, we synthetically generate 295k single-step
commands to UI actions, covering 178K different
UI objects across 25K mobile UI screens.

Our phrase extractor and grounding model to-
gether obtain 89.21% partial and 70.59% com-
plete accuracy for matching ground-truth action
sequences on this challenging task. We also evalu-
ate alternative methods and representations of ob-
jects and spans and present qualitative analyses to
provide insights into the problem and models.

2 Problem Formulation

Given an instruction of a multi-step task, I =
t1:n = (t1, t2, ..., tn), where ti is the ith token in in-
struction I , we want to generate a sequence of auto-
matically executable actions, a1:m, over a sequence
of user interface screens S, with initial screen s1

1Our data pipeline is available at https://github.
com / google-research / google-research /
tree/master/seq2act.

and screen transition function sj=τ(aj−1, sj−1):

p(a1:m|s1, τ, t1:n) =

m∏
j=1

p(aj |a<j , s1, τ, t1:n)

(1)
An action aj = [rj , oj , uj ] consists of an op-

eration rj (e.g. Tap or Text), the UI object oj
that rj is performed on (e.g., a button or an icon),
and an additional argument uj needed for oj (e.g.
the message entered in the chat box for Text or
null for operations such as Tap). Starting from
s1, executing a sequence of actions a<j arrives at
screen sj that represents the screen at the jth step:
sj = τ(aj−1, τ(...τ(a1, s1))):

p(a1:m|s1, τ, t1:n) =

m∏
j=1

p(aj |sj , t1:n) (2)

Each screen sj = [cj,1:|sj |, λj ] contains a set
of UI objects and their structural relationships.
cj,1:|sj | = {cj,k | 1 ≤ k ≤ |sj |}, where |sj | is
the number of objects in sj , from which oj is cho-
sen. λj defines the structural relationship between
the objects. This is often a tree structure such as the
View hierarchy for an Android interface2 (similar
to a DOM tree for web pages).

An instruction I describes (possibly multiple) ac-
tions. Let āj denote the phrases in I that describes
action aj . āj = [r̄j , ōj , ūj ] represents a tuple of
descriptions with each corresponding to a span—a
subsequence of tokens—in I . Accordingly, ā1:m

represents the description tuple sequence that we
refer to as ā for brevity. We also define Ā as all pos-
sible description tuple sequences of I , thus ā ∈ Ā.

p(aj |sj , t1:n) =
∑
Ā

p(aj |ā, sj , t1:n)p(ā|sj , t1:n)

(3)
Because aj is independent of the rest of the in-

struction given its current screen sj and description
āj , and ā is only related to the instruction t1:n, we
can simplify (3) as (4).

p(aj |sj , t1:n) =
∑
Ā

p(aj |āj , sj)p(ā|t1:n) (4)

2https : / / developer . android . com /
reference/android/view/View.html

https://github.com/google-research/google-research/tree/master/seq2act
https://github.com/google-research/google-research/tree/master/seq2act
https://github.com/google-research/google-research/tree/master/seq2act
https://developer.android.com/reference/android/view/View.html
https://developer.android.com/reference/android/view/View.html
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We define â as the most likely description of
actions for t1:n.

â = arg max
ā

p(ā|t1:n)

= arg max
ā1:m

m∏
j=1

p(āj |ā<j , t1:n)
(5)

This defines the action phrase-extraction model,
which is then used by the grounding model:

p(aj |sj , t1:n) ≈ p(aj |âj , sj)p(âj |â<j , t1:n) (6)

p(a1:m|t1:n, S) ≈
m∏
j=1

p(aj |âj , sj)p(âj |â<j , t1:n)

(7)
p(âj |â<j , t1:n) identifies the description tuples for
each action. p(aj |âj , sj) grounds each description
to an executable action given the screen.

3 Data

The ideal dataset would have natural instructions
that have been executed by people using the UI.
Such data can be collected by having annotators
perform tasks according to instructions on a mobile
platform, but this is difficult to scale. It requires
significant investment to instrument: different ver-
sions of apps have different presentation and be-
haviors, and apps must be installed and configured
for each task. Due to this, we create a small dataset
of this form, PIXELHELP, for full task evaluation.
For model training at scale, we create two other
datasets: ANDROIDHOWTO for action phrase ex-
traction and RICOSCA for grounding. Our datasets
are targeted for English. We hope that starting with
a high-resource language will pave the way to cre-
ating similar capabilities for other languages.

3.1 PIXELHELP Dataset
Pixel Phone Help pages3 provide instructions for
performing common tasks on Google Pixel phones
such as switch Wi-Fi settings (Fig. 2) or check
emails. Help pages can contain multiple tasks, with
each task consisting of a sequence of steps. We
pulled instructions from the help pages and kept
ones that can be automatically executed. Instruc-
tions that requires additional user input such as
Tap the app you want to uninstall are discarded.

3https://support.google.com/pixelphone

Figure 2: PIXELHELP example: Open your device’s
Settings app. Tap Network & internet. Click Wi-Fi.
Turn on Wi-Fi.. The instruction is paired with actions,
each of which is shown as a red dot on a specific screen.

Also, instructions that involve actions on a physical
button such as Press the Power button for a few
seconds are excluded because these events cannot
be executed on mobile platform emulators.

We instrumented a logging mechanism on a
Pixel Phone emulator and had human annotators
perform each task on the emulator by following the
full instruction. The logger records every user ac-
tion, including the type of touch events that are trig-
gered, each object being manipulated, and screen
information such as view hierarchies. Each item
thus includes the instruction input, t1:n, the screen
for each step of task, s1:m, and the target action
performed on each screen, a1:m.

In total, PIXELHELP includes 187 multi-step in-
structions of 4 task categories: 88 general tasks,
such as configuring accounts, 38 Gmail tasks, 31
Chrome tasks, and 30 Photos related tasks. The
number of steps ranges from two to eight, with
a median of four. Because it has both natural in-
structions and grounded actions, we reserve PIX-
ELHELP for evaluating full task performance.

3.2 ANDROIDHOWTO Dataset

No datasets exist that support learning the action
phrase extraction model, p(âj |â<j , t1:n), for mo-
bile UIs. To address this, we extracted English
instructions for operating Android devices by pro-
cessing web pages to identify candidate instruc-
tions for how-to questions such as how to change
the input method for Android. A web crawling ser-
vice scrapes instruction-like content from various
websites. We then filter the web contents using both
heuristics and manual screening by annotators.

Annotators identified phrases in each instruction
that describe executable actions. They were given
a tutorial on the task and were instructed to skip
instructions that are difficult to understand or label.
For each component in an action description, they

https://support.google.com/pixelphone
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select the span of words that describes the compo-
nent using a web annotation interface (details are
provided in the appendix). The interface records
the start and end positions of each marked span.
Each instruction was labeled by three annotators:
three annotators agreed on 31% of full instructions
and at least two agreed on 84%. For the consistency
at the tuple level, the agreement across all the anno-
tators is 83.6% for operation phrases, 72.07% for
object phrases, and 83.43% for input phrases. The
discrepancies are usually small, e.g., a description
marked as your Gmail address or Gmail address.

The final dataset includes 32,436 data points
from 9,893 unique How-To instructions and split
into training (8K), validation (1K) and test (900).
All test examples have perfect agreement across
all three annotators for the entire sequence. In
total, there are 190K operation spans, 172K object
spans, and 321 input spans labeled. The lengths of
the instructions range from 19 to 85 tokens, with
median of 59. They describe a sequence of actions
from one to 19 steps, with a median of 5.

3.3 RICOSCA Dataset

Training the grounding model, p(aj |âj , sj) in-
volves pairing action tuples aj along screens sj
with action description âj . It is very difficult to col-
lect such data at scale. To get past the bottleneck,
we exploit two properties of the task to generate
a synthetic command-action dataset, RICOSCA.
First, we have precise structured and visual knowl-
edge of the UI layout, so we can spatially relate UI
elements to each other and the overall screen. Sec-
ond, a grammar grounded in the UI can cover many
of the commands and kinds of reference needed for
the problem. This does not capture all manners of
interacting conversationally with a UI, but it proves
effective for training the grounding model.

Rico is a public UI corpus with 72K Android UI
screens mined from 9.7K Android apps (Deka et al.,
2017). Each screen in Rico comes with a screen-
shot image and a view hierarchy of a collection of
UI objects. Each individual object, cj,k, has a set
of properties, including its name (often an English
phrase such as Send), type (e.g., Button, Image
or Checkbox), and bounding box position on the
screen. We manually removed screens whose view
hierarchies do not match their screenshots by ask-
ing annotators to visually verify whether the bound-
ing boxes of view hierarchy leaves match each UI
object on the corresponding screenshot image. This

filtering results in 25K unique screens.
For each screen, we randomly select UI elements

as target objects and synthesize commands for op-
erating them. We generate multiple commands to
capture different expressions describing the opera-
tion r̂j and the target object ôj . For example, the
Tap operation can be referred to as tap, click, or
press. The template for referring to a target object
has slots Name, Type, and Location, which are
instantiated using the following strategies:
• Name-Type: the target’s name and/or type (the

OK button or OK).
• Absolute-Location: the target’s screen loca-

tion (the menu at the top right corner).
• Relative-Location: the target’s relative loca-

tion to other objects (the icon to the right of
Send).

Because all commands are synthesized, the span
that describes each part of an action, âj with respect
to t1:n, is known. Meanwhile, aj and sj , the actual
action and the associated screen, are present be-
cause the constituents of the action are synthesized.
In total, RICOSCA contains 295,476 single-step
synthetic commands for operating 177,962 differ-
ent target objects across 25,677 Android screens.

4 Model Architectures

Equation 7 has two parts. p(âj |â<j , t1:n) finds
the best phrase tuple that describes the action at
the jth step given the instruction token sequence.
p(aj |âj , sj) computes the probability of an exe-
cutable action aj given the best description of the
action, âj , and the screen sj for the jth step.

4.1 Phrase Tuple Extraction Model

A common choice for modeling the conditional
probability p(āj |ā<j , t1:n) (see Equation 5) are
encoder-decoders such as LSTMs (Hochreiter and
Schmidhuber, 1997) and Transformers (Vaswani
et al., 2017). The output of our model corresponds
to positions in the input sequence, so our architec-
ture is closely related to Pointer Networks (Vinyals
et al., 2015).

Figure 3 depicts our model. An encoder g com-
putes a latent representation h1:n∈Rn×|h| of the
tokens from their embeddings: h1:n=g(e(t1:n)).
A decoder f then generates the hidden state
qj=f(q<j , ā<j , h1:n) which is used to compute a
query vector that locates each phrase of a tuple
(r̄j , ōj , ūj) at each step. āj=[r̄j , ōj , ūj ] and they
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Figure 3: The Phrase Tuple Extraction model encodes the instruction’s token sequence and then outputs a tuple
sequence by querying into all possible spans of the encoded sequence. Each tuple contains the span positions of
three phrases in the instruction that describe the action’s operation, object and optional arguments, respectively, at
each step. ∅ indicates the phrase is missing in the instruction and is represented by a special span encoding.

are assumed conditionally independent given pre-
viously extracted phrase tuples and the instruction,
so p(āj |ā<j , t1:n)=

∏
ȳ∈{r̄,ō,ū} p(ȳj |ā<j , t1:n).

Note that ȳj ∈ {r̄j , ōj , ūj} denotes a specific
span for y ∈ {r, o, u} in the action tuple at step j.
We therefore rewrite ȳj as yb:dj to explicitly indicate
that it corresponds to the span for r, o or u, starting
at the bth position and ending at the dth position in
the instruction, 1≤b<d≤n. We now parameterize
the conditional probability as:

p(yb:dj |ā<j , t1:n) = softmax(α(qyj , h
b:d))

y ∈ {r, o, u}
(8)

As shown in Figure 3, qyj indicates task-specific
query vectors for y∈{r, o, u}. They are computed
as qyj=φ(qj , θy)Wy, a multi-layer perceptron fol-
lowed by a linear transformation. θy and Wy are
trainable parameters. We use separate parameters
for each of r, o and u. Wy ∈ R|φy |×|h| where |φy|
is the output dimension of the multi-layer percep-
tron. The alignment function α(·) scores how a
query vector qyj matches a span whose vector rep-
resentation hb:d is computed from encodings hb:d.

Span Representation. There are a quadratic
number of possible spans given a token sequence
(Lee et al., 2017), so it is important to design
a fixed-length representation hb:d of a variable-
length token span that can be quickly computed.
Beginning-Inside-Outside (BIO) (Ramshaw and
Marcus, 1995)–commonly used to indicate spans
in tasks such as named entity recognition–marks

whether each token is beginning, inside, or outside
a span. However, BIO is not ideal for our task be-
cause subsequences for describing different actions
can overlap, e.g., in click X and Y, click participates
in both actions click X and click Y. In our exper-
iments we consider several recent, more flexible
span representations (Lee et al., 2016, 2017; Li
et al., 2019) and show their impact in Section 5.2.

With fixed-length span representations, we can
use common alignment techniques in neural net-
works (Bahdanau et al., 2014; Luong et al., 2015).
We use the dot product between the query vector
and the span representation: α(qyj , h

b:d)=qyj · hb:d
At each step of decoding, we feed the previously
decoded phrase tuples, ā<j into the decoder. We
can use the concatenation of the vector represen-
tations of the three elements in a phrase tuple or
the sum their vector representations as the input
for each decoding step. The entire phrase tuple
extraction model is trained by minimizing the soft-
max cross entropy loss between the predicted and
ground-truth spans of a sequence of phrase tuples.

4.2 Grounding Model

Having computed the sequence of tuples that best
describe each action, we connect them to exe-
cutable actions based on the screen at each step
with our grounding model (Fig. 4). In step-by-
step instructions, each part of an action is often
clearly stated. Thus, we assume the probabilities
of the operation rj , object oj , and argument uj are
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Figure 4: The Grounding model grounds each phrase tuple extracted by the Phrase Extraction model as an operation
type, a screen-specific object ID, and an argument if present, based on a contextual representation of UI objects for
the given screen. A grounded action tuple can be automatically executed.

independent given their description and the screen.

p(aj |âj , sj) = p([rj , oj , uj ]|[r̂j , ôj , ûj ], sj)
= p(rj |r̂j , sj)p(oj |ôj , sj)p(uj |ûj , sj)
= p(rj |r̂j)p(oj |ôj , sj)

(9)

We simplify with two assumptions: (1) an opera-
tion is often fully described by its instruction with-
out relying on the screen information and (2) in mo-
bile interaction tasks, an argument is only present
for the Text operation, so uj=ûj . We parameter-
ize p(rj |r̂j) as a feedforward neural network:

p(rj |r̂j) = softmax(φ(r̂
′
j , θr)Wr) (10)

φ(·) is a multi-layer perceptron with trainable pa-
rameters θr. W r∈R|φr|×|r| is also trainable, where
|φr| is the output dimension of the φ(·, θr) and
|r| is the vocabulary size of the operations. φ(·)
takes the sum of the embedding vectors of each
token in the operation description r̂j as the input:
r̂
′
j=

∑d
k=b e(tk) where b and d are the start and

end positions of r̂j in the instruction.
Determining oj is to select a UI object from a

variable-number of objects on the screen, cj,k ∈ sj
where 1≤k≤|sj |, based on the given object descrip-
tion, ôj . We parameterize the conditional probabil-
ity as a deep neural network with a softmax output
layer taking logits from an alignment function:

p(oj |ôj , sj) = p(oj = cj,k|ôj , cj,1:|sj |, λj)

= softmax(α(ô
′
j , c

′
j,k))

(11)

The alignment function α(·) scores how the ob-
ject description vector ô

′
j matches the latent repre-

sentation of each UI object, c
′
j,k. This can be as

simple as the dot product of the two vectors. The la-
tent representation ô

′
j is acquired with a multi-layer

perceptron followed by a linear projection:

ô
′
j = φ(

d∑
k=b

e(tk), θo)Wo (12)

b and d are the start and end index of the object
description ôj . θo and Wo are trainable parame-
ters with Wo∈R|φo|×|o|, where |φo| is the output
dimension of φ(·, θo) and |o| is the dimension of
the latent representation of the object description.

Contextual Representation of UI Objects. To
compute latent representations of each candidate
object, c

′
j,k, we use both the object’s properties

and its context, i.e., the structural relationship with
other objects on the screen. There are different
ways for encoding a variable-sized collection of
items that are structurally related to each other,
including Graph Convolutional Networks (GCN)
(Niepert et al., 2016) and Transformers (Vaswani
et al., 2017). GCNs use an adjacency matrix pre-
determined by the UI structure to regulate how the
latent representation of an object should be affected
by its neighbors. Transformers allow each object
to carry its own positional encoding, and the rela-
tionship between objects can be learned instead.

The input to the Transformer encoder is a combi-
nation of the content embedding and the positional
encoding of each object. The content properties
of an object include its name and type. We com-
pute the content embedding of by concatenating the
name embedding, which is the average embedding
of the bag of tokens in the object name, and the
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type embedding. The positional properties of an
object include both its spatial position and struc-
tural position. The spatial positions include the
top, left, right and bottom screen coordinates of
the object. We treat each of these coordinates as a
discrete value and represent it via an embedding.
Such a feature representation for coordinates was
used in ImageTransformer to represent pixel posi-
tions in an image (Parmar et al., 2018). The spatial
embedding of the object is the sum of these four
coordinate embeddings. To encode structural infor-
mation, we use the index positions of the object in
the preorder and the postorder traversal of the view
hierarchy tree, and represent these index positions
as embeddings in a similar way as representing co-
ordinates. The content embedding is then summed
with positional encodings to form the embedding of
each object. We then feed these object embeddings
into a Transformer encoder model to compute the
latent representation of each object, c

′
j,k.

The grounding model is trained by minimizing
the cross entropy loss between the predicted and
ground-truth object and the loss between the pre-
dicted and ground-truth operation.

5 Experiments

Our goal is to develop models and datasets to
map multi-step instructions into automatically ex-
ecutable actions given the screen information. As
such, we use PIXELHELP’s paired natural instruc-
tions and action-screen sequences solely for testing.
In addition, we investigate the model quality on
phrase tuple extraction tasks, which is a crucial
building block for the overall grounding quality4.

5.1 Datasets and Metrics
We use two metrics that measure how a predicted
tuple sequence matches the ground-truth sequence.
• Complete Match: The score is 1 if two se-

quences have the same length and have the
identical tuple [r̂j , ôj , ûj ] at each step, other-
wise 0.
• Partial Match: The number of steps of the pre-

dicted sequence that match the ground-truth
sequence divided by the length of the ground-
truth sequence (ranging between 0 and 1).

We train and validate using ANDROIDHOWTO

and RICOSCA, and evaluate on PIXELHELP. Dur-
ing training, single-step synthetic command-action

4Our model code is released at https : / / github .
com / google-research / google-research /
tree/master/seq2act.

Span Rep. hb:d Partial Complete
SumPooling

∑d
k=b hk 92.80 85.56

StartEnd [hb;hd] 91.94 84.56
[hb;hd, ê

b:d, φ(d− b)] 91.11 84.33

Table 1: ANDROIDHOWTO phrase tuple extraction
test results using different span representations hb:d in
(8). êb:d=

∑d
k=b w(hk)e(tk), where w(·) is a learned

weight function for each token embedding (Lee et al.,
2017). See the pseudocode for fast computation of
these in the appendix.

examples are dynamically stitched to form se-
quence examples with a certain length distribution.
To evaluate the full task, we use Complete and
Partial Match on grounded action sequences a1:m

where aj=[rj , oj , uj ].
The token vocabulary size is 59K, which is com-

piled from both the instruction corpus and the UI
name corpus. There are 15 UI types, including 14
common UI object types, and a type to catch all
less common ones. The output vocabulary for op-
erations include CLICK, TEXT, SWIPE and EOS.

5.2 Model Configurations and Results
Tuple Extraction. For the action-tuple extraction
task, we use a 6-layer Transformer for both the
encoder and the decoder. We evaluate three differ-
ent span representations. Area Attention (Li et al.,
2019) provides a parameter-free representation of
each possible span (one-dimensional area), by sum-
ming up the encoding of each token in the subse-
quence: hb:d =

∑d
k=b hk. The representation of

each span can be computed in constant time invari-
ant to the length of the span, using a summed area
table. Previous work concatenated the encoding of
the start and end tokens as the span representation,
hb:d = [hb;hd] (Lee et al., 2016) and a general-
ized version of it (Lee et al., 2017). We evaluated
these three options and implemented the represen-
tation in Lee et al. (2017) using a summed area
table similar to the approach in area attention for
fast computation. For hyperparameter tuning and
training details, refer to the appendix.

Table 1 gives results on ANDROIDHOWTO’s test
set. All the span representations perform well. En-
codings of each token from a Transformer already
capture sufficient information about the entire se-
quence, so even only using the start and end en-
codings yields strong results. Nonetheless, area
attention provides a small boost over the others. As
a new dataset, there is also considerable headroom
remaining, particularly for complete match.

https://github.com/google-research/google-research/tree/master/seq2act
https://github.com/google-research/google-research/tree/master/seq2act
https://github.com/google-research/google-research/tree/master/seq2act
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Screen Encoder Partial Complete
Heuristic 62.44 42.25
Filter-1 GCN 76.44 52.41
Distance GCN 82.50 59.36
Transformer 89.21 70.59

Table 2: PIXELHELP grounding accuracy. The differ-
ences are statistically significant based on t-test over 5
runs (p < 0.05).

Grounding. For the grounding task, we com-
pare Transformer-based screen encoder for gener-
ating object representations hb:d with two baseline
methods based on graph convolutional networks.
The Heuristic baseline matches extracted phrases
against object names directly using BLEU scores.
Filter-1 GCN performs graph convolution without
using adjacent nodes (objects), so the representa-
tion of each object is computed only based on its
own properties. Distance GCN uses the distance
between objects in the view hierarchy, i.e., the num-
ber of edges to traverse from one object to another
following the tree structure. This contrasts with the
traditional GCN definition based on adjacency, but
is needed because UI objects are often leaves in the
tree; as such, they are not adjacent to each other
structurally but instead are connected through non-
terminal (container) nodes. Both Filter-1 GCN and
Distance GCN use the same number of parameters
(see the appendix for details).

To train the grounding model, we first train the
Tuple Extraction sub-model on ANDROIDHOWTO

and RICOSCA. For the latter, only language related
features (commands and tuple positions in the com-
mand) are used in this stage, so screen and action
features are not involved. We then freeze the Tu-
ple Extraction sub-model and train the grounding
sub-model on RICOSCA using both the command
and screen-action related features. The screen to-
ken embeddings of the grounding sub-model share
weights with the Tuple Extraction sub-model.

Table 2 gives full task performance on PIXEL-
HELP. The Transformer screen encoder achieves
the best result with 70.59% accuracy on Complete
Match and 89.21% on Partial Match, which sets
a strong baseline result for this new dataset while
leaving considerable headroom. The GCN-based
methods perform poorly, which shows the impor-
tance of contextual encodings of the information
from other UI objects on the screen. Distance GCN
does attempt to capture context for UI objects that

are structurally close; however, we suspect that the
distance information that is derived from the view
hierarchy tree is noisy because UI developers can
construct the structure differently for the same UI.5

As a result, the strong bias introduced by the struc-
ture distance does not always help. Nevertheless,
these models still outperformed the heuristic base-
line that achieved 62.44% for partial match and
42.25% for complete match.

5.3 Analysis
To explore how the model grounds an instruction
on a screen, we analyze the relationship between
words in the instruction language that refer to spe-
cific locations on the screen, and actual positions
on the UI screen. We first extract the embedding
weights from the trained phrase extraction model
for words such as top, bottom, left and right. These
words occur in object descriptions such as the check
box at the top of the screen. We also extract the em-
bedding weights of object screen positions, which
are used to create object positional encoding. We
then calculate the correlation between word embed-
ding and screen position embedding using cosine
similarity. Figure 5 visualizes the correlation as a
heatmap, where brighter colors indicate higher cor-
relation. The word top is strongly correlated with
the top of the screen, but the trend for other location
words is less clear. While left is strongly correlated
with the left side of the screen, other regions on the
screen also show high correlation. This is likely
because left and right are not only used for refer-
ring to absolute locations on the screen, but also for
relative spatial relationships, such as the icon to the
left of the button. For bottom, the strongest correla-
tion does not occur at the very bottom of the screen
because many UI objects in our dataset do not fall
in that region. The region is often reserved for sys-
tem actions and the on-screen keyboard, which are
not covered in our dataset.

The phrase extraction model passes phrase tuples
to the grounding model. When phrase extraction
is incorrect, it can be difficult for the grounding
model to predict a correct action. One way to miti-
gate such cascading errors is using the hidden state
of the phrase decoding model at each step, qj . In-
tuitively, qj is computed with the access to the
encoding of each token in the instruction via the
Transformer encoder-decoder attention, which can

5While it is possible to directly use screen visual data for
grounding, detecting UI objects from raw pixels is nontrivial.
It would be ideal to use both structural and visual data.
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Figure 5: Correlation between location-related words
in instructions and object screen position embedding.

potentially be a more robust span representation.
However, in our early exploration, we found that
grounding with qj performs stunningly well for
grounding RICOSCA validation examples, but per-
forms poorly on PIXELHELP. The learned hidden
state likely captures characteristics in the synthetic
instructions and action sequences that do not mani-
fest in PIXELHELP. As such, using the hidden state
to ground remains a challenge when learning from
unpaired instruction-action data.

The phrase model failed to extract correct steps
for 14 tasks in PIXELHELP. In particular, it re-
sulted in extra steps for 11 tasks and extracted in-
correct steps for 3 tasks, but did not skip steps for
any tasks. These errors could be caused by differ-
ent language styles manifested by the three datasets.
Synthesized commands in RICOSCA tend to be
brief. Instructions in ANDROIDHOWTO seem to
give more contextual description and involve di-
verse language styles, while PIXELHELP often has
a more consistent language style and gives concise
description for each step.

6 Related Work

Previous work (Branavan et al., 2009, 2010; Liu
et al., 2018; Gur et al., 2019) investigated ap-
proaches for grounding natural language on desk-
top or web interfaces. Manuvinakurike et al. (2018)
contributed a dataset for mapping natural language
instructions to actionable image editing commands
in Adobe Photoshop. Our work focuses on a new
domain of grounding natural language instructions
into executable actions on mobile user interfaces.
This requires addressing modeling challenges due
to the lack of paired natural language and action
data, which we supply by harvesting rich instruc-
tion data from the web and synthesizing UI com-
mands based on a large scale Android corpus.

Our work is related to semantic parsing, particu-
larly efforts for generating executable outputs such

as SQL queries (Suhr et al., 2018). It is also broadly
related to language grounding in the human-robot
interaction literature where human dialog results in
robot actions (Khayrallah et al., 2015).

Our task setting is closely related to work on
language-conditioned navigation, where an agent
executes an instruction as a sequence of movements
(Chen and Mooney, 2011; Mei et al., 2016; Misra
et al., 2017; Anderson et al., 2018; Chen et al.,
2019). Operating user interfaces is similar to nav-
igating the physical world in many ways. A mo-
bile platform consists of millions of apps that each
is implemented by different developers indepen-
dently. Though platforms such as Android strive to
achieve interoperability (e.g., using Intent or AIDL
mechanisms), apps are more often than not built by
convention and do not expose programmatic ways
for communication. As such, each app is opaque to
the outside world and the only way to manipulate it
is through its GUIs. These hurdles while working
with a vast array of existing apps are like physi-
cal obstacles that cannot be ignored and must be
negotiated contextually in their given environment.

7 Conclusion

Our work provides an important first step on the
challenging problem of grounding natural language
instructions to mobile UI actions. Our decomposi-
tion of the problem means that progress on either
can improve full task performance. For example,
action span extraction is related to both semantic
role labeling (He et al., 2018) and extraction of
multiple facts from text (Jiang et al., 2019) and
could benefit from innovations in span identifica-
tion and multitask learning. Reinforcement learn-
ing that has been applied in previous grounding
work may help improve out-of-sample prediction
for grounding in UIs and improve direct ground-
ing from hidden state representations. Lastly, our
work provides a technical foundation for investi-
gating user experiences in language-based human
computer interaction.
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A Data

We present the additional details and analysis of
the datasets. To label action phrase spans for the
ANDROIDHOWTO dataset, 21 annotators (9 males
and 12 females, 23 to 28 years old) were employed
as contractors. They were paid hourly wages that

are competitive for their locale. They have standard
rights as contractors. They were native English
speakers, and rated themselves 4 out of 5 regarding
their familiarity with Android (1: not familiar and
5: very familiar).

Each annotator is presented a web interface, de-
picted in Figure 6. The instruction to be labeled is
shown on the left of the interface. From the instruc-
tion, the annotator is asked to extract a sequence of
action phrase tuples on the right, providing one tu-
ple per row. Before a labeling session, an annotator
is asked to go through the annotation guidelines,
which are also accessible throughout the session.

To label each tuple, the annotator first indicates
the type of operation (Action Type) the step is about
by selecting from Click, Swipe, Input and
Others (the catch-all category). The annotator
then uses a mouse to select the phrase in the instruc-
tion for “Action Verb” (i.e., operation description)
and for “object description”. A selected phrase
span is automatically shown in the corresponding
box and the span positions in the instruction are
recorded. If the step involves an additional argu-
ment, the annotator clicks on “Content Input” and
then marks a phrase span in the instruction (see the
second row). Once finished with creating a tuple,
the annotator moves onto the next tuple by clicking
the “+” button on the far right of the interface along
the row, which inserts an empty tuple after the row.
The annotator can delete a tuple (row) by clicking
the “-” button on the row. Finally, the annotator
clicks on the “Submit” button at the bottom of the
screen to finish a session.

The lengths of the instructions range from 19 to
85 tokens, with median of 59, and they describe
a sequence of actions from 1 to 19 steps, with a
median of 5. Although the description for oper-
ations tend to be short (most of them are one to
two words), the description for objects can vary
dramatically in length, ranging from 1 to 19. The
large range of description span lengths requires an
efficient algorithm to compute its representation.

B Computing Span Representations

We evaluated three types of span representations.
Here we give details on how each representation is
computed. For sum pooling, we use the implemen-
tation of area attention (Li et al., 2019) that allows
constant time computation of the representation
of each span by using summed area tables. The
TensorFlow implementation of the representation
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Figure 6: The web interface for annotators to label action phrase spans in an ANDROIDHOWTO instruction.

is available on Github6.

Algorithm 1: Compute the Start-End Con-
cat span representation for all spans in par-
allel.
Input: A tensor H in shape of [L,D] that

represents a sequence of vector with
length L and depth D.

Output: representation of each span, U .
1 Hyperparameter: max span width M .
2 Init start & end tensor: S ← H , E ← H;
3 for m = 1, · · · ,M − 1 do
4 S

′ ← H[: −m, :] ;
5 E

′ ← H[m :, :] ;
6 S ← [S S

′
], concat on the 1st dim;

7 E ← [E E
′
], concat on the 1st dim;

8 U ← [S E], concat on the last dim;
9 return U .

Algorithm 1 gives the recipe for Start-End Con-
cat (Lee et al., 2016) using Tensor operations. The
advanced form (Lee et al., 2017) takes two other
features: the weighted sum over all the token em-
bedding vectors within each span and a span length
feature. The span length feature is trivial to com-
pute in a constant time. However, computing the
weighted sum of each span can be time consuming
if not carefully designed. We decompose the com-
putation as a set of summation-based operations
(see Algorithm 2 and 3) so as to use summed area
tables (Szeliski, 2010), which was been used in Li
et al. (2019) for constant time computation of span
representations. These pseudocode definitions are
designed based on Tensor operations, which are
highly optimized and fast.

6https : / / github . com / tensorflow /
tensor2tensor/blob/master/tensor2tensor/
layers/area_attention.py

Algorithm 2: Compute the weighted em-
bedding sum of each span in parallel, using
ComputeSpanVectorSum defined in Algo-
rithm 3.
Input: Tensors H and E are the hidden and

embedding vectors of a sequence of
tokens respectively, in shape of
[L,D] with length L and depth D.

Output: weighted embedding sum, X̂ .
1 Hyperparameter: max span length M .
2 Compute token weights A:

A← exp(φ(H, θ)W ) where φ(·) is a
multi-layer perceptron with trainable
parameters θ, followed by a linear
transformation W . A ∈ RL×1;

3 E
′ ← E ⊗A where ⊗ is element-wise

multiplication. The last dim of A is
broadcast;

4 Ê ← ComputeSpanVectorSum(E
′
);

5 Â← ComputeSpanVectorSum(A);
6 X̂ ← Ê � Â where � is element-wise

division. The last dim of Â is broadcast;
7 return X̂ .

Algorithm 3: ComputeSpanVectorSum.
Input: A tensor G in shape of [L,D].
Output: Sum of vectors of each span, U .

1 Hyperparameter: max span length M .
2 Compute integral image I by cumulative

sum along the first dimension over G;
3 I ← [0 I], padding zero to the left;
4 for m = 0, · · · ,M − 1 do
5 I1 ← I[m+ 1 :, :] ;
6 I2 ← I[: −m− 1, :] ;
7 Ī ← I1 − I2 ;
8 U ← [U Ī], concat on the first dim;

9 return U .

https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/layers/area_attention.py
https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/layers/area_attention.py
https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/layers/area_attention.py
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C Details for Distance GCN

Given the structural distance between two objects,
based on the view hierarchy tree, we compute the
strength of how these objects should affect each
other by applying a Gaussian kernel to the distance,
as shown the following (Equation 13).

Adjacency(oi, oj) =
1√

2πσ2
exp(−d(oi, oj)

2

2σ2
)

(13)
where d(oi, oj) is the distance between object oi
and oj , and σ is a constant. With this definition of
soft adjacency, the rest of the computation follows
the typical GCN (Niepert et al., 2016).

D Hyperparameters & Training

We tuned all the models on a number of hyper-
parameters, including the token embedding depth,
the hidden size and the number of hidden layers,
the learning rate and schedule, and the dropout ra-
tios. We ended up using 128 for the embedding
and hidden size for all the models. Adding more
dimensions does not seem to improve accuracy and
slows down training.

For the phrase tuple extraction task, we used 6
hidden layers for Transformer encoder and decoder,
with 8-head self and encoder-decoder attention, for
all the model configurations. We used 10% dropout
ratio for attention, layer preprocessing and relu
dropout in Transformer. We followed the learning
rate schedule detailed previously (Vaswani et al.,
2017), with an increasing learning rate to 0.001 for
the first 8K steps followed by an exponential decay.
All the models were trained for 1 million steps with
a batch size of 128 on a single Tesla V100 GPU,
which took 28 to 30 hours.

For the grounding task, Filter-1 GCN and Dis-
tance GCN used 6 hidden layers with ReLU for
nonlinear activation and 10% dropout ratio at each
layer. Both GCN models use a smaller peak learn-
ing rate of 0.0003. The Transformer screen encoder
also uses 6 hidden layers but uses a much larger
dropout ratio: ReLU dropout of 30%, attention
dropout of 40%, and layer preprocessing dropout
of 20%, with a peak learning rate of 0.001. All the
grounding models were trained for 250K steps on
the same hardware.


