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Abstract

We present a method for combining multi-
agent communication and traditional data-
driven approaches to natural language learn-
ing, with an end goal of teaching agents to
communicate with humans in natural language.
Our starting point is a language model that
has been trained on generic, not task-specific
language data. We then place this model in
a multi-agent self-play environment that gen-
erates task-specific rewards used to adapt or
modulate the model, turning it into a task-
conditional language model. We introduce a
new way for combining the two types of learn-
ing based on the idea of reranking language
model samples, and show that this method
outperforms others in communicating with hu-
mans in a visual referential communication
task. Finally, we present a taxonomy of dif-
ferent types of language drift that can occur
alongside a set of measures to detect them.

1 Introduction

In this work, we aim at making agents communi-
cate with humans in natural language. Our starting
point is a language model that has been trained on
generic, not task-specific language data. We then
place this model in a multi-agent communication
environment that generates task-specific rewards,
which are used to adapt or modulate the model,
making it task-conditional. We thus propose to de-
compose the problem of learning language use into
two components: learning “what” to say based on
a given situation, and learning “how” to say it. The
“what” is the essence of communication that under-
lies our intentions and is chosen by maximizing any
given utility, making it a functional, utility-driven
process. On the other hand, the “how” is a surface
realization of our intentions, i.e., the words we use
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to communicate this “what” successfully. This fac-
torization into content planning (here, “what”) and
surface realization (here, “how”) moves us away
from end-to-end neural generation systems and is
in line with traditional methods of natural language
generation (Reiter and Dale, 1997). More impor-
tantly, it enables us to bring together two different
strands of research: traditional data-driven natural
language learning and multi-agent communication.

Traditional approaches to natural language learn-
ing (Kneser and Ney, 1995; Mikolov et al., 2010;
Sutskever et al., 2014; Vinyals and Le, 2015; Rad-
ford et al., 2019) are based on inferring structural
properties of language from text corpora, often in a
passive regime, dissociated from communication.
While this type of learning is great for learning gen-
eral statistical associations between symbols (e.g.,
adjectives come before nouns) and even inferring
semantic relations, it ignores the functional aspects
of communication, i.e., the fact that people use
words to coordinate with others and make things
happen in the world (Wittgenstein, 1953; Austin,
1975; Clark, 1996).

On the other hand, multi-agent communication
research (Foerster et al., 2016; Lazaridou et al.,
2017; Havrylov and Titov, 2017; Evtimova et al.,
2017; Lee et al., 2019) puts communication at the
heart of agents’ (language) learning. Implemented
within a multi-agent reinforcement learning setup,
agents start tabula rasa and form communication
protocols that maximize task rewards. While this
purely utilitarian framework results in agents that
successfully learn to solve the task by creating a
communication protocol, these emergent commu-
nication protocols do not bear core properties of
natural language. Chaabouni et al. (2019) show that
protocols found through emergent communication,
unlike natural language, do not conform to Zipf’s
Law of Abbreviation; Kottur et al. (2017) find that
communication protocols do not follow composi-
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tionality patterns of natural language, and Lazari-
dou et al. (2018) find emerged protocols to be sen-
sitive to different experimental conditions. This
growing set of alarming results on emergent com-
munication raises doubts about the use of this type
of functional learning as a viable alternative to lan-
guage learning.

Concluding that neither approach on its own is
adequate for learning language use, we propose
a method for combining the best of both worlds.
Generic language data can be used effectively as
a good prior model of language, encapsulating its
intrinsic structural properties, i.e., are only used for
the “how” in the form of generic language models.
Conversely, multi-agent interactions, that provide
rewards specific to the task of interest, now only
need to be used for the functional learning of lan-
guage use, i.e., learning the “what”.1

The contributions of this paper are as follows.
First, we propose a general research program of
language learning that combines two learning sig-
nals coming from multi-agent communication and
traditional data-driven natural language learning
techniques. We present a concrete study in the con-
text of a referential communication game (see Sec-
tion 2) between a speaker and a listener, where the
traditional data-driven language learning takes the
form of image captioning, and the functional learn-
ing takes the form of agent self-play (see Section 3).
We then present a new approach for combining the
two learning signals, i.e., reward-learned rerankers
(see Section 4), and compare this to existing ap-
proaches using a human study (see Section 5). We
discuss shortcomings of this program with respect
to different types of language drift that can occur,
and introduce a number of automatic measures to
detect them (see Section 6). Finally, we show how
such a program under oracle rewards can be a vi-
able approach moving towards learning language
use from human rewards (see Section 7).

1About the terminology: by ‘traditional data-driven natural
language learning’, we mean language modelling of the next-
word-prediction variety. This type of learning does not involve
any use of the language or other context, and as such only
focuses on word statistics. Since the structure of the language
is a large part of those statistics, and the role of the generic
language models in our proposed combined systems is to
provide structural knowledge of language, we also use the term
‘structural learning’. We contrast this with the purely usage-
driven, reward-based learning of the type seen in emergent
communication research. Since the function, rather than the
structure or statistics, is the only thing that matters for such a
learner, we also use the term ‘functional learning’.

2 Research framing

Our research can be framed in the following sce-
nario. An agent needs to perform a functional com-
munication task in a natural language (in this work,
English). However, examples of linguistic com-
munication about this functional task are not avail-
able - the only natural language data that can be
used consist of examples of generic natural lan-
guage, which are not grounded in the functional
task. Recasting the task as a multi-agent language
game provides a way to obtain a reward that judges
whether an utterance elicited the correct behaviour
by a listener.

2.1 Experimental setup
In this work, we instantiate the research in the fol-
lowing way: the functional task is a visual referen-
tial communication game for a target image in the
context of a distractor, the reward is based on suc-
cess in referential communication where a listener
is tasked to pick the correct image within distrac-
tors guided by the speaker’s description, and the
generic natural language data are captioning data.

Visual referential communication game.
There are two players, the speaker and the listener.
The speaker sees a target object and needs to
communicate an utterance about it in the context
of distractors; both target and distractors are
represented as images. The listener is presented
with the same set of images, but without the
knowledge of which is the target, and needs to
identify the target image relying on the utterance
being communicated by the speaker. The utterance
takes the form of sequences of word-like units. If
the listener’s choice is correct they both receive a
positive reward, else they receive the same negative
reward.2

Dataset and referential splits. For playing the
visual referential communication game, we use a
multi-modal dataset, the Abstract Scenes (Zitnick
and Parikh, 2013) which contains 10k synthetic
images accompanied with descriptive captions (on
average 6 per image) (see Figure 1).3 The cap-

2The task we consider is essentially discriminative image
captioning (Vedantam et al., 2017; Dai and Lin, 2017; Andreas
and Klein, 2016). Here we are using it as a placeholder of a
communication task to illustrate our general framework. Thus,
we are not incorporating any explicit bias in the model about
this particular task. The only task-specific information we use
is communicated via the reward.

3Other multi-modal datasets like MSCOCO (Lin et al.,
2014) or Flickr (Thomee et al., 2016), while providing com-
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Jenny is scared of the bear
Mike is scared of the bear
Jenny and Mike sit by a fire
Jenny and Mike are sitting

A bear is scaring mike and jenny

Figure 1: Example image and ground-truth captions
from the Abstract Scenes dataset used in this study.

speaker (human) easy difficult

random 0.92 0.81

discriminative 1.0 0.97

Table 1: Accuracy performance of a human listener
with a human speaker producing either random or dis-
criminative caption on the easy and difficult splits.

tions typically refer to diverse aspects of the scene
(characters and actions), providing a rich and chal-
lenging environment for an agent to evolve the
captioning skills for successful communication. In
our experiments, we split the dataset into 80/10/10
for train/validation/test sets. We use the test im-
ages to create two referential splits, i.e., easy and
difficult, as a function of the similarity between the
target and distractor images. Each split contains
1000 pairs of a target and a distractor.

Human performance and setup validation. In
order to assess the difficulty of the task in the pres-
ence of the particular data (images and captions) we
perform a human study in the reference game with
a human speaker and a human listener, where the
human speaker can only communicate one of the
existing captions of the target image. We perform
the human study under two conditions. In the first
condition, the human speaker has only access to
the ground-truth captions and does not have access
to the distractor image, thus has to pick a random

caption. This corresponds to the perfect structural
knowledge of English but no knowledge of the
functional task and it is the human upper-bound of
a captioning system performance on this task. In
the second condition, the speaker has access to both
the ground-truth captions and the distractor image,
thus is able to pick a discriminative caption to com-
municate. For each condition, we collect 50 rounds

plex naturalistic images, often have a repetitive set of captions,
highlighting one particular aspect of the scene and suffer from
a human reporting bias (Misra et al., 2016). By using Abstract
Scenes, we have left certain visual challenges out of the scope
of the work, obtained cleaner multi-modal associations be-
tween words and objects, and focused on the language use for
referential communication.

of games and present results in Table 1. We see
that the task-specific condition outperforms the first
condition, indicating that in our current setup there
is enough space to improve upon models based on
structural-only learning (i.e., captioning models).
Moreover, the good performance of discriminative

caption speaker demonstrates that (in principle) the
captioning data can be used in a successful com-
munication with a human for this task.

3 Multi-agent communication setup

3.1 Speaker

The speaker is the primary learner in this research,
aiming at creating a model that is able to use nat-
ural language in a communicative scenario, and
consists of standard visual and language modules.
To convert images to embeddings u, we use a pre-
trained ResNet (He et al., 2016) (parametrized by
θresnet) and feed its last layer output into a one-
layer MLP (parametrized by θMLP

S ). To generate a
message m, we use a one-layer LSTM (Hochreiter
and Schmidhuber, 1997) (parametrized by θLSTMS ),
adding embeddings u at each time step as addi-
tional context. Section 4 presents different speaker
models consisting of these modules.

We also design two oracle speakers (with no
weights) that have direct access to ground-truth
captions of images at test time. The random caption
speaker outputs one of the ground-truth captions
for the target image at random. Since this speaker is
not aware of the functional goal, their performance
will indicate whether having only good grounded
language skills is enough for communication suc-
cess in our setup. We also build an oracle speaker
that is task-aware; discriminative caption speaker uses
a simple word-overlap heuristic to pick the target’s
caption that has the least word overlap with any of
the distractor’s captions (the score is normalized
by the captions’ length excluding stop-words).

3.2 Listener

Throughout the experiments, we need a way to
estimate performance on the functional commu-
nication task, either for evaluation or to provide
rewards during training acting as a scaffolding to
learn the speaker model. Ideally, this performance
signal should be provided by a human who is inter-
acting online with the speaker agent. While we do
so for evaluation reasons, for training we approx-
imate this quantity with a learned component, an
agent listener.
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To convert images to embeddings u, we use the
same pre-trained ResNet as for the speaker and
feed its last layer output into a one-layer MLP
(parametrized by θMLP

L ). Following that, the lis-
tener uses an LSTM (parametrized by θLSTML ) to
embed the utterance m received by speaker, creat-
ing embedding v. Finally, the listener picks the im-
age with the highest dot-product similarity between
the embedded message v and the embeddings ut
and ud for target and distractor. Since we know
which image candidate is the intended referent, we
cast this problem as supervised learning and update
the listener’s weights θL = {θMLP

L , θLSTML } opti-
mizing cross-entropy. Finally, the listener assigns
reward 1 to the speaker if they identified the correct
image, else reward -1.

We consider two different setups: a joint listener,
which is trained together with the speaker, as com-
monly done in the emergent communication liter-
ature, and a fixed listener that is pre-trained to per-
form best-response to the oracle discriminative cap-
tion speaker and stays fixed throughout the learning
of the speakers with the sole use of providing them
rewards. We expect the latter setup to be less prone
to language drift issues due to the grounding of the
discriminative caption speaker to language data. thus
potentially resulting in better communication with
human listeners. We also use the fixed listener for
evaluation of all speakers.

4 Methods for learning language use

We describe ways to estimate the speaker’s genera-
tive model pθS (m|u, t) for messagem, conditioned
on target and distractor embeddings u = [ut, ud]
and target image index t ∈ {0, 1}.

4.1 Functional-only learning

This type of learning language use is identical
to experiments commonly conducted in the lit-
erature of emergent communication (Lazaridou et al.,
2017; Havrylov and Titov, 2017; Bouchacourt and
Baroni, 2018; Evtimova et al., 2017; Graesser
et al., 2019), i.e., the speaker learns to emit
communication utterances m in order to maxi-
mize the communication task reward (see Sec-
tion 3.2 for a discussion on how this reward is
computed). Concretely, the weights θS = {θMLP

S ,
θLSTMS } of the speaker policy πθS (m|u, t) are up-
dated via the REINFORCE update rule (Williams,
1992) using rewards rL provided by the
listener, i.e., we optimize Lfunctional =

−rL(m,u, t)
I∑
i=1

log pθLSTM
S

(mi|m<i, u), where

u = [ut;ud], mi ∈ V , vocabulary size |V | = 100,
and message length I = 10.4 Note, that while
this type of learning results in a language that is
maximally functionally correct for the given task
reward, this language is not natural language, i.e.,
the symbols are not grounded to natural language.

4.2 Structural-only learning
This type of learning ignores the functional aspect
of communication and communicates utterances
that reflect intrinsic structural properties of lan-
guage, i.e., that are fluent, grammatical and related
to the target. Here, we used paired data in the
form 〈u, c〉, where u is a visual embedding and c is
the associated caption, and learn an image captioning

model. The speaker’s parameters θS = {θMLP
S ,

θLSTMS } are optimized using cross-entropy, i.e.,

Lstructural = −
I∑
i=1

log pθLSTM
S

(ci|c<i, u), where

u = ut, ci ∈ V , |V | = 2685 (the vocabulary size)
and I = 25, i.e., the longest caption in the dataset.
We approximate the speaker model pθS (m|u, t)
with the captioning one, which ignores distractor,
thus the communication task. We construct two
speakers with different decoding schemes: greedy

uses greedy decoding, while sample picks the high-
est probability message among k = 20 stochastic
samples (temperature τ = 2.0).

4.3 Structural and functional learning
We now describe several ways in which both
types of learning are used to learn language use.
In all cases, we equip the speaker with a base
image captioning model similar to the one pre-
sented in Section 4.2, which is used to calcu-
late pθLSTM

S
(ci|c<i, ut). The functional part is

learned via the REINFORCE update rule opti-
mizing the task reward (i.e., listener’s accuracy
in the referential task). However, speakers differ
in how they parametrize pθS (m|u, t) and whether
the task reward is used to update the weights
{θMLP
S , θLSTMS } of the base captioning model.

4.3.1 Reward finetuning
The simplest approach is to first use existing pre-
trained components for which we have available
corpora in order to learn the statistical properties

4In all experiments using REINFORCE we add an entropy
regularization term to the loss.
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of language, and then steer the language use to be
functionally appropriate using reward finetuning for
the given task. We use paired data in the form 〈u, c〉
to learn the weights θS = {θMLP

S , θLSTMS } of a
base image captioning model following Section 4.2,
and then we perform functional learning by using
the listener’s reward to optimize the weights θS as
in Section 4.1. While this method is conceptually
simple, it becomes challenging when the task re-
quires extending the conditioning part of the base
model. Here, we need to change the condition-
ing of the base captioning model from u = ut
to u = [ut;ud], to allow conditioning on the dis-
tractor. Since this is not trivial (the base image
captioning model has been learned by conditioning
only on one image embedding), we keep the condi-
tioning u = ut also during finetuning with REIN-
FORCE. Thus, similar to the image captioning model,
we approximate pθS (m|u, t) with pθLSTM

S
(m|ut).

However, unlike image captioning, the information
about distractors flows into the policy, since the
weights θS are optimized using the listener’s re-
ward which considers distractors.

Since the gradients from optimizing the func-
tional task are sent all the way into the base cap-
tioning model, this causes catastrophic forgetting
of the core knowledge of language, leading to lan-
guage drift. Thus, we use a language regularizer
term in the form of Kullback-Leibler divergence
between pre-trained and fine-tuned language mod-
eling distributions (Havrylov and Titov, 2017).

4.3.2 Multi-task learning
An alternative is to conduct both types of learning
(i.e., image captioning and functional learning) at
the same time (Lazaridou et al., 2017; Lee et al.,
2019). This takes the form of multi-task learning
optimizing λfLfunctional + λsL

structural, where
λf = 1. Like in reward finetuning, the gradients
of the reward learning flow into the weights of a
base captioning model, leaving us with questions
about a trade-off between task success and quality
of language. Therefore, we introduce two variants
of this model depending on the importance of the
language component, i.e., one variant with λs =
0.1 and a language-regularized one with λs = 1.

4.3.3 Reward-learned rerankers
Finally, we introduce a new way of learning lan-
guage use in the multi-agent communication setup.
As before, we train the core language capabilities
of a speaker using the image captioning task objec-

tive, but after this pre-training phase, the weights
of this model are frozen. The functional part is then
viewed as learning to use this general knowledge
of language grounded in images. This is opera-
tionalized as learning to rerank samples obtained
from the captioning model optimizing the listener’s
reward. The action space of this speaker are sen-
tences, as opposed to words used commonly in the
literature of emergent communication. We empha-
size that by leveraging the idea of reranking, we
are able to take a task-unconditional model, i.e., a
captioning model that only conditions on the target,
and extend its conditioning turning it into a task-
conditional model, i.e., a discriminative captioning
model that conditions also on the distractor.

Below we consider two concrete reranker mod-
els. In both cases, the message generation hap-
pens in two steps. First, we sample |S| = 20
candidates from the pre-trained and fixed image
captioning model pθLSTM

S
(m|ut). Then, we pick

the best sample s using a task-conditional rerank-
ing score p(s|u, t). The reranking score can be
viewed as a new policy πθS (s|u, t) that operates
in the space of samples S drawn from the task-
unconditional model. This policy introduces an
additional set of trainable parameters θrerankS that
are learned with REINFORCE. Thus, the full
set of weights for this speaker is θS = {θMLP

S ,
θLSTMS , θrerankS }. Crucially, the two learning sig-
nals, i.e., structural and functional, affect different
set of weights, i.e., {θMLP

S , θLSTMS } and θrerankS

respectively, allowing submodules to specialize.

Product of experts reranker. In this model
we parametrize the policy as a product of ex-
perts (PoE): πθS (s|u, t) ∝ p(s|u, t)λf p(s|ut)λs ,
where u = [ut;ud] and λf = 1. The second term
is the image captioning message probability, re-
normalized over the samples space, thus bringing
general language knowledge grounded in images.
The first term adjusts for the task specifics. To
model that, we re-embed the samples using trans-
formed bag-of-words, thus the trainable parameters
of the reranker θrerankS are word embeddings and
additional MLP weights. We combine target and
distractor embeddings into a single vector and com-
pute the dot-product similarity between this vector
and each of the bag-of-words representations of
samples. Finally, these scores are passed through
a softmax layer to obtain p(s|u, t). We introduce
two variants of the model, one with λs = 0 and a
language-regularized one with λs = 1.
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Noisy channel reranker. Following Bayes
rule, we factorize the speaker’s policy as follows:
πθS (s|u, t) ∝ p(t|s, u)p(s|u), where u = [ut;ud].
We omit the distractor vector ud in the condition-
ing of the prior, arriving to p(s|ut) from the PoE
reranker above. The crucial difference is that the
first term now represents the speaker’s approxima-
tion of the listener’s behaviour. As before, we rep-
resent samples with the transformed bag-of-words,
but then compute their dot-product similarities with
each image separately and normalize with softmax
across the images to obtain the probability of the
target p(t|s, u). This reranker model is closely
related to pragmatic speakers in Rational Speech
Act (RSA) framework (Andreas and Klein, 2016;
Monroe and Potts, 2015; Cohn-Gordon et al., 2018;
Fried et al., 2018). However, while the RSA model
assumes a given and fixed listener model, here
we are learning the model of the listener that the
speaker is using by optimizing end-to-end the lis-
tener’s reward. Thus, when doing multi-agent com-
munication using the noisy channel model, there exist
two components that produce probability distribu-
tions of the same type p(t|s, u); one belongs to the
listener, thus the speaker has no access to it (e.g.,
this listener in the future could be a human sending
rewards), while the other belongs to the speaker
corresponding to their model of the listener.

5 Speakers trained jointly with listeners

Table 2 presents referential success when speakers
are trained with rewards from a joint listener, i.e., a
listener being learned jointly with the speaker.

We conduct three different evaluations: at test
time we play against the fixed listener, human lis-
teners and the joint listener the speaker was trained
with. While fixed listener is the same for all speak-
ers, the joint listener is speaker-specific. We report
results on two splits: for the easy and difficult split
we report referential success of the joint listener,
and for the latter split, we also report results of the
fixed and human listener.

To compute referential success using human lis-
teners, we collect 400 annotations for each speaker
model. To avoid annotators adapting to model-
specific strategies, we group predictions of similar
models and collect annotations in three sessions
(one for each group), during which we present an-
notators with predictions from a model sampled
from that group.5

5Group 1: image captioning (greedy/sample), noisy chan-

Easy split Difficult split
joint joint fixed human

Functional-only learning
emergent (§4.1) 0.99 0.98 - 0.5

Structural-only learning
image captioning (§4.2)

sample 0.92 0.78 0.77 0.77
greedy 0.91 0.77 0.73 0.78

Structural & functional learning
Gradients from reward affect base captioning model
reward finetuning (§4.3.1)

no KL 0.95 0.82 0.63 0.62
with KL 0.93 0.79 0.77 0.69

multi-task learning (§4.3.2)
λs = 0.1 0.98 0.94 0.71 0.71
λs = 1 0.96 0.90 0.69 0.69

Reranking (§4.3.3), base captioning model unchanged
PoE, λs = 0 0.99 0.92 0.81 0.81
PoE, λs = 1 0.98 0.91 0.83 0.78
noisy channel 0.96 0.83 0.84 0.86*

Utilizing ground-truth captions from the dataset
Oracle speakers, no weights learned (§3.1)
random 0.87 0.74 0.72 0.81
discriminative 0.87 0.73 0.82 0.87*
Reranking (§4.3.3) ground-truth captions
PoE (§4.3.3) 0.95 0.88 0.85 0.93*
noisy channel (§4.3.3) 0.95 0.78 0.83 0.88*

Table 2: Referential success of speakers (by rows)
trained with joint listener and then tested with joint,
fixed and human listener (by columns).* indicates sig-
nificance over the image captioning (greedy) when tested
with humans (p < 0.005, bootstraping test).

5.1 Referential success of joint listeners

All models perform quite similarly in the easy split,
whereas we observe larger gaps in the difficult split.
In terms of joint accuracy results in the difficult split,
reward finetuning has the lowest performance among
models that are optimizing rewards, perhaps due
to its large action space (i.e., the vocabulary size
|V | = 2685), making it a hard RL exploration prob-
lem. multi-task, despite having the same action space
performs better, probably due to the captioning ob-
jective being optimized concurrently facilitating
the learning dynamics. Finally, the best results in
both splits are obtained by the emergent communication

model, that achieves near perfect performance. We
believe this is the case since this speaker is the least
constrained of all, since we can think of all other
speakers (i.e., the ones that combine both types of
learning) as being regularized towards producing
natural language.

nel, PoE). Group 2: multi-task, reward finetuning. Group 3:
random, discriminative, PoE and noisy channel with ground-
truth captions.
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5.2 Referential success of human listeners
Somewhat alarmingly, we observe the joint perfor-
mance is not predictive of the human’s one across the
board, hinting to issues regarding pragmatic drift
(we will further discuss this in Section 6). In the
most extreme case, while the emergent communication

speaker achieved the highest results when playing
against a listener jointly learned with the speaker,
this comes in the expense of human performance:
functional learning alone results in maximally un-
interpretable protocols, and as such humans are at
random when playing against such a model.

Speakers that combine both types of learning
achieve good human performance, with reward-
learned reranker models, i.e., noisy channel and PoE

being the best. In their case, they outperform the
image captioning baselines, even approaching the dis-

criminative oracle speaker based on ground-truth
captions. This indicates their effectiveness in ex-
tending the conditioning of the underlying image

captioning to the distractor image with the reward
coming from the listener, turning like this the base
image-captioning model into a task-specific refer-
ential captioning model. Moreover, when giving
the rerankers a perfect captioning model in the form
of ground-truth captions of target images, perfor-
mance of noisy channel and PoE surpass the oracles’
(see last two columns of Table 2); as the commu-
nity improves the base language models, we should
expect this to also result in net improvement in the
reranker models.

Finally, we also observe that the fixed grounded
listener is significantly predictive of the human per-
formance (p < 0.005, t-test).6 This is encouraging,
since as we will show in Section 7, we can use this
listener as a fixed model that provides rewards to
the speaker model.

6 Language drift and how to detect it

We show that the multi-agent communication
framework is prone to language drift (Lee et al.,
2019), i.e., when protocols diverge from human lan-
guage. We present a taxonomy of different types
that occur in this framework, alongside a set of
automatic measures to detect it.

6.1 Structural drift: Definition and measures
The most basic type of drift that manifests in the
emergent communication setup relates to the core

6All t-tests are conducted between two distributions of
scores dichotomized on human performance.

Target Image Distractor Image

Structural-only learning
image captioning (§4.2)

sample jenny is wearing a hat
greedy mike is wearing a hat

Structural and functional learning
Gradients from reward affect base captioning model
reward finetuning (§4.3.1)
no KL it is camping camping [...] camping
with KL mike is sitting on the tent
multi-task learning (§4.3.2)
λs = 0.1 mike is jenny on the the tent
λs = 1 mike is sitting on the ground

Reranking (§4.3.3), base captioning model unchanged
PoE, λs = 0 the tent is in the tree
PoE, λs = 1 mike and jenny are sitting on the ground
noisy channel jenny is wearing a funny hat

Table 3: Examples of generated messages. We under-
line wrong and bold correct cases of language usage.

structural properties of the generated language, i.e.,
its fluency and grammaticality with respect to nat-
ural language (this is also referred to by Lee et al.
(2019) as “syntactic”). Looking at Table 3, a clear
example of this type of drift happens when models
update the base captioning model. reward finetuning

(no KL) does not produce at all grammatical sen-
tences, while multi-task (λs = 0.1) appears to suffer
less, only occasionally producing slightly ungram-
matical sentences by repeating consecutive words.
We term this structural drift and we quantify it as
the log probability of the generated message under
a pre-trained unconditional language model (col-
umn log p(m) in Table 4).

6.2 Semantic drift: Definition and measures

The second type of drift is the semantic drift.
This relates to whether the generated message is
grounded with regards to the target object, i.e., its
adequacy with respect to the literal semantics of the
target (this is also referenced by Lee et al. (2019)
as “semantic”). We have qualitatively observed
instances of this type of drift in the PoE, which
occasionally shifts the semantics of words, e.g.,
using the word tree to refer to ground as seen in
Table 3. To measure it, we use a pre-trained image-
conditional language model and compute the target-
image conditional log probability of the generated
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log p(m) log p(m|i) 1-gram 3-gram

Structural-only learning
image captioning (§4.2)

sample -8.71 -7.77 0.81 0.37
greedy -8.63 -7.72 0.73* 0.30*

Structural & functional learning
Gradients from reward affect base captioning model
reward finetuning (§4.3.1)
no KL -442.00 -279.55 0.33 0.00
with KL -11.75 -10.78 0.70* 0.22*

multi-task learning (§4.3.2)
λs = 0.1 -18.08* -19.67 0.78* 0.18*
λs = 1 -10.68* -10.64 0.63* 0.18

Reranking (§4.3.3), base captioning model unchanged
PoE, λs = 0 -10.18* -8.79 0.71* 0.24*
PoE, λs = 1 -8.95 -7.94 0.78* 0.30*
noisy channel -10.02 -8.59 0.76 0.30

Table 4: Language drift measures, lower scores mean
higher drift. *indicates that the measure was signifi-
cantly predictive of the human listener performance on
the referential task (p<0.005, t-test).

message (column log p(m|i) in Table 4).
These two log probability-based measures do

not assume access to language data for the target
objects, and as such can be computed from general
unconditional and domain-specific conditional lan-
guage models. In this particular case though, since
we also have access to language data for the tar-
get images (i.e., captions in English), and assuming
that these data describe everything that is true about
the target, we can use simple n-gram statistics as
proxies of semantic drift (i.e., in this case 1-gram

word overlap ignoring stop word and 3-gram word
overlap between the ground-truth captions and the
speaker-generated message). Moreover, all these
measures do not take into account the specific com-
munication task the speaker has to perform, i.e., our
measures do not consider any information about
the distractor object, making them easily adaptable
to other tasks.

6.3 Structural and semantic drift results

In Table 4 we report performance of different mod-
els under these automatic measures. The structural
score log p(m) reflects the qualitative observations
made from Table 3, i.e., multi-task and reward finetun-

ing, have the highest structural drift, with the latter
performing significantly worse than all the models.
In contrast, the reranker models that do not update
the base captioning model, i.e., PoE and noisy chan-

nel, perform the best on the semantic score by con-
struction; both models directly incorporate in their

models a component associated with the seman-
tic score (i.e., the samples taken from the image-
conditional model alongside the associated proba-
bilities). Moreover, they also perform well on all
other measures, indicating their robustness against
language drift. Finally, all the model-specific lan-
guage regularizers (KL for reward finetining, λs = 1
for multi-task and λs = 1 for PoE) we introduced
were effective in limiting both types of language
drift (as also seen in Table 3).

6.4 Pragmatic drift

Finally, we identify a novel type of drift, i.e., prag-
matic drift, which relates to the divergence between
a human’s interpretation of the message from the
interpretation a speaker will assume. Unfortunately,
this type of drift is perhaps the most difficult to cap-
ture in an automatic way as it is task specific and
requires access to the exact interpretation that the
human would ascribe to the message. As a proxy of
pragmatic drift, we use the difference between the
agent- and human-listener referential success; if the
joint referential success is higher than the human’s
one, then the speaker assumes an interpretation of
the message that is different from the human’s one,
resulting in lower human performance. An extreme
example of this drift manifests when the joint lis-
tener achieves almost perfect referential success
whereas a human listener is at random, as in the
case of emergent communication. However, in this case
the messages are maximally uninterpretable with
the lowest possible performance in both structural
and semantic scores.

Hence, a natural question to ask is to what de-
gree (if at all possible) pragmatic drift can manifest
in the absence of the other two types of language
drift. Or, put differently, does the emergent commu-
nication for learning language use hide any other
pathological behaviour for models that do not suf-
fer a lot from structural and semantic drift, as in
the case of PoE and noisy channel? To study this, we
create a setup where PoE is guaranteed to have a per-
fect knowledge of (grounded) language. Namely,
it uses the reward to rerank ground-truth captions
associated with the target image (note, our dataset
provides up to five captions per image). Moreover,
we perform several ablations where we allow the
updating of different parameters in the speaker’s
and listener’s model by unfreezing components.

Table 5 presents the results of the joint and hu-

man referential success. The main finding is that
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Weights learned with RL joint human ∆

reranker 0.88 0.92 -0.04
reranker + speaker ResNet 0.92 0.90 +0.02
reranker + both agent ResNets 0.96 0.88 +0.08

Table 5: Referential success for PoE with gold cap-
tions when updating different components during train-
ing with joint listener.

by increasing the number of components that get
updated using the joint reward, the margin between
the referential success of the two types of listen-
ers increases. Despite the fact that the speaker is
using human language that is perfectly fluent and
accurate with respect to the target image (since
the reranker operates on captions associated with
the target image), while the joint listener is able to
communicate with the agent speaker, the human
listener achieves significantly lower performance.

In one test example, the speaker said Mike has a
hat, which was equally true for both images making
the human pick at random. So, how could the
listener pick correctly? The speaker had reached a
pact with the listener that the interpretation of this
message will be something beyond what the phrase
means (e.g., Mike has a yellow hat or the intensity
of the pixels in the target image is lower). Since
speaker and listener learn together, they co-adapt,
forming conventions (or conceptual pacts (Brennan
and Clark, 1996)) that differ from humans’, even
in the presence of fluent and grounded language.

7 Speakers trained using fixed listener

In the previous section we showed that learning a
speaker using a learned reward module as a scaf-
folding (i.e., the joint listener) can lead to pragmatic
drift. In this section, we use a grounded reward
as scaffolding. In the absence of a human listener
to provide rewards for learning, we use the ora-
cle fixed listener, which was found in Section 5 to
be predictive of human referential success. It is
pre-trained, stays fixed and just provides rewards
for training the speaker. As speakers, we use the
models that scored the highest in Table 2 and re-
train them against fixed. Table 6 presents the results
of referential success against fixed and human lis-
teners. Using a grounded reward results in better
performance for the weaker models. The small
gap between the rerankers in the two experimental
setups points that using a learned reward module
(joint) holds promise, despite the different types of
language drift. Moreover, we show that our mod-

Model fixed human

reward finetuning, with KL 0.81 0.75
multi-task learning, λs = 0.1 0.80 0.68
PoE, λs = 0 0.93 0.86
noisy channel 0.88 0.87

Table 6: Referential success when training speakers
with the fixed listener.

els for learning language can be used against fixed
reward models, potentially learning directly from
human rewards (Ziegler et al., 2019).

8 Discussion and Limitations

We presented a method for teaching agents
to communicate with humans in natural lan-
guage, by combining two learning signals com-
ing from multi-agent communication and tra-
ditional data-driven natural language learning
techniques, which adds on recent efforts of blend-
ing emergent communication with natural lan-
guage (Lowe et al., 2020; Lu et al., 2020).

Self-play between speakers and listeners can re-
sult in language drift, the most severe of which
being pragmatic drift. Since speakers and listen-
ers are learning concurrently, they can co-adapt to
pair-specific policies that deviate from the policies
that humans learn. This pathological behaviour of
self-play is not specific to language and extends to
other policies (Carroll et al., 2019).

Finally, we introduced the reward-learned
reranker approach which alleviates language
drift and achieves the highest human perfor-
mance, by constraining the functional learning to
happen on the level of utterances generated by a
pre-trained language model. However, since the
functional signal is not currently influencing the
sampling from the language model, this will lead
to poor performance when using more general lan-
guage models with weaker conditioning (e.g. GPT-
2 (Radford et al., 2019)) whose samples potentially
do not fit the functional context. Moving towards
integrating our findings into more realistic appli-
cations of self-play, e.g., user simulation in dia-
logue (Schatzmann et al., 2006; Shah et al., 2008),
these shortcomings need to be addressed.
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A Hyperparameters

The following tables represent our choice of hyper-
parameters in the speaker and listener agents. Hy-
perparameters in Table 7 where chosen in the image
captioning task using the validation set. Hyperpa-
rameters in Table 8 where chosen in the referential
task using the validation set.

Agent Hyperparameter Value

listener LSTM hidden size 512
speaker LSTM hidden size 512
listener visual embeddings size 512
speaker visual embeddings size 1024

Table 7: Settings shared across all experiments.

Model Hyperparameter Value

fine-tuning++ KL regulatization 0.1
multi-task structural weight 0.1

PoE structural weight 0
noisy channel / PoE number of samples 20
noisy channel / PoE message embedding size 1024
noisy channel / PoE entropy regularization 0.1

Table 8: Settings for particular speakers.

B ResNet module

We use ResNet-50 (He et al., 2016) pre-trained
on ImageNet. For image captioning and also for
models that use the pre-trained captioning model
(i.e. reward finetuning, PoE and noisy channel) we back-
propagate gradients into the ResNet module. How-
ever, in all rerankers we freeze the ResNet during
reward optimization. Moreover, we also keep the
ResNet fixed in the jointly learned listener to pre-
vent additional drift, however we back-propagate
when we pre-train the fixed listener, grounded
though the discriminative caption speaker.


