
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 7618–7624
July 5 - 10, 2020. c©2020 Association for Computational Linguistics

7618

Towards Open Domain Event Trigger Identification using Adversarial
Domain Adaptation

Aakanksha Naik
Carnegie Mellon University
anaik@cs.cmu.edu

Carolyn Rosé
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Abstract

We tackle the task of building supervised event
trigger identification models which can gener-
alize better across domains. Our work lever-
ages the adversarial domain adaptation (ADA)
framework to introduce domain-invariance.
ADA uses adversarial training to construct rep-
resentations that are predictive for trigger iden-
tification, but not predictive of the example’s
domain. It requires no labeled data from the
target domain, making it completely unsuper-
vised. Experiments with two domains (English
literature and news) show that ADA leads to an
average F1 score improvement of 3.9 on out-
of-domain data. Our best performing model
(BERT-A) reaches 44-49 F1 across both do-
mains, using no labeled target data. Prelimi-
nary experiments reveal that finetuning on 1%
labeled data, followed by self-training leads
to substantial improvement, reaching 51.5 and
67.2 F1 on literature and news respectively.1

1 Introduction

Events are a key semantic phenomenon in natu-
ral language understanding. They embody a basic
function of language: the ability to report happen-
ings. Events are a basic building block for narra-
tives across multiple domains such as news articles,
stories and scientific abstracts, and are important
for many downstream tasks such as question an-
swering (Saurı́ et al., 2005) and summarization
(Daniel et al., 2003). Despite their utility, event
extraction remains an onerous task. A major rea-
son for this is that the notion of what counts as
an “event” depends heavily on the domain and task
at hand. For example, should a system which ex-
tracts events from doctor notes only focus on med-
ical events (eg: symptoms, treatments), or also
annotate lifestyle events (eg: dietary changes, ex-

1Our system is available at https://github.com/
aakanksha19/ODETTE

ercise habits) which may have bearing on the pa-
tient’s illness? To circumvent this, prior work has
mainly focused on annotating specific categories of
events (Grishman and Sundheim, 1996; Dodding-
ton et al., 2004; Kim et al., 2008) or narratives from
specific domains (Pustejovsky et al., 2003; Sims
et al., 2019). This has an important implication for
supervised event extractors: they do not general-
ize to data from a different domain or containing
different event types (Keith et al., 2017). Con-
versely, event extractors that incorporate syntactic
rule-based modules (Saurı́ et al., 2005; Chambers
et al., 2014) tend to overgenerate, labeling most
verbs and nouns as events. Achieving a balance
between these extremes will help in building gen-
eralizable event extractors, a crucial problem since
annotated training data may be expensive to obtain
for every new domain.

Prior work has explored unsupervised (Huang
et al., 2016; Yuan et al., 2018), distantly super-
vised (Keith et al., 2017; Chen et al., 2017; Araki
and Mitamura, 2018; Zeng et al., 2018) and semi-
supervised approaches (Liao and Grishman, 2010;
Huang and Riloff, 2012; Ferguson et al., 2018),
which largely focus on automatically generating
in-domain training data. In our work, we try to
leverage annotated training data from other do-
mains. Motivated by the hypothesis that events,
despite being domain/ task-specific, often occur in
similar contextual patterns, we try to inject lexical
domain-invariance into supervised models, improv-
ing generalization, while not overpredicting events.

Concretely, we focus on event trigger identifica-
tion, which aims to identify triggers (words) that in-
stantiate an event. For example, in “John was born
in Sussex”, born is a trigger, invoking a BIRTH
event. To introduce domain-invariance, we adopt
the adversarial domain adaptation (ADA) frame-
work (Ganin and Lempitsky, 2015) which con-
structs representations that are predictive for trigger

https://github.com/aakanksha19/ODETTE
https://github.com/aakanksha19/ODETTE
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identification, but not predictive of the example’s
domain, using adversarial training. This framework
requires no labeled target domain data, making it
completely unsupervised. Our experiments with
two domains (English literature and news) show
that ADA makes supervised models more robust
on out-of-domain data, with an average F1 score
improvement of 3.9, at no loss of in-domain per-
formance. Our best performing model (BERT-A)
reaches 44-49 F1 across both domains using no
labeled data from the target domain. Further, pre-
liminary experiments demonstrate that finetuning
on 1% labeled data, followed by self-training leads
to substantial improvement, reaching 51.5 and 67.2
F1 on literature and news respectively.

2 Approaching Open Domain Event
Trigger Identification

Throughout this work, we treat the task of event
trigger identification as a token-level classification
task. For each token in a sequence, we predict
whether it is an event trigger. To ensure that our
trigger identification model can transfer across do-
mains, we leverage the adversarial domain adap-
tation (ADA) framework (Ganin and Lempitsky,
2015), which has been used in several NLP tasks
(Ganin et al., 2016; Li et al., 2017; Liu et al., 2017;
Chen et al., 2018; Shah et al., 2018; Yu et al., 2018).

2.1 Adversarial Domain Adaptation

Figure 1 gives an overview of the ADA frame-
work for event trigger identification. It consists
of three components: i) representation learner (R)
ii) event classifier (E) and iii) domain predictor
(D). The representation learner generates token-
level representations, while the event classifier and
domain predictor use these representations to iden-
tify event triggers and predict the domain to which
the sequence belongs. The key idea is to train the
representation learner to generate representations
which are predictive for trigger identification but
not predictive for domain prediction, making it
more domain-invariant. A notable benefit here is
that the only data we need from the target domain
is unlabeled data.

To ensure domain-invariant representation learn-
ing, ADA uses adversarial training. Assume that
we have a labeled source domain dataset Ds with
examples {(xs1, es1), ..., (xsn, esn)}, where xsi is the
token sequence and esi is the sequence of event tags.
We construct auxiliary dataset Da with examples

Labeled 
Source 
Domain 

Data

Unlabeled 
Target

Domain 
Data

Representation
Learner

Event Classifier

Domain Predictor

Source 

Domain Reps

Source + Target
Domain Reps

Figure 1: Adversarial Domain Adaptation Framework
for Event Trigger Identification

{(xa1, da1), ..., (xan, dan)}, where xai is the token se-
quence and dai is the domain label, using token
sequences from Ds and unlabeled target domain
sentences. The representation learner R maps a
token sequence xi = (xi1, ..., xik) into token rep-
resentations hi = (hi1, ..., hik). The event classi-
fier E maps representations hi = (hi1, ..., hik) to
event tags ei = (ei1, ..., eik). The domain pre-
dictor D creates a pooled representation pi =
Pool(hi1, ..., hik) and maps it to domain label dai .
Given this setup, we apply an alternating optimiza-
tion procedure. In the first step, we train the domain
predictor using Da, to optimize the following loss:

argmin
D

L(D(hai ), d
a
i )

In the second step, we train the representation
learner and event classifier using Ds to optimize
the following loss:

argmin
R,E

[∑
k

(L(E(hsik), e
s
ik)

)− λL(D(hsi ), d
s
i )
]

L refers to the cross-entropy loss and λ is a hy-
perparameter. In practice, the optimization in the
above equation is performed using a gradient rever-
sal layer (GRL) (Ganin and Lempitsky, 2015). A
GRL works as follows. During the forward pass, it
acts as the identity, but during the backward pass
it scales the gradients flowing through by −λ. We
apply a GRL gλ before mapping the pooled repre-
sentation to a domain label using D. This changes
the optimization to:

argmin
R,E

[
L(D(gλ(p

s
i )), d

s
i ) +

∑
k L(E(hsik), e

s
ik)

]

In our setup, the event classifier and domain pre-
dictors are MLP classifiers. For the representation
learner, we experiment with several architectures.

2.2 Representation Learner Models

We experiment with the following models:2

LSTM: A unidirectional LSTM over tokens repre-
sented using word embeddings.

2Complete implementation details in the appendix
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Statistic LitBank TimeBank

#Docs 100 183
#Tokens 210,532 80,281
#Events 7849 8103
Event Density 3.73% 10.10%

Table 1: Dataset Statistics

Model In-Domain Out-of-Domain

P R F1 P R F1

LSTM 61.9 61.5 61.7 86.1 17.1 28.5
LSTM-A 61.1 61.6 61.3 89.0 18.9 31.2

BiLSTM 64.5 61.7 63.1 91.8 14.4 24.9
BiLSTM-A 66.1 62.8 64.4 92.9 18.5 30.9

POS 74.1 51.9 61.1 93.5 9.6 17.4
POS-A 69.6 57.7 63.1 92.5 15.2 26.1

BERT 73.5 72.7 73.1 88.1 28.2 42.7
BERT-A 71.9 71.3 71.6 85.0 35.0 49.6

Table 2: Model performance on domain transfer exper-
iments from LitBank to TimeBank. Presence of the -A
suffix indicates that the model uses adversarial training.

BiLSTM: A bidirectional LSTM over word em-
beddings to incorporate both left and right context.
POS: A BiLSTM over token representations con-
structed by concatenating word embeddings with
embeddings corresponding to part-of-speech tags.
This model explicitly introduces syntax.
BERT: A BiLSTM over contextual token represen-
tations extracted using BERT (Devlin et al., 2019),
similar to the best-performing model on LitBank,
reported by Sims et al. (2019).

3 Experiments

3.1 Datasets
In our experiments, we use the following datasets:3

• LitBank (Sims et al., 2019): 100 English lit-
erary texts with entity and event annotations.
• TimeBank (Pustejovsky et al., 2003): 183 En-

glish news articles containing annotations for
events and temporal relations between them.

Both datasets follow similar guidelines for event
annotation, with an important distinction: LitBank
does not annotate events which have not occurred
(eg: future, hypothetical or negated events). To
overcome this gap, we remove all such events
from TimeBank using available metadata about
event modality and tense. Table 1 provides a brief
overview of statistics for both datasets.

3Unlike prior work, we cannot use the ACE-2005 dataset
since it tags specific categories of events, whereas we focus
on tagging all possible events.

Model In-Domain Out-of-Domain

P R F1 P R F1

LSTM 70.7 78.4 74.4 23.5 75.2 35.8
LSTM-A 69.3 87.5 77.3 25.6 72.9 37.9

BiLSTM 75.4 76.3 75.9 27.6 68.8 39.4
BiLSTM-A 74.2 79.4 76.7 26.3 72.0 38.6

POS 77.4 81.1 79.2 26.4 79.8 39.6
POS-A 76.4 83.0 79.6 27.3 81.9 40.9

BERT 79.6 84.3 81.9 28.1 84.8 42.2
BERT-A 79.8 85.6 82.6 30.3 80.8 44.1

Table 3: Model performance on domain transfer exper-
iments from TimeBank to LitBank. Presence of the -A
suffix indicates that the model uses adversarial training.

3.2 Results and Analysis

Tables 2 and 3 present the results of our experi-
ments. Table 2 shows the results when transferring
from LitBank to TimeBank while Table 3 presents
transfer results in the other direction. From Ta-
ble 2 (transfer from LitBank to TimeBank), we see
that ADA improves out-of-domain performance
for all models, by 6.08 F1 on average. BERT-A
performs best, reaching an F1 score of 49.6, using
no labeled news data. Transfer experiments from
TimeBank to LitBank (Table 3) showcase similar
trends, with only BiLSTM not showing improve-
ment with ADA. For other models, ADA results in
an average out-of-domain F1 score improvement of
1.77. BERT-A performs best, reaching an F1 score
of 44.1. We also note that models transferred from
LitBank to TimeBank have high precision, while
models transferred in the other direction have high
recall. We believe this difference stems from the
disparity in event density across corpora (Table 1).
Since event density in LitBank is much lower, mod-
els transferred from LitBank tend to be slightly
conservative (high precision), while models trans-
ferred from TimeBank are less so (high recall).

When transferring from LitBank to TimeBank,
LSTM generalizes better than BiLSTM, which may
be because BiLSTM has twice as many parameters
making it more prone to overfitting. ADA gives a
higher F1 boost with BiLSTM, indicating that it
may be acting as a regularizer. Another interesting
result is the poor performance of POS when trans-
ferring from LitBank to TimeBank. This might
stem from the Stanford CoreNLP tagger (trained
on news data) producing inaccurate tags for Lit-
Bank. Hence using automatically generated POS
tags while training on LitBank does not produce
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Category % Example

TimeBank Improvements

Finance 54 the accord was unanimously
approved

Political 12 the ukrainian parliament has
already ratified it

Reporting 10 from member station kqed ,
auncil martinez reports

Law 10 mr. antar was charged last
month in a civil suit

LitBank Improvements

Archaic 6 his countenance became intol-
erably fervid

Animal
Actions

6 the dogs left off barking , and
ran about every way

Human
Actions

18 a nod was the answer

Literary 14 there strikes the ebony clock

Table 4: Categorization of TimeBank and LitBank ex-
amples on which ADA shows improvement. Words in
bold indicate events missed by BERT, but captured by
BERT-A.

reliable POS embeddings.

On average, ADA makes supervised models
more robust on out-of-domain data, with an av-
erage F1 score improvement of 3.9, at no loss of
in-domain performance.

What cases does ADA improve on? To gain more
insight into the improvements observed on using
ADA, we perform a manual analysis of out-of-
domain examples that BERT labels incorrectly, but
BERT-A gets right. We carry out this analysis on
50 examples from TimeBank and LitBank each.
We observe that an overwhelming number of cases
from TimeBank use vocabulary in contexts unique
to news (43/50 or 86%). This includes examples
of financial events, political events and reporting
events that are rarer in literature, indicating that
ADA manages to reduce event extraction models’
reliance on lexical features. We make similar ob-
servations for LitBank though the proportion of
improvement cases with literature-specific vocabu-
lary is more modest (22/50 or 44%). These cases
include examples with archaic vocabulary, words
that have a different meaning in literary contexts
and human/ animal actions, which are not common
in news. Table 4 presents a detailed breakdown of

Percentage of training data used for finetuning

M
od

el
 p

er
fo

rm
an

ce
 o

n 
Ti

m
eB

an
k 

te
st

 s
et

 (F
1 

0

20

40

60

80

1 2 3 4 5

BERT-FEDA BERT-A BERT-NoDA

Model performance when finetuning on TimeBank
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Figure 3: Improvement in model performance when
finetuning on labeled training data from LitBank

these cases, along with examples.4

4 Incorporating Minimal Labeled Data

Finetuning on labeled data: We run finetuning
experiments to study improvement in model perfor-
mance on incorporating small amounts of labeled
target domain data. For both domains, we finetune
BERT-A, slowly increasing the percentage of la-
beled data used from 1%-5%.5 We compare BERT-
A with two other models. The first model is naive
BERT with no domain adaptation (BERT-NoDA).
The second model is a BERT model trained via su-
pervised domain adaptation (BERT-FEDA), which
we use as an indicator of ceiling performance. The
supervised domain adaptation method we use is
the neural modification of frustratingly easy do-
main adaptation developed in Kim et al. (2016).
Frustratingly easy domain adaptation (Daumé III,
2007) uses a feature augmentation strategy to im-
prove performance when annotated data from both
source and target domains is available. This al-
gorithm simply duplicates input features 3 times,

4This table does not include generic improvement cases
(i.e. no domain-specific vocabulary used), which formed 14%
and 56% of improvement cases in TimeBank and LitBank.

5We run these experiments 5 times with different random
subsets and average performance across all runs.



7622

Dataset P R F1

TimeBank 68.9 65.5 67.2
LitBank 40.3 71.5 51.5

Table 5: Model performance on both domains in the
self-training paradigm

creating a source-specific, target-specific and gen-
eral version of each feature. For source data, only
the source-specific and general features are active,
while only the target-specific and general features
are active for target data. The neural modification
works by duplicating the feature extractor module,
which is the BiLSTM in our case.

Figures 2 and 3 present the results of these ex-
periments. Performance of all models steadily im-
proves with more data, but BERT-A starts with a
much higher F1 score than BERT-NoDA, demon-
strating that ADA boosts performance when little
annotated training data is available. Performance
increase of BERT-NoDA is suprisingly rapid, es-
pecially on LitBank. However, it is worth noting
that 5% of the LitBank training set is ∼10,000 to-
kens, which is a substantial amount to annotate.
Therefore, BERT-A beats BERT-NoDA on sample
efficiency. We can also see that BERT-A does not
do much worse than BERT-FEDA, which performs
supervised adaptation.
Using BERT-A to provide weak supervision:
We run further experiments to determine whether
finetuned BERT-A can be leveraged for self-
training (Yarowsky, 1995; Riloff and Wiebe, 2003).
Self-training creates a teacher model from labeled
data, which is then used to label a large amount of
unlabeled data. Both labeled and unlabeled datasets
are jointly used to train a student model. Algorithm
1 gives a quick overview of our self-training pro-
cedure. We use 1% of the training data as Dl,
with the remaining 99% used as Du. BERT-A
acts as T , while S is a vanilla BERT model. Ta-
ble 5 shows the results of self-training on both do-
mains. Self-training improves model performance
by nearly 7 F1 points on average. Increase on Time-
Bank is much higher which may be due to the high
precision-low recall tendency of the teacher model.

5 Conclusion

In this work, we tackled the task of building gen-
eralizable supervised event trigger identification
models using adversarial domain adaptation (ADA)

Algorithm 1 SelfTrain(Dl,Du, T )
Input: Teacher Model T , Labeled Data
Dl = {(xl1, el1), ..., (xlm, xlm)}, Unlabeled
Data Du = {xu1 , ...xun},

Output: Trained Student Model S
1: Finetune the teacher model T by minimizing

cross-entropy loss on labeled data

1

m

m∑
i=1

L(T (xli), eli)

2: Generate labels {eu1 , ..., eun} for unlabeled data
Du using T

3: Train a student model S by minimizing cross-
entropy loss on both datasets Dl,Du

1

m

m∑
i=1

L(S(xli), eli) +
1

n

n∑
i=1

L(S(xui ), eui )

4: Iterative training: Repeat step 2 using updated
student model S

to introduce domain-invariance. Our experiments
with two domains (English literature and news)
showed that ADA made supervised models more
robust on out-of-domain data, with an average F1
score improvement of 3.9. Our best performing
model (BERT-A) was able to reach 44-49 F1 across
both domains using no labeled target domain data.
Preliminary experiments showed that finetuning
BERT-A on 1% labeled data, followed by self-
training led to substantial improvement, reaching
51.5 and 67.2 F1 on literature and news respec-
tively. While these results are encouraging, we
are yet to match supervised in-domain model per-
formance. Future directions to explore include in-
corporating noise-robust training procedures (Gold-
berger and Ben-Reuven, 2017) and example weight-
ing (Dehghani et al., 2018) during self-training, and
exploring lexical alignment methods from literature
on learning cross-lingual embeddings.
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Appendix

A Implementation Details

All models are implemented in PyTorch. We use
300-dimensional GloVe embeddings while training
on TimeBank and 100-dimensional Word2Vec em-
beddings trained on Project Gutenberg texts (simi-
lar to (Sims et al., 2019)) while training on LitBank.
Both source and target domains share a common
vocabulary and embedding layer which is not fine-
tuned during the training process. All LSTM mod-
els use a hidden size of 100, with an input dropout
of 0.5. The POS model uses 50-dimensional em-
beddings for POS tags which are randomly ini-
tialized and finetuned during training. The BERT
model uses the uncased variant of BERT-Base for
feature extraction. We generate token representa-
tions by running BERT-Base and concatenating the
outputs of the model’s last 4 hidden layers. The
event classifier is a single-layer 100-dimensional
MLP. For the adversarial training setup, we experi-
ment with values from [0.1,0.2,0.5,1.0,2.0,5.0] for
the hyperparameter λ. The domain predictor (ad-
versary) is a 3-layer MLP with each layer having
a dimensionality of 100 and ReLU activations be-
tween layers. We train all models with a batch
size of 16 and use the Adam optimizer with de-
fault learning rate settings. Models are trained for
1000 epochs, with early stopping. For finetuning
experiments, we train for 10 epochs.
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