
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 7605–7617
July 5 - 10, 2020. c©2020 Association for Computational Linguistics

7605

Temporally-Informed Analysis of Named Entity Recognition

Shruti Rijhwani∗

Language Technologies Institute

Carnegie Mellon University

srijhwan@cs.cmu.edu

Daniel Preoţiuc-Pietro

Bloomberg

dpreotiucpie@bloomberg.net

Abstract

Natural language processing models often

have to make predictions on text data that

evolves over time as a result of changes in

language use or the information described in

the text. However, evaluation results on ex-

isting data sets are seldom reported by taking

the timestamp of the document into account.

We analyze and propose methods that make

better use of temporally-diverse training data,

with a focus on the task of named entity recog-

nition. To support these experiments, we in-

troduce a novel data set of English tweets an-

notated with named entities.1 We empirically

demonstrate the effect of temporal drift on per-

formance, and how the temporal information

of documents can be used to obtain better mod-

els compared to those that disregard temporal

information. Our analysis gives insights into

why this information is useful, in the hope of

informing potential avenues of improvement

for named entity recognition as well as other

NLP tasks under similar experimental setups.

1 Introduction

Natural language processing models are now de-

ployed on a large scale in many applications and

used to drive automatic analyses or for making pre-

dictions. The usual setup is that these models are

trained and evaluated on the data available at model

building time, but are used to make inferences on

data coming in at a future time, making models sus-

ceptible to data drift. The data distribution of the

test set used to measure the model’s performance

after training may be different from the distribution

of data from future time periods (Huang and Paul,

2018). This temporal drift in data often results in

lower performance during inference. Drift is es-

pecially prevalent in information extraction tasks,

∗Work done during an internship at Bloomberg
1Our data set is available at https://github.com/

shrutirij/temporal-twitter-corpus.

such as named entity recognition (NER), where the

context and the target entities differ across time as

a result of changes in language use or the events

being discussed (Derczynski et al., 2016).

Despite its intuitive value, there has been little

research on using the temporal information con-

tained in text documents to inform modeling of

a task (Huang and Paul, 2018; He et al., 2018),

and no past research on modeling sequence label-

ing tasks in particular. Since sequence labeling

models are currently trained and evaluated by ran-

domly splitting the available data, performance is

measured in an artificially temporal drift-free sce-

nario that is not realistic or similar to how models

are used in practice (Dredze et al., 2010). When

splitting the available training data temporally and

testing on the data from the most recent time period,

we formulate the following hypotheses:

a) models trained on data from a closer time to

the test set obtain better results, assuming the

same model and data size are used;

b) models trained on the combined data from

all time periods outperform models trained

on subsets of the data, as more data usually

leads to better models. In these cases, the

commonly used setup of pooling all the data

for training while disregarding temporal infor-

mation may lead to sub-optimal performance.

In this paper, we study the temporal aspects of

text data, focusing on the information extraction

task of named entity recognition in the Twitter do-

main. We make the following contributions:

a) a new data set for Twitter Named Entity

Recognition consisting of 12,000 English

tweets evenly distributed across six years;

b) experimental results that demonstrate the per-

formance drift of models trained on data from

https://github.com/shrutirij/temporal-twitter-corpus
https://github.com/shrutirij/temporal-twitter-corpus
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different time periods and tested on data from

a future interval;

c) extensive analysis of the data that highlights

temporal drift in the context of named entities

and illustrates future modeling opportunities;

d) simple extensions to state-of-the-art NER

models that leverage temporal information as-

sociated with the training data, which results

in an improvement in F1 score over standard

pooling methods.

2 Related Work

Language change is a popular topic of research in

linguistics (Stephen, 1962). In natural language

processing, using data from online platforms such

as Twitter or discussion fora, language change

and adoption have been studied at the community

level (Danescu-Niculescu-Mizil et al., 2013; Eisen-

stein et al., 2014; Goel et al., 2016; Stewart and

Eisenstein, 2018) and at the individual level (Zhang

et al., 2019). In some cases, the senses of the same

word are known to shift over time (Wijaya and Yen-

iterzi, 2011), and modeling such changes in word

semantics has been explored using diachronic word

embeddings (Kulkarni et al., 2015; Hamilton et al.,

2016; Kutuzov et al., 2018).

Temporal information has been used to create

topic models of better quality, usually by adding

smoothing properties (Blei and Lafferty, 2006;

Wang et al., 2008). For text classification, the tem-

poral periodicity of Twitter hashtags was modeled

in Preoţiuc-Pietro and Cohn (2013) and used as a

prior for text classification models for predicting

hashtags on future data, which resulted in perfor-

mance improvements.

Most similar to our experimental setup, Huang

and Paul (2018) study the impact of temporal data

splits in text classification, finding that performance

worsens on data from future periods, and use stan-

dard domain adaptation techniques to incorporate

time information and improve results. He et al.

(2018) introduce a method for training neural net-

works on data from multiple time intervals while

enforcing temporal smoothness between represen-

tations. Temporal information has also been used

to improve named entity disambiguation on a data

set of historical documents (Agarwal et al., 2018).

Finally, Huang and Paul (2019) present a model

that uses diachronic word embeddings combined

with a method inspired by domain adaptation to

improve document classification.

A related, but distinct, task built on the assump-

tion of language change with time is automatic

prediction of the date on which a document is writ-

ten (Kanhabua and Nørvåg, 2008; Chambers, 2012;

Niculae et al., 2014).

Named entity recognition (NER) is the task

of identifying entities such as organizations, per-

sons, and locations in natural language text. NER

is a well-studied NLP task over the past 20

years (Nadeau and Sekine, 2007; Yadav and

Bethard, 2018) and is a key information extraction

task as its used in various downstream applications

such as named entity linking (Cucerzan, 2007), re-

lation extraction (Culotta and Sorensen, 2004) and

question answering (Krishnamurthy and Mitchell,

2015). On social media text, such as tweets, the

performance lags far behind that of standard news

corpora (Derczynski et al., 2015b), with data drift

as one of the suggested causes (Derczynski et al.,

2015a). Agarwal et al. (2020) show that NER mod-

els decay substantially on entity mentions from a

different distribution than those seen in training.

NER systems struggle to generalize over diverse

genres with limited training data (Augenstein et al.,

2017). Domain adaptation for NER (Chiticariu

et al., 2010; Lin and Lu, 2018; Wang et al., 2020) is

related to our task of improving performance over

temporal drift, as the data from a future time pe-

riod can be considered as a target domain with an

unknown distribution. However, the relationship

between domains is implied from temporal similar-

ity, and temporal information is very fine-grained

in contrast to the standard single source to single

target domain adaptation setup.

3 Temporal Twitter Data Set

In this paper, we focus on the task of named entity

recognition on English tweets as a case study for

our hypotheses and analysis regarding model drift

with time. Twitter data represents an ideal testbed

for our analysis as it contains readily accessible

timestamp information for each tweet. Further,

users on social media post about current events,

which are likely to include entities that change over

time. Social media also reflects changes in lan-

guage use more timely than other sources of data

(e.g., newswire), resulting in the potentially rapid

evolution of the contexts and ways in which named

entities are discussed in natural language. This

drift in Twitter data has previously been demon-

strated qualitatively in the context of named entity
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Year 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

Broad Twitter Corpus 5 127 2,414 275 6,022 – – – – –

Current Data Set – – – – 2,000 2,000 2,000 2,000 2,000 2,000

Table 1: Number of tweets from each year in the BTC data set and in the data set introduced in this paper.

recognition (Derczynski et al., 2015a).

Previous research has introduced data sets of

tweets annotated with named entities, including

the data sets from Finin et al. (2010), Ritter

et al. (2011), Liu et al. (2011), the WNUT-17

Corpus (Derczynski et al., 2017), the Microposts

NEEL Challenge Corpora (Rowe et al., 2013; Cano

et al., 2014; Rizzo et al., 2015; Cano et al., 2016)

and the Broad Twitter Corpus (Derczynski et al.,

2016). However, these data sets usually consist

of tweets collected within a limited time period,

making them unsuitable for our proposed work.

Of note is the Broad Twitter Corpus (Derczynski

et al., 2016), which contains tweets collected over

several years, from 2009 to 2014. However, the

majority of tweets are from either 2012 or 2014,

with fewer than 300 tweets from the other years

(details in Table 1). Further, combining existing

data sets is challenging, because of the different

entity tagging schemes, annotation guidelines and

sampling strategies used.

Therefore, we create a new collection of tweets

annotated with named entities that attempts to al-

leviate the lack of temporal diversity in existing

Twitter data sets as well as provide us with a suit-

able experimental setup to study our research ques-

tions about temporal entity drift and NER model

performance. In this section, we present the de-

tails of our data set, including the collection and

annotation methodology, as well as an analysis of

the named entity mentions in the corpus. The data

set can be downloaded at https://github.com/

shrutirij/temporal-twitter-corpus.

3.1 Data Collection

The primary goal of creating a new data set is ensur-

ing wide-enough temporal diversity for our work

as well as future directions that can leverage times-

tamp information. We use the public Twitter Search

API2 to sample tweets spanning six years: 2014,

2015, 2016, 2017, 2018 and 2019.

We aim to ensure that the data set is represen-

2https://developer.twitter.com/en/

docs/tweets/search/overview

tative of multiple English-speaking locales and a

variety of topics, as well as making it comparable

to existing data sets. Thus, we follow the same

sampling strategy for corpus diversity used by the

creators of the Broad Twitter Corpus (Derczynski

et al., 2016). Specifically, we collect tweets across

six English-speaking regions (the United States, the

United Kingdom, New Zealand, Ireland, Canada,

and Australia), and focus on two contrasting sets of

Twitter handles: a) the twitterati, i.e., individuals

from array of domains including musicians, jour-

nalists and celebrities; b) Twitter accounts for main-

stream news organizations, covering both larger

networks like CNN and ABC, as well as local news

outlets. The Twitter handles correspond to users

from the segments F and G of the Broad Twitter

Corpus (Derczynski et al., 2016).

Overall, to maintain uniformity across time, we

annotated 2,000 tweets for each year from 2014 to

2019 by randomly subsampling tweets from each

year. This resulted in a temporally varied and bal-

anced corpus of 12,000 tweets. Table 1 illustrates

the temporal data distribution of our data set, as

compared to the Broad Twitter Corpus.

3.2 Annotation

In annotating our data with entities, we use a tagset

consisting of three entity classes – Organizations

(ORG), Persons (PER), and Locations (LOC). This

scheme is consistent with some existing data sets

for the task (Finin et al., 2010; Derczynski et al.,

2016), overlapping with the majority of other gen-

eral NER datasets in the social media domain (Liu

et al., 2011; Rowe et al., 2013) and beyond (Tjong

Kim Sang and De Meulder, 2003a).

We use the annotation guidelines used in stan-

dard NER data sets (Tjong Kim Sang and De Meul-

der, 2003a) supplemented with examples that are

specific to Twitter data.

Further, we observe in other data sets that user-

names are some of the most frequent tokens clas-

sified as entities (Ritter et al., 2011; Derczynski

et al., 2016). For our experiments, we consider all

usernames as non-entities, as otherwise, identifying

https://github.com/shrutirij/temporal-twitter-corpus
https://github.com/shrutirij/temporal-twitter-corpus
https://developer.twitter.com/en/docs/tweets/search/overview
https://developer.twitter.com/en/docs/tweets/search/overview
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these using character features would be trivial, and

typing entities would be similar to the task of Twit-

ter handle classification (McCorriston et al., 2015;

Wood-Doughty et al., 2018), which is outside the

scope of the current paper.

We preprocess the data set by normalizing URLs,

usernames, and Twitter-specific tokens (e.g., RT).

We leave hashtags intact as these are often used as

words in the context of the tweet, and can be or con-

tain named entities. We use Twokenizer (O’Connor

et al., 2010), a Twitter-specific tokenizer to split the

tweets into tokens. To limit the impact of imper-

fect tokenization on the performance of the NER

models – especially in the case of hashtags con-

taining multiple tokens (Maddela et al., 2019) –

we expanded sub-token annotations to their closest

matching token. If multiple sub-token entity anno-

tations match the same token, then we select the

label of the first sub-entity in order of appearance.

The data was annotated by multiple annotators

that have experience with named entity recognition

annotation tasks. Specifically, we used 15 annota-

tors in total, with two annotations per tweet. The

inter-annotator agreement is 78.34% on full tweets

(same entity types and spans). If the annotators

disagree on a tweet in their tagging, we adjudicate

in favor of the annotator that had the highest con-

fidence on the task, as judged through measuring

their agreement with our annotations on a set of

test questions (10% of the total).

In our experiments, we use temporal splits of

the data from 2014–2018 for training, and the most

recent data (i.e., the tweets from 2019) to evalu-

ate our models, to simulate a “future time period”

setup. Thus, we wanted to ensure that the model

performance is evaluated on data that has as few

annotation errors as possible. Hence, each tweet

was checked by either of the authors of the paper,

both with significant experience in linguistic anno-

tations, and corrected if needed to ensure additional

consistency. This process had the effect of reducing

the measurement error of the model performance

but ultimately did not affect the conclusions of the

experimental results. The type-wise distribution of

named entities in for each year in our data set, after

annotator adjudication and correction, is shown in

Table 2.

4 Base Model Architecture

This section describes the base model architecture

we use to perform named entity recognition ex-

Year PER ORG LOC Total

2014 371 454 350 1,175

2015 363 479 393 1,235

2016 435 501 320 1,256

2017 432 516 314 1,262

2018 468 597 395 1,460

2019 725 881 475 2,081

Table 2: Year-wise number of named entities of each

type in the data set introduced in this paper.

periments throughout the paper. We use the same

underlying architecture to provide a controlled ex-

perimental setup and isolate temporal modeling

aspects from other model-related factors.

4.1 Neural Architecture

We use the neural architecture based on a stacked

BiLSTM-CRF model introduced in Huang et al.

(2015), which is the core model architecture for

several state-of-the-art NER results over the past

years (Lample et al., 2016; Peters et al., 2018; Ak-

bik et al., 2018). For each sentence, the token

representations are fed into two different LSTM

layers, each processing the sentence in different

directions (one forward and one backward). The

output of these two layers are concatenated and

passed through a feed-forward layer that produces

a distribution over the output tag space. Finally, a

Conditional Random Field is applied to the class

predictions with the role of jointly assigning pre-

dictions to the entire sequence. This also has the

function of ensuring that the output tag sequence

takes into account the constraints of the IOB2 en-

tity tagging scheme (e.g. I-LOC cannot follow B-

ORG) (Tjong Kim Sang and De Meulder, 2003b).

4.2 Embeddings

A key component in the base architecture is how

the tokens are represented as inputs. Initial re-

search (Lample et al., 2016) on LSTM-CRF mod-

els use static pre-trained word embeddings, such

as GloVe (Pennington et al., 2014), to initialize

the inputs, which are subsequently fine-tuned on

the NER training data. More recently, contextual

word embeddings, which represent each token dif-

ferently based on its context, were shown to obtain

an improvement of 2–3 F1 points on the English

news CoNLL data set (Peters et al., 2018; Akbik
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et al., 2018; Devlin et al., 2019). In this paper, we

conduct experiments with both the static GloVe em-

beddings (Pennington et al., 2014) and the state-of-

the-art contextual Flair embeddings (Akbik et al.,

2018) to test the robustness of our findings to dif-

ferent input representations. All embeddings were

trained outside of the time range of our data: the

GloVe embeddings were trained on Twitter data be-

fore 2014, while the Flair embeddings were trained

on the 1-billion word corpus (Chelba et al., 2013)

which contains data up to 2012. Exploiting embed-

dings trained on data more recent than the NER

corpus is an avenue of future work.

In addition to token embeddings, we use char-

acter embeddings to model subword information

that may be indicative of named entities and bet-

ter represent out-of-vocabulary tokens. We use

a character-level BiLSTM with randomly initial-

ized character embeddings to produce the character-

based word representations (Lample et al., 2016).

These are concatenated to the token embeddings

described above and then used as input to the token-

level BiLSTM.

4.3 Data Split

We split the data temporally for our experiments.

We use the data authored in 2019 as the test data,

as this is the most recent data available and best

replicates the scenario of making predictions on

text from future time periods. We use a random

sample of 500 tweets (25%) from the 2019 data as

the validation set.

For training, we use data authored between 2014

to 2018 in various temporal splits, depending on

the specific experimental setting.

4.4 Implementation and Hyperparameters

We use the PyTorch framework (Paszke et al.,

2017) for the implementation of the models. For

the model using the GLoVe embeddings, we use

the same hyperparameter settings as the origi-

nal creators of the base models (Lample et al.,

2016; Akbik et al., 2018) and ensure the correct-

ness of our implementation by replicating their

results on the CoNLL-2003 English NER data

set (Tjong Kim Sang and De Meulder, 2003a).

Specifically, the character embeddings are of size

32, the character-level LSTM hidden size is 64, and

the word-level LSTM has a hidden size of 256. We

also use a dropout of 0.5 on the input word embed-

dings and replace singleton words in the training

set with an out-of-vocabulary symbol with a proba-

2014 2015 2016 2017 2018

55
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70 Flair

GloVe

Training data year

F
1

 s
co

re

Figure 1: Evaluating the effect of temporal distance:

the model is trained on each year individually. F1 score

on 2019 data averaged over five random seeds is shown.

bility of 0.5 to improve robustness to unseen words.

We use the flairNLP library (Akbik et al., 2019) for

the contextual Flair embedding experiments, using

the same hyperparameters as the state-of-the-art

result in Akbik et al. (2018). For each experimental

setting, we use the training checkpoint with the

best performance on the validation set (i.e., early

stopping).

Following the recommendation from Reimers

and Gurevych (2017), who study the variance of

LSTM-CRF models with different random seeds,

we report all experimental results as the mean of

five runs. The main metric we use for evaluation

is span-level named entity F1 score, reported us-

ing the official CoNLL evaluation script (Tjong

Kim Sang and De Meulder, 2003a).

5 Data Drift

To determine the utility of temporal information,

we first attempt to evaluate whether temporal drift

in the data affects the performance of NER models.

To this end, we conduct experiments to answer the

following research questions:

1) What is the effect of the temporal distance

between the training and target data sets on

NER performance?

2) How do the size and temporal distribution of

the training data affect NER performance?

5.1 Effect of Temporal Distance

We empirically study the effect of temporal dis-

tance between the training and test data sets by

training the base model on each year, from 2014–

2018, individually. Based on the design of our data

set, each model has access to the same number of
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(a) Pretrained GloVe embeddings.
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(b) Pretrained Flair embeddings.

Figure 2: Cumulatively training the model on random

subsamples of tweets from all the years (2014–2018)

compared with temporally adding tweets to the train-

ing data, starting from the year 2014 and cumulatively

adding data from subsequent years.

training instances (2,000 tweets), to remove the

impact of this factor in our results.

The results are shown in Figure 1. We observe

that the temporal distance between the training and

test sets seems to affect NER performance. The F1

score increases as we move temporally closer to

the target data, for both the GloVe and Flair embed-

dings, apart from a slight decrease when moving

from 2016 to 2017 when using GloVe embeddings.

When using the contextual Flair embeddings, the

performance numbers are overall higher, which is

consistent with past research (Akbik et al., 2018),

as contextual embeddings are more expressive.

5.2 Effect of Data Set Size and Distribution

We now study how the number of instances in the

training data and their temporal distribution im-

pact the performance of the model. We first train

models on cumulative random samples from the

combined training data set (all tweets from 2014–

2018), adding 2,000 tweets at each step. Then, we

train models starting with the 2,000 tweets from
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Figure 3: Type distribution across years in our data set.

2014 and incrementally add tweets from subse-

quent years from 2015 up to 2018.

The NER F1 scores are shown in Figures 2a

and 2b, with both “Random” and “Temporal” cu-

mulative compositions of the training data set.

Looking at the “Random” sampling strategy, we

see that the performance steadily increases as we

add more tweets to the training set – as we would

expect for most supervised machine learning mod-

els. We see that the “Temporal” model with only

the 2014 data (2,000 tweets) has a lower perfor-

mance than randomly selecting 2,000 tweets across

all years. This is indicative of the data drift across

time, as training on a random sample of tweets

from all the years is more informative and leads to

a better NER model than using just the 2014 data.

Moreover, as we add tweets temporally closer

to the target into the training data set, the “Tempo-

ral” strategy converges with the “Random” strat-

egy. This observation strengthens the hypothesis

that temporal information can potentially play an

important role while selecting training data and

designing model architectures.

5.3 Analysis

To understand why the temporal distribution of

the training data impacts the performance of an

NER model, we analyze the distribution of entity

mentions in our data set to uncover the extent to

which data drift occurs at the lexical level.

Type Distribution Figure 3 shows the distribu-

tion of entity types across years in our data set. The

distribution looks approximately even, with minor

differences in the fraction of location (LOC) en-

tities. Since similar types of entities occur in the

data set year-wise, this likely does not cause the

change in performance across time indicated in the

previous sections.
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Figure 4: Percentage overlap of unique surface forms

of named entity mentions for years 2014 to 2018, with

respect to the year 2019. The gradual increase in over-

lap is an indication of temporal drift.
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Figure 5: Type-wise percentage overlap of unique men-

tions for years 2014 to 2018, with respect to the year

2019. For all types, there is a general increase in over-

lap as we move temporally closer to 2019.

Mention Overlap Figure 4 presents the overlap

of unique entity mentions with respect to the test

data (2019). There is a clear increase in surface-

form overlap as we get temporally closer to the

target data, and is potentially an important factor

for the F1 score improvement we see in our empiri-

cal analysis.

Type-wise Mention Overlap Figure 5 shows

the surface-form overlap of entity mentions over

types of years 2014 to 2018, with respect to the

data from 2019. The figure adds further evidence

of temporal data drift at the mention level. For all

three entity types (LOC, PER, ORG) in our data

set, smaller temporal distance leads to a greater per-

centage of overlap. Interestingly, the PER overlap

GloVe Flair

Train PER ORG LOC PER ORG LOC

2014 74.45 41.63 52.78 79.66 53.78 56.90

2015 73.39 45.97 52.14 81.91 52.23 58.77

2016 78.42 49.12 57.60 81.58 58.19 60.85

2017 74.63 51.23 52.97 81.82 60.10 58.41

2018 79.40 56.29 59.25 83.47 61.83 64.90

Table 3: Type-wise F1 when testing on data from 2019.

The models are trained on each year individually. The

training data sets are of the same size (2,000 tweets).

is much lower than other types. This is expected,

as the people discussed on social media rapidly

change with developments in current events (Der-

czynski et al., 2017). We see that the 2017 data

set has a lower overlap for LOC than both 2016

and 2018, which could explain the off-trend perfor-

mance of the 2017 model in our empirical results

(Figure 1).

Type-wise Model Performance Table 3 shows

the NER performance by entity type, to gain more

insight into which types are affected by data drift.

First, we notice that the improved performance

of Flair embeddings seen in previous analyses

is caused by better performance across all types.

Overall, the PER type obtains the best performance

for both models, with an F1 of around 20 points

higher than the other two types. This is despite

the fact that the PER type has the lowest overall

overlap between training and test, which indicates

that the model is adequately learning the contexts

that PER entities appear in. ORG and LOC show

similar absolute performance in both setups.

Next, we study the temporal differences in per-

formance by type. When using GloVe embeddings,

the smallest gap between training on different data

splits is for PER (4.95 F1), while ORG suffers

from substantial drift in performance, resulting in a

14.66 F1 drop on ORG performance. When using

Flair embeddings, the most notable difference in

performance when training across different years

is still for the ORG type (up to 8.05 F1). However,

the gap has proportionally tightened the most as

compared to when using GloVe embeddings. These

observations correspond with the analysis from Fig-

ure 5, where we see the largest increase in overlap

between mentions from the training data and the

test data over the five years (8̃% increase for ORG,

compared to 3–4% increase for LOC and PER).
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Unseen Recall

Train GloVe Flair

2014 53.72 56.62

2015 54.22 56.64

2016 58.90 58.98

2017 59.61 57.88

2018 64.36 60.00

Table 4: Recall for named entity mentions in the test

data (2019) unseen in the training data, for models

trained on each year individually.

We also observe that the slight drop in performance

of the model using GloVe embeddings trained on

the 2017 data is caused primarily by a decline in

performance on the LOC type which holds across

both models.

Mentions Unseen in the Training Data In addi-

tion to the increase in surface-form overlap across

years, we investigate whether mentions unseen in

the training data are impacted by the temporal dis-

tance between the training and test data. Table 4

shows the recall for these mentions using both the

GloVe and Flair embeddings. Notably, for GloVe,

the performance steadily improves as the tempo-

ral distance decreases, with an almost 5 point im-

provement in recall when moving from 2017 to

2018. Although less pronounced, there is a similar

trend with the Flair embeddings. This indicates

that surface-form overlap is not the only factor

determining temporal data drift. The model is po-

tentially able to learn more relevant context from

the training data of temporally close years, perhaps

due to changes in language use over time.

6 Modeling Temporal Information

Supported by the analysis that temporal drift in the

training data can impact the performance of NER

systems, in this section, we experiment with tech-

niques to account for temporal information while

training the NER model. We look at leveraging

temporality in two broad ways: a) by altering the

architecture of the base model; b) by modifying

how the training data set is constructed. These

methods are intended to be an initial exploration of

using temporal information, with a focus on tech-

niques that do not require significant modification

to the base model. We present these in the hope

that they will inspire future research on models ro-

bust to temporal drift. The specific methods are

discussed below, followed by experimental results.

6.1 Methods

Sequential Temporal Training Our analysis

from Section 5 showed that using more data is

beneficial, irrespective of temporal distance from

the target, but individually, the closest data is most

useful. Based on this analysis, we attempt to train

our model by ordering our training data year-wise

such that the model is trained on the temporally

closest data last. Specifically, we start with train-

ing on the year temporally furthest away from the

target data and repeatedly tune the model on the

chronological sequence of years (i.e., first train on

2014 data, then 2015 data, and so on up to 2018).

Temporal Fine-tuning The analysis showed that

training on the model temporally closest to the

target data set obtains the best overall performance.

Based on this observation, we decide to train the

base model on the entire data set of tweets from the

years 2014–2018. Then, we fine-tune the trained

model on the data from the year temporally closest

to the target (2018). The fine-tuning process is

simply retraining the model on the 2018 data with

the same hyperparameter settings.

Instance Weighting Previous work in domain

adaptation shows that giving higher weights to

training instances similar to the target domain can

improve performance (Wang et al., 2017). Simi-

larly, we decide to assign a higher weight to tweets

temporally closer to the test data (i.e., the 2018

tweets are up-weighted). In our experiments, we

up-weight the tweets by a factor of 2.

We note that the above methods do not require

any change to the model, making integration of

these methods for existing systems very practical.

Year Prediction as an Auxiliary Task Finally,

we aim to guide the model to learn temporal fea-

tures in training. Inspired by related work in do-

main adaptation (Chen et al., 2018), we enhance

the architecture with a multi-task learning compo-

nent that models an auxiliary task. While training

the model for NER, this component uses the LSTM

hidden states to predict the year that the tweet was

created in. Since the input embeddings and the

LSTM are shared between the NER task and the

year prediction task, the intuition is that the param-

eters learned will retain a notion of temporality that
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GloVe Flair

Base Model 70.80 74.72

Sequential Temporal Training 68.47 74.42

Temporal Fine-tuning 71.93 74.95

Instance Weighting 70.59 75.54

Year Prediction 71.01 74.70

Table 5: Performance of proposed methods of using

temporal information in NER modeling when com-

pared to the base model. Results are F1 scores aver-

aged over five runs with different random seeds. Bold

indicates the best F1 score.

can influence the NER prediction. The training ob-

jective is the sum of the NER loss and the auxiliary

task loss.

6.2 Experimental Results

Table 5 presents the experimental results. The

base model combines the training data (2014–2018)

without using any temporal information, the current

standard setup for most NLP systems.

The results show that we can overall obtain a bet-

ter performance over the base model by using sim-

ple techniques to incorporate temporal information.

The margin of improvement is overall lower when

using Flair embeddings than with GloVe (+0.82

compared to +1.13). This potentially indicates that

semantic drift can be captured partially through

contextual embeddings.

Fine-tuning the model on the temporally closest

data (i.e., 2018) leads to the best F1 scores when

using GloVe embeddings, reaching a 1.13 increase

in F1. For the Flair embeddings, we observe that

up-weighting the training instances from the year

2018 leads to the best result, a 0.82 improvement

in F1 over the base model.

We highlight that these straightforward methods

that improve over the base model do not involve

any architecture changes, other than a change in

how the data is fed to the model. It thus has the

potential to both be readily applicable to existing

NER implementations as well as generalize to other

NLP tasks.

Finally, we find that using an auxiliary task

for predicting the year improves the performance

slightly when using GloVe embeddings, but has the

oposite effect when using Flair embeddings. This

is likely because the GloVe embeddings are fine-

tuned during the model training and are therefore

influenced by the auxiliary loss, while the contex-

tual Flair embeddings are not.

7 Conclusions

This paper studies and models text data drift in the

information extraction task of named entity recog-

nition. We introduce a new data set of 12,000 En-

glish tweets stratified by time, which allows us to

study the effects of drift and evaluate named entity

recognition models in a realistic scenario of per-

forming inference on temporally unseen data. By

analyzing the data, we quantify the temporal drift in

named entity type and mention usage and identify

that, as expected, the data distribution is more simi-

lar when drawn from closer time intervals. We then

use current state-of-the-art approaches for named

entity recognition and demonstrated that, through

modeling of temporal information, performance

can be improved when testing on future data. We

expect our data, results, and error analysis to inform

the design of similar experimental setups for other

NLP tasks beyond NER, such as part-of-speech

tagging or relation extraction.

Acknowledgements

We would like to thank Leslie Barrett, Liang-Kang

Huang, Prabhanjan Kambadur, Mayank Kulkarni,

Amanda Stent, Umut Topkara, Jing Wang, Chuck-

Hou Yee and the other members of the Bloomberg

AI group. They provided invaluable feedback on

the experiments and the paper. We also thank the

anonymous reviewers for their valuable sugges-

tions. Shruti Rijhwani is supported by a Bloomberg

Data Science Ph.D. Fellowship.

References

Oshin Agarwal, Yinfei Yang, Byron C. Wallace, and
Ani Nenkova. 2020. Interpretability analysis for
named entity recognition to understand system
predictions and how they can improve. ArXiv,
abs/2004.04564.

Prabal Agarwal, Jannik Strötgen, Luciano del Corro,
Johannes Hoffart, and Gerhard Weikum. 2018. di-
aNED: Time-aware named entity disambiguation for
diachronic corpora. In Proceedings of the 56th An-
nual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers), pages 686–
693, Melbourne, Australia. Association for Compu-
tational Linguistics.

Alan Akbik, Tanja Bergmann, Duncan Blythe, Kashif
Rasul, Stefan Schweter, and Roland Vollgraf. 2019.

https://doi.org/10.18653/v1/P18-2109
https://doi.org/10.18653/v1/P18-2109
https://doi.org/10.18653/v1/P18-2109


7614

FLAIR: An easy-to-use framework for state-of-the-
art NLP. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics (Demonstrations), pages
54–59, Minneapolis, Minnesota. Association for
Computational Linguistics.

Alan Akbik, Duncan Blythe, and Roland Vollgraf.
2018. Contextual string embeddings for sequence
labeling. In Proceedings of the 27th International
Conference on Computational Linguistics, pages
1638–1649, Santa Fe, New Mexico, USA. Associ-
ation for Computational Linguistics.

Isabelle Augenstein, Leon Derczynski, and Kalina
Bontcheva. 2017. Generalisation in named entity
recognition: A quantitative analysis. Computer
Speech & Language, 44:61–83.

David M. Blei and John D. Lafferty. 2006. Dynamic
topic models. In Proceedings of the 23rd Inter-
national Conference on Machine Learning, ICML,
pages 113–120.

Amparo E Cano, Daniel Preotiuc-Pietro, Danica
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