
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 7567–7578
July 5 - 10, 2020. c©2020 Association for Computational Linguistics

7567

RAT-SQL: Relation-Aware Schema Encoding and Linking
for Text-to-SQL Parsers

Bailin Wang∗†
University of Edinburgh

bailin.wang@ed.ac.uk

Richard Shin∗‡
UC Berkeley

ricshin@cs.berkeley.edu

Xiaodong Liu Oleksandr Polozov Matthew Richardson
Microsoft Research, Redmond

{xiaodl,polozov,mattri}@microsoft.com

Abstract

When translating natural language questions
into SQL queries to answer questions from a
database, contemporary semantic parsing mod-
els struggle to generalize to unseen database
schemas. The generalization challenge lies
in (a) encoding the database relations in an
accessible way for the semantic parser, and
(b) modeling alignment between database
columns and their mentions in a given query.
We present a unified framework, based on the
relation-aware self-attention mechanism, to
address schema encoding, schema linking, and
feature representation within a text-to-SQL
encoder. On the challenging Spider dataset
this framework boosts the exact match accu-
racy to 57.2%, surpassing its best counterparts
by 8.7% absolute improvement. Further
augmented with BERT, it achieves the new
state-of-the-art performance of 65.6% on the
Spider leaderboard. In addition, we observe
qualitative improvements in the model’s un-
derstanding of schema linking and alignment.
Our implementation will be open-sourced at
https://github.com/Microsoft/rat-sql.

1 Introduction

The ability to effectively query databases with nat-
ural language (NL) unlocks the power of large
datasets to the vast majority of users who are not
proficient in query languages. As such, a large
body of research has focused on the task of trans-
lating NL questions into SQL queries that existing
database software can execute.

The development of large annotated datasets of
questions and the corresponding SQL queries has
catalyzed progress in the field. In contrast to prior
semantic parsing datasets (Finegan-Dollak et al.,

∗Equal contribution. Order decided by a coin toss.
†Work done during an internship at Microsoft Research.
‡ Work done while partly affiliated with Microsoft Re-

search. Now at Microsoft: ricshin@microsoft.com.

2018), new tasks such as WikiSQL (Zhong et al.,
2017) and Spider (Yu et al., 2018b) pose the real-
life challenge of generalization to unseen database
schemas. Every query is conditioned on a multi-
table database schema, and the databases do not
overlap between the train and test sets.

Schema generalization is challenging for three
interconnected reasons. First, any text-to-SQL pars-
ing model must encode the schema into representa-
tions suitable for decoding a SQL query that might
involve the given columns or tables. Second, these
representations should encode all the information
about the schema such as its column types, foreign
key relations, and primary keys used for database
joins. Finally, the model must recognize NL used
to refer to columns and tables, which might differ
from the referential language seen in training. The
latter challenge is known as schema linking – align-
ing entity references in the question to the intended
schema columns or tables.

While the question of schema encoding has been
studied in recent literature (Bogin et al., 2019a),
schema linking has been relatively less explored.
Consider the example in Figure 1. It illustrates the
challenge of ambiguity in linking: while “model”
in the question refers to car_names.model
rather than model_list.model, “cars” actu-
ally refers to both cars_data and car_names
(but not car_makers) for the purpose of table
joining. To resolve the column/table references
properly, the semantic parser must take into ac-
count both the known schema relations (e.g. foreign
keys) and the question context.

Prior work (Bogin et al., 2019a) addressed the
schema representation problem by encoding the di-
rected graph of foreign key relations in the schema
with a graph neural network (GNN). While effec-
tive, this approach has two important shortcomings.
First, it does not contextualize schema encoding
with the question, thus making reasoning about

https://github.com/Microsoft/rat-sql

7568

cars_data

id mpg cylinders edispl horsepower weight accelerate year

car_names

make_id model make

model_list

model_id maker model

car_makers

id maker full_name country

…

Natural Language Question:
For the cars with 4 cylinders, which model has the largest horsepower?

Desired SQL:

SELECT T1.model
FROM car_names AS T1 JOIN cars_data AS T2

ON T1.make_id = T2.id
WHERE T2.cylinders = 4

ORDER BY T2.horsepower DESC LIMIT 1

Schema:

Question → Column linking (unknown)

Question → Table linking (unknown)

Column → Column foreign keys (known)

Figure 1: A challenging text-to-SQL task from the Spider dataset.

schema linking difficult after both the column rep-
resentations and question word representations are
built. Second, it limits information propagation
during schema encoding to the predefined graph of
foreign key relations. The advent of self-attentional
mechanisms in NLP (Vaswani et al., 2017) shows
that global reasoning is crucial to effective repre-
sentations of relational structures. However, we
would like any global reasoning to still take into
account the aforementioned schema relations.

In this work, we present a unified framework,
called RAT-SQL,1 for encoding relational structure
in the database schema and a given question. It uses
relation-aware self-attention to combine global rea-
soning over the schema entities and question words
with structured reasoning over predefined schema
relations. We then apply RAT-SQL to the problems
of schema encoding and schema linking. As a re-
sult, we obtain 57.2% exact match accuracy on the
Spider test set. At the time of writing, this result
is the state of the art among models unaugmented
with pretrained BERT embeddings – and further
reaches to the overall state of the art (65.6%) when
RAT-SQL is augmented with BERT. In addition,
we experimentally demonstrate that RAT-SQL en-
ables the model to build more accurate internal
representations of the question’s true alignment
with schema columns and tables.

2 Related Work

Semantic parsing of NL to SQL recently surged
in popularity thanks to the creation of two new
multi-table datasets with the challenge of schema
generalization – WikiSQL (Zhong et al., 2017) and
Spider (Yu et al., 2018b). Schema encoding is not
as challenging in WikiSQL as in Spider because
it lacks multi-table relations. Schema linking is
relevant for both tasks but also more challenging in
Spider due to the richer NL expressiveness and less
restricted SQL grammar observed in it. The state
of the art semantic parser on WikiSQL (He et al.,

1Relation-Aware Transformer.

2019) achieves a test set accuracy of 91.8%, signif-
icantly higher than the state of the art on Spider.

The recent state-of-the-art models evaluated on
Spider use various attentional architectures for
question/schema encoding and AST-based struc-
tural architectures for query decoding. IRNet (Guo
et al., 2019) encodes the question and schema sep-
arately with LSTM and self-attention respectively,
augmenting them with custom type vectors for
schema linking. They further use the AST-based de-
coder of Yin and Neubig (2017) to decode a query
in an intermediate representation (IR) that exhibits
higher-level abstractions than SQL. Bogin et al.
(2019a) encode the schema with a GNN and a simi-
lar grammar-based decoder. Both works emphasize
schema encoding and schema linking, but design
separate featurization techniques to augment word
vectors (as opposed to relations between words and
columns) to resolve it. In contrast, the RAT-SQL
framework provides a unified way to encode arbi-
trary relational information among inputs.

Concurrently with this work, Bogin et al.
(2019b) published Global-GNN, a different ap-
proach to schema linking for Spider, which ap-
plies global reasoning between question words and
schema columns/tables. Global reasoning is imple-
mented by gating the GNN that encodes the schema
using the question token representations. This dif-
fers from RAT-SQL in two important ways: (a)
question word representations influence the schema
representations but not vice versa, and (b) like in
other GNN-based encoders, message propagation
is limited to the schema-induced edges such as for-
eign key relations. In contrast, our relation-aware
transformer mechanism allows encoding arbitrary
relations between question words and schema ele-
ments explicitly, and these representations are com-
puted jointly over all inputs using self-attention.

We use the same formulation of relation-aware
self-attention as Shaw et al. (2018). However, they
only apply it to sequences of words in the context
of machine translation, and as such, their relation

7569

types only encode the relative distance between two
words. We extend their work and show that relation-
aware self-attention can effectively encode more
complex relationships within an unordered set of
elements (in our case, columns and tables within a
database schema as well as relations between the
schema and the question). To the best of our knowl-
edge, this is the first application of relation-aware
self-attention to joint representation learning with
both predefined and softly induced relations in the
input structure. Hellendoorn et al. (2020) develop
a similar model concurrently with this work, where
they use relation-aware self-attention to encode
data flow structure in source code embeddings.

Sun et al. (2018) use a heterogeneous graph of
KB facts and relevant documents for open-domain
question answering. The nodes of their graph are
analogous to the database schema nodes in RAT-
SQL, but RAT-SQL also incorporates the question
in the same formalism to enable joint representation
learning between the question and the schema.

3 Relation-Aware Self-Attention

First, we introduce relation-aware self-attention,
a model for embedding semi-structured input se-
quences in a way that jointly encodes pre-existing
relational structure in the input as well as induced
“soft” relations between sequence elements in the
same embedding. Our solutions to schema embed-
ding and linking naturally arise as features imple-
mented in this framework.

Consider a set of inputs X = {xi}ni=1 where
xi ∈ Rdx . In general, we consider it an unordered
set, although xi may be imbued with positional
embeddings to add an explicit ordering relation. A
self-attention encoder, or Transformer, introduced
by Vaswani et al. (2017), is a stack of self-attention
layers where each layer (consisting of H heads)
transforms each xi into yi ∈ Rdx as follows:

e
(h)
ij =

xiW
(h)
Q (xjW

(h)
K)>√

dz/H
; α

(h)
ij = softmax

j

{
e
(h)
ij

}
z
(h)
i =

n∑
j=1

α
(h)
ij (xjW

(h)
V); zi = Concat

(
z
(1)
i , · · · ,z(H)

i

)
ỹi = LayerNorm(xi + zi)

yi = LayerNorm(ỹi + FC(ReLU(FC(ỹi))) (1)

where FC is a fully-connected layer, LayerNorm is
layer normalization (Ba et al., 2016), 1 ≤ h ≤ H ,
and W (h)

Q ,W
(h)
K ,W

(h)
V ∈ Rdx×(dx/H).

One interpretation of the embeddings computed
by a Transformer is that each head of each layer

computes a learned relation between all the in-
put elements xi, and the strength of this relation
is encoded in the attention weights α(h)

ij . How-
ever, in many applications (including text-to-SQL
parsing) we are aware of some preexisting rela-
tional features between the inputs, and would like
to bias our encoder model toward them. This is
straightforward for non-relational features (repre-
sented directly in each xi). We could limit the at-
tention computation only to the “hard” edges where
the preexisting relations are known to hold. This
would make the model similar to a graph atten-
tion network (Veličković et al., 2018), and would
also impede the Transformer’s ability to learn new
relations. Instead, RAT provides a way to commu-
nicate known relations to the encoder by adding
their representations to the attention mechanism.

Shaw et al. (2018) describe a way to represent
relative position information in a self-attention
layer by changing Equation (1) as follows:

e
(h)
ij =

xiW
(h)
Q (xjW

(h)
K + rKij)

>√
dz/H

z
(h)
i =

n∑
j=1

α
(h)
ij (xjW

(h)
V + rVij).

(2)

Here the rij terms encode the known relationship
between the two elements xi and xj in the input.
While Shaw et al. used it exclusively for relative
position representation, we show how to use the
same framework to effectively bias the Transformer
toward arbitrary relational information.

Consider R relational features, each a binary
relation R(s) ⊆ X ×X (1 ≤ s ≤ R). The RAT
framework represents all the pre-existing fea-
tures for each edge (i, j) as rKij = rVij =

Concat
(
ρ
(1)
ij , . . . ,ρ

(R)
ij

)
where each ρ(s)ij is either

a learned embedding for the relation R(s) if the
relation holds for the corresponding edge (i.e. if
(i, j) ∈ R(s)), or a zero vector of appropriate size.
In the following section, we will describe the set
of relations our RAT-SQL model uses to encode a
given database schema.

4 RAT-SQL

We now describe the RAT-SQL framework and its
application to the problems of schema encoding
and linking. First, we formally define the text-to-
SQL semantic parsing problem and its components.
In the rest of the section, we present our implemen-
tation of schema linking in the RAT framework.

7570

Type of x Type of y Edge label Description

Column Column
SAME-TABLE x and y belong to the same table.
FOREIGN-KEY-COL-F x is a foreign key for y.
FOREIGN-KEY-COL-R y is a foreign key for x.

Column Table
PRIMARY-KEY-F x is the primary key of y.
BELONGS-TO-F x is a column of y (but not the primary key).

Table Column
PRIMARY-KEY-R y is the primary key of x.
BELONGS-TO-R y is a column of x (but not the primary key).

Table Table
FOREIGN-KEY-TAB-F Table x has a foreign key column in y.
FOREIGN-KEY-TAB-R Same as above, but x and y are reversed.
FOREIGN-KEY-TAB-B x and y have foreign keys in both directions.

Table 1: Description of edge types present in the directed graph G created to represent the schema. An edge exists
from source node x ∈ S to target node y ∈ S if the pair fulfills one of the descriptions listed in the table, with the
corresponding label. Otherwise, no edge exists from x to y.

airports

city

airport code airport name country

country abbrev

primary keyprimary key

flights

source airport

airline flight number

dest airport
primary key primary key

foreign key
foreign key airlines

abbreviation

airline id airline name

country

Figure 2: An illustration of an example schema as a
graph G. We do not depict all the edges and label types
of Table 1 to reduce clutter.

4.1 Problem Definition

Given a natural language question Q and a schema
S = 〈C, T 〉 for a relational database, our goal is to
generate the corresponding SQL P . Here the ques-
tion Q = q1 . . . q|Q| is a sequence of words, and
the schema consists of columns C = {c1, . . . , c|C|}
and tables T =

{
t1, . . . , t|T |

}
. Each column

name ci contains words ci,1, . . . , ci,|ci| and each
table name ti contains words ti,1, . . . , ti,|ti|. The
desired program P is represented as an abstract
syntax tree T in the context-free grammar of SQL.

Some columns in the schema are primary keys,
used for uniquely indexing the corresponding table,
and some are foreign keys, used to reference a pri-
mary key column in a different table. In addition,
each column has a type τ ∈ {number, text}.

Formally, we represent the database schema as a
directed graph G = 〈V, E〉. Its nodes V = C ∪ T
are the columns and tables of the schema, each la-
beled with the words in its name (for columns, we
prepend their type τ to the label). Its edges E are
defined by the pre-existing database relations, de-
scribed in Table 1. Figure 2 illustrates an example
graph (with a subset of actual edges and labels).

a

How many airlines

Pri. Key

airline
id

C∈T

airline
name

…

…

…

…
C∉T

city

…

…

Table-Q
Table-Ques T-Table

airports

Figure 3: One RAT layer in the schema encoder.

While G holds all the known information about
the schema, it is insufficient for appropriately en-
coding a previously unseen schema in the context
of the question Q. We would like our representa-
tions of the schema S and the question Q to be
joint, in particular for modeling the alignment be-
tween them. Thus, we also define the question-
contextualized schema graph GQ = 〈VQ, EQ〉
where VQ = V ∪Q = C ∪ T ∪Q includes nodes
for the question words (each labeled with a cor-
responding word), and EQ = E ∪ EQ↔S are the
schema edges E extended with additional special
relations between the question words and schema
members, detailed in the rest of this section.

For modeling text-to-SQL generation, we adopt
the encoder-decoder framework. Given the input
as a graph GQ, the encoder fenc embeds it into joint
representations ci, ti, qi for each column ci ∈ C,
table ti ∈ T , and question word q ∈ Q respec-
tively. The decoder fdec then uses them to compute
a distribution Pr(P | GQ) over the SQL programs.

4.2 Relation-Aware Input Encoding

Following the state-of-the-art NLP literature, our
encoder first obtains the initial representations cinit

i ,
tinit
i for every node of G by (a) retrieving a pre-

7571

trained Glove embedding (Pennington et al., 2014)
for each word, and (b) processing the embeddings
in each multi-word label with a bidirectional LSTM
(BiLSTM) (Hochreiter and Schmidhuber, 1997). It
also runs a separate BiLSTM over the question Q
to obtain initial word representations qinit

i .
The initial representations cinit

i , tinit
i , and qinit

i

are independent of each other and devoid of any
relational information known to hold in EQ. To
produce joint representations for the entire input
graph GQ, we use the relation-aware self-attention
mechanism (Section 3). Its input X is the set of all
the node representations in GQ:

X = (cinit
1 , · · · , cinit

|C| , t
init
1 , · · · , tinit

|T |, q
init
1 , · · · , qinit

|Q|).

The encoder fenc applies a stack of N relation-
aware self-attention layers to X , with separate
weight matrices in each layer. The final representa-
tions ci, ti, qi produced by the N th layer constitute
the output of the whole encoder.

Alternatively, we also consider pre-trained
BERT (Devlin et al., 2019) embeddings to obtain
the initial representations. Following (Huang et al.,
2019; Zhang et al., 2019), we feed X to the BERT
and use the last hidden states as the initial represen-
tations before proceeding with the RAT layers.2

Importantly, as detailed in Section 3, every RAT
layer uses self-attention between all elements of
the input graph GQ to compute new contextual rep-
resentations of question words and schema mem-
bers. However, this self-attention is biased toward
some pre-defined relations using the edge vectors
rKij , r

V
ij in each layer. We define the set of used

relation types in a way that directly addresses the
challenges of schema embedding and linking. Oc-
currences of these relations between the question
and the schema constitute the edges EQ↔S . Most
of these relation types address schema linking (Sec-
tion 4.3); we also add some auxiliary edges to aid
schema encoding (see Appendix A).

4.3 Schema Linking

Schema linking relations in EQ↔S aid the model
with aligning column/table references in the ques-
tion to the corresponding schema columns/tables.
This alignment is implicitly defined by two kinds
of information in the input: matching names and
matching values, which we detail in order below.

2In this case, the initial representations cinit
i , tinit

i , qinit
i are

not strictly independent although still yet uninfluenced by E .

Name-Based Linking Name-based linking
refers to exact or partial occurrences of the
column/table names in the question, such as the
occurrences of “cylinders” and “cars” in the
question in Figure 1. Textual matches are the most
explicit evidence of question-schema alignment
and as such, one might expect them to be directly
beneficial to the encoder. However, in all our
experiments the representations produced by
vanilla self-attention were insensitive to textual
matches even though their initial representations
were identical. Brunner et al. (2020) suggest
that representations produced by Transformers
mix the information from different positions and
cease to be directly interpretable after 2+ layers,
which might explain our observations. Thus, to
remedy this phenomenon, we explicitly encode
name-based linking using RAT relations.

Specifically, for all n-grams of length 1 to 5 in
the question, we determine (1) whether it exactly
matches the name of a column/table (exact match);
or (2) whether the n-gram is a subsequence of the
name of a column/table (partial match).3 Then, for
every (i, j) where xi ∈ Q, xj ∈ S (or vice versa),
we set rij ∈ EQ↔S to QUESTION-COLUMN-M,
QUESTION-TABLE-M, COLUMN-QUESTION-M or
TABLE-QUESTION-M depending on the type of xi
and xj . Here M is one of EXACTMATCH, PAR-
TIALMATCH, or NOMATCH.

Value-Based Linking Question-schema align-
ment also occurs when the question mentions any
values that occur in the database and consequently
participate in the desired SQL, such as “4” in Fig-
ure 1. While this example makes the alignment
explicit by mentioning the column name “cylin-
ders”, many real-world questions do not. Thus,
linking a value to the corresponding column re-
quires background knowledge.

The database itself is the most comprehensive
and readily available source of knowledge about
possible values, but also the most challenging to
process in an end-to-end model because of the
privacy and speed impact. However, the RAT
framework allows us to outsource this processing
to the database engine to augment GQ with po-
tential value-based linking without exposing the
model itself to the data. Specifically, we add a
new COLUMN-VALUE relation between any word
qi and column name cj s.t. qi occurs as a value

3This procedure matches that of Guo et al. (2019), but we
use the matching information differently in RAT.

7572

(or a full word within a value) of cj . This simple
approach drastically improves the performance of
RAT-SQL (see Section 5). It also directly addresses
the aforementioned DB challenges: (a) the model is
never exposed to database content that does not oc-
cur in the question, (b) word matches are retrieved
quickly via DB indices & textual search.

Memory-Schema Alignment Matrix Our intu-
ition suggests that the columns and tables which
occur in the SQL P will generally have a corre-
sponding reference in the natural language ques-
tion. To capture this intuition in the model, we
apply relation-aware attention as a pointer mecha-
nism between every memory element in y and all
the columns/tables to compute explicit alignment
matrices Lcol ∈ R|y|×|C| and Ltab ∈ R|y|×|T |:

L̃col
i,j =

yiW
col
Q (cfinal

j W col
K + rKij)

>
√
dx

(3)

L̃tab
i,j =

yiW
tab
Q (tfinal

j W tab
K + rKij)

>
√
dx

Lcol
i,j = softmax

j

{
L̃col
i,j

}
Ltab
i,j = softmax

j

{
L̃tab
i,j

}
Intuitively, the alignment matrices in Eq. (3)

should resemble the real discrete alignments, there-
fore should respect certain constraints like sparsity.
When the encoder is sufficiently parameterized,
sparsity tends to arise with learning, but we can
also encourage it with an explicit objective. Ap-
pendix B presents this objective and discusses our
experiments with sparse alignment in RAT-SQL.

4.4 Decoder
The decoder fdec of RAT-SQL follows the tree-
structured architecture of Yin and Neubig (2017).
It generates the SQL P as an abstract syntax tree
in depth-first traversal order, by using an LSTM to
output a sequence of decoder actions that either (i)
expand the last generated node into a grammar rule,
called APPLYRULE; or when completing a leaf
node, (ii) choose a column/table from the schema,
called SELECTCOLUMN and SELECTTABLE.

Formally, Pr(P | Y) =
∏

t Pr(at | a<t, Y)
where Y = fenc(GQ) is the final encoding
of the question and schema, and a<t are all
the previous actions. In a tree-structured de-
coder, the LSTM state is updated as mt,ht =
fLSTM ([at−1 ‖ zt ‖ hpt ‖ apt ‖ nft], mt−1,ht−1)
wheremt is the LSTM cell state, ht is the LSTM
output at step t, at−1 is the embedding of the
previous action, pt is the step corresponding to

airline
id

airline
name

… …

city

…

airportsmany airlinesHow

⋮ ⋮

… …
⋮

…
⋮⋮ ⋮⋮

SELECT

count(*) WHERE =…

0.1 0.1 0.8
Column?

Tree-structured
decoder

Self-attention
layers

Figure 4: Choosing a column in a tree decoder.

expanding the parent AST node of the current
node, and nft is the embedding of the current
node type. Finally, zt is the context representation,
computed using multi-head attention (with 8
heads) on ht−1 over Y .

For APPLYRULE[R], we compute Pr(at =
APPLYRULE[R] | a<t, y) = softmaxR (g(ht))
where g(·) is a 2-layer MLP with a tanh non-
linearity. For SELECTCOLUMN, we compute

λ̃i =
htW

sc
Q (yiW

sc
K)T

√
dx

λi = softmax
i

{
λ̃i
}

Pr(at = SELECTCOLUMN[i] | a<t, y) =

|y|∑
j=1

λjL
col
j,i

and similarly for SELECTTABLE. We refer the
reader to Yin and Neubig (2017) for details.

5 Experiments

We implemented RAT-SQL in PyTorch (Paszke
et al., 2017). During preprocessing, the input of
questions, column names and table names are to-
kenized and lemmatized with the StandfordNLP
toolkit (Manning et al., 2014). Within the encoder,
we use GloVe (Pennington et al., 2014) word em-
beddings, held fixed in training except for the 50
most common words in the training set. For RAT-
SQL BERT, we use the WordPiece tokenization.
All word embeddings have dimension 300. The
bidirectional LSTMs have hidden size 128 per di-
rection, and use the recurrent dropout method of
Gal and Ghahramani (2016) with rate 0.2. We
stack 8 relation-aware self-attention layers on top
of the bidirectional LSTMs. Within them, we set
dx = dz = 256, H = 8, and use dropout with rate
0.1. The position-wise feed-forward network has
inner layer dimension 1024. Inside the decoder, we
use rule embeddings of size 128, node type embed-
dings of size 64, and a hidden size of 512 inside
the LSTM with dropout of 0.21.

7573

Model Dev Test

IRNet (Guo et al., 2019) 53.2 46.7
Global-GNN (Bogin et al., 2019b) 52.7 47.4
IRNet V2 (Guo et al., 2019) 55.4 48.5
RAT-SQL (ours) 62.7 57.2

With BERT:
EditSQL + BERT (Zhang et al., 2019) 57.6 53.4
GNN + Bertrand-DR (Kelkar et al., 2020) 57.9 54.6
IRNet V2 + BERT (Guo et al., 2019) 63.9 55.0
RYANSQL V2 + BERT (Choi et al., 2020) 70.6 60.6
RAT-SQL + BERT (ours) 69.7 65.6

Table 2: Accuracy on the Spider development and test
sets, compared to the other approaches at the top of the
dataset leaderboard as of May 1st, 2020. The test set
results were scored using the Spider evaluation server.

We used the Adam optimizer (Kingma and Ba,
2015) with the default hyperparameters. During
the first warmup_steps = max_steps/20 steps
of training, the learning rate linearly increases from
0 to 7.4 × 10−4. Afterwards, it is annealed to 0
with 7.4× 10−4(1− step−warmup_steps

max_steps−warmup_steps)
−0.5.

We use a batch size of 20 and train for up to 40,000
steps. For RAT-SQL + BERT, we use a separate
learning rate of 3×10−6 to fine-tune BERT, a batch
size of 24 and train for up to 90,000 steps.

Hyperparameter Search We tuned the batch
size (20, 50, 80), number of RAT layers (4, 6, 8),
dropout (uniformly sampled from [0.1, 0.3]), hid-
den size of decoder RNN (256, 512), max learning
rate (log-uniformly sampled from [5× 10−4, 2×
10−3]). We randomly sampled 100 configurations
and optimized on the dev set. RAT-SQL + BERT
reuses most hyperparameters of RAT-SQL, only
tuning the BERT learning rate (1×10−4, 3×10−4,
5×10−4), number of RAT layers (6, 8, 10), number
of training steps (4× 104, 6× 104, 9× 104).

5.1 Datasets and Metrics
We use the Spider dataset (Yu et al., 2018b) for
most of our experiments, and also conduct pre-
liminary experiments on WikiSQL (Zhong et al.,
2017) to confirm generalization to other datasets.
As described by Yu et al., Spider contains 8,659
examples (questions and SQL queries, with the ac-
companying schemas), including 1,659 examples
lifted from the Restaurants (Popescu et al., 2003;
Tang and Mooney, 2000), GeoQuery (Zelle and
Mooney, 1996), Scholar (Iyer et al., 2017), Aca-
demic (Li and Jagadish, 2014), Yelp and IMDB
(Yaghmazadeh et al., 2017) datasets.

As Yu et al. (2018b) make the test set accessi-
ble only through an evaluation server, we perform

Split Easy Medium Hard Extra Hard All

RAT-SQL
Dev 80.4 63.9 55.7 40.6 62.7
Test 74.8 60.7 53.6 31.5 57.2

RAT-SQL + BERT
Dev 86.4 73.6 62.1 42.9 69.7
Test 83.0 71.3 58.3 38.4 65.6

Table 3: Accuracy on the Spider development and test
sets, by difficulty as defined by Yu et al. (2018b).

Model Accuracy (%)

RAT-SQL + value-based linking 60.54 ± 0.80
RAT-SQL 55.13 ± 0.84

w/o schema linking relations 40.37 ± 2.32
w/o schema graph relations 35.59 ± 0.85

Table 4: Accuracy (and ±95% confidence interval) of
RAT-SQL ablations on the dev set.

most evaluations (other than the final accuracy mea-
surement) using the development set. It contains
1,034 examples, with databases and schemas dis-
tinct from those in the training set. We report re-
sults using the same metrics as Yu et al. (2018a):
exact match accuracy on all examples, as well as
divided by difficulty levels. As in previous work on
Spider, these metrics do not measure the model’s
performance on generating values in the SQL.

5.2 Spider Results

In Table 2 we show accuracy on the (hidden) Spi-
der test set for RAT-SQL and compare to all other
approaches at or near state-of-the-art (according to
the official leaderboard). RAT-SQL outperforms all
other methods that are not augmented with BERT
embeddings by a large margin of 8.7%. Surpris-
ingly, it even beats other BERT-augmented models.
When RAT-SQL is further augmented with BERT,
it achieves the new state-of-the-art performance.
Compared with other BERT-argumented models,
our RAT-SQL + BERT has smaller generalization
gap between development and test set.

We also provide a breakdown of the accuracy
by difficulty in Table 3. As expected, performance
drops with increasing difficulty. The overall gen-
eralization gap between development and test of
RAT-SQL was strongly affected by the significant
drop in accuracy (9%) on the extra hard questions.
When RAT-SQL is augmented with BERT, the gen-
eralization gaps of most difficulties are reduced.

Ablation Study Table 4 shows an ablation study
over different RAT-based relations. The ablations

7574

Figure 5: Alignment between the question “For the cars with 4 cylinders, which model has the largest horsepower”
and the database car_1 schema (columns and tables) depicted in Figure 1.

are run on RAT-SQL without value-based linking
to avoid interference with information from the
database. Schema linking and graph relations make
statistically significant improvements (p<0.001).
The full model accuracy here slightly differs from
Table 2 because the latter shows the best model
from a hyper-parameter sweep (used for test evalu-
ation) and the former gives the mean over five runs
where we only change the random seeds.

5.3 WikiSQL Results

We also conducted preliminary experiments on
WikiSQL (Zhong et al., 2017) to test generalization
of RAT-SQL to new datasets. Although WikiSQL
lacks multi-table schemas (and thus, its challenge
of schema encoding is not as prominent), it still
presents the challenges of schema linking and gen-
eralization to new schemas. For simplicity of exper-
iments, we did not implement either BERT augmen-
tation or execution-guided decoding (EG) (Wang
et al., 2018), both of which are common in state-of-
the-art WikiSQL models. We thus only compare to
the models that also lack these two enhancements.

While not reaching state of the art, RAT-SQL
still achieves competitive performance on WikiSQL
as shown in Table 5. Most of the gap between its
accuracy and state of the art is due to the simpli-
fied implementation of value decoding, which is
required for WikiSQL evaluation but not in Spi-
der. Our value decoding for these experiments is
a simple token-based pointer mechanism, which
often fails to retrieve multi-token value constants
accurately. A robust value decoding mechanism in

RAT-SQL is an important extension that we plan
to address outside the scope of this work.

5.4 Discussions
Alignment Recall from Section 4 that we explic-
itly model the alignment matrix between question
words and table columns, used during decoding
for column and table selection. The existence of
the alignment matrix provides a mechanism for
the model to align words to columns. An accurate
alignment representation has other benefits such
as identifying question words to copy to emit a
constant value in SQL.

In Figure 5 we show the alignment generated by
our model on the example from Figure 1.4 For the
three words that reference columns (“cylinders”,

“model”, “horsepower”), the alignment matrix cor-
rectly identifies their corresponding columns. The
alignments of other words are strongly affected by
these three keywords, resulting in a sparse span-to-
column like alignment, e.g. “largest horsepower”
to horsepower. The tables cars_data and
cars_names are implicitly mentioned by the
word “cars”. The alignment matrix success-
fully infers to use these two tables instead of
car_makers using the evidence that they con-
tain the three mentioned columns.

The Need for Schema Linking One natural
question is how often does the decoder fail to select
the correct column, even with the schema encod-
ing and linking improvements we have made. To

4The full alignment also maps from column and table
names, but those end up simply aligning to themselves or the
table they belong to, so we omit them for brevity.

7575

Dev Test

Model LF Acc% Ex. Acc% LF Acc% Ex. Acc%

IncSQL (Shi et al., 2018) 49.9 84.0 49.9 83.7
MQAN (McCann et al., 2018) 76.1 82.0 75.4 81.4
RAT-SQL (ours) 73.6 79.5 73.3 78.8
Coarse2Fine (Dong and Lapata, 2018) 72.5 79.0 71.7 78.5
PT-MAML (Huang et al., 2018) 63.1 68.3 62.8 68.0

Table 5: RAT-SQL accuracy on WikiSQL, trained without BERT augmentation or execution-guided decoding (EG).
Compared to other approaches without EG. “LF Acc” = Logical Form Accuracy; “Ex. Acc” = Execution Accuracy.

Model Acc.

RAT-SQL 62.7
RAT-SQL + Oracle columns 69.8
RAT-SQL + Oracle sketch 73.0
RAT-SQL + Oracle sketch + Oracle columns 99.4

Table 6: Accuracy (exact match %) on the development
set given an oracle providing correct columns and ta-
bles (“Oracle columns”) and/or the AST sketch struc-
ture (“Oracle sketch”).

answer this, we conducted an oracle experiment
(see Table 6). For “oracle sketch”, at every gram-
mar nonterminal the decoder is forced to choose
the correct production so the final SQL sketch ex-
actly matches that of the ground truth. The rest of
the decoding proceeds conditioned on that choice.
Likewise, “oracle columns” forces the decoder to
emit the correct column/table at terminal nodes.

With both oracles, we see an accuracy of 99.4%
which just verifies that our grammar is sufficient to
answer nearly every question in the data set. With
just “oracle sketch”, the accuracy is only 73.0%,
which means 72.4% of the questions that RAT-SQL
gets wrong and could get right have incorrect col-
umn or table selection. Similarly, with just “oracle
columns”, the accuracy is 69.8%, which means that
81.0% of the questions that RAT-SQL gets wrong
have incorrect structure. In other words, most ques-
tions have both column and structure wrong, so
both problems require important future work.

Error Analysis An analysis of mispredicted
SQL queries in the Spider dev set showed three
main causes of evaluation errors. (I) 18% of the
mispredicted queries are in fact equivalent im-
plementations of the NL intent with a different
SQL syntax (e.g. ORDER BY C LIMIT 1 vs.
SELECT MIN(C)). Measuring execution accu-
racy rather than exact match would detect them as
valid. (II) 39% of errors involve a wrong, miss-
ing, or extraneous column in the SELECT clause.
This is a limitation of our schema linking mecha-
nism, which, while substantially improving column

resolution, still struggles with some ambiguous ref-
erences. Some of them are unavoidable as Spider
questions do not always specify which columns
should be returned by the desired SQL. Finally,
(III) 29% of errors are missing a WHERE clause,
which is a common error class in text-to-SQL mod-
els as reported by prior works. One common ex-
ample is domain-specific phrasing such as “older
than 21”, which requires background knowledge
to map it to age > 21 rather than age < 21.
Such errors disappear after in-domain fine-tuning.

6 Conclusion

Despite active research in text-to-SQL parsing,
many contemporary models struggle to learn good
representations for a given database schema as
well as to properly link column/table references
in the question. These problems are related: to
encode & use columns/tables from the schema, the
model must reason about their role in the context
of the question. In this work, we present a unified
framework for addressing the schema encoding
and linking challenges. Thanks to relation-aware
self-attention, it jointly learns schema and question
representations based on their alignment with each
other and schema relations.

Empirically, the RAT framework allows us to
gain significant state of the art improvement on
text-to-SQL parsing. Qualitatively, it provides a
way to combine predefined hard schema relations
and inferred soft self-attended relations in the same
encoder architecture. This representation learning
will be beneficial in tasks beyond text-to-SQL, as
long as the input has some predefined structure.

Acknowledgments

We thank Jianfeng Gao, Vladlen Koltun, Chris
Meek, and Vignesh Shiv for the discussions that
helped shape this work. We thank Bo Pang, Tao Yu
for their help with the evaluation. We also thank
anonymous reviewers for their invaluable feedback.

7576

References
Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hin-

ton. 2016. Layer Normalization. arXiv:1607.06450.

Ben Bogin, Jonathan Berant, and Matt Gardner. 2019a.
Representing schema structure with graph neural
networks for text-to-SQL parsing. In Proceedings
of the 57th Annual Meeting of the Association for
Computational Linguistics, pages 4560–4565.

Ben Bogin, Matt Gardner, and Jonathan Berant. 2019b.
Global reasoning over database structures for text-
to-SQL parsing. In Proceedings of the 2019 Con-
ference on Empirical Methods in Natural Language
Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-
IJCNLP), pages 3657–3662.

Gino Brunner, Yang Liu, Damian Pascual, Oliver
Richter, Massimiliano Ciaramita, and Roger Watten-
hofer. 2020. On identifiability in Transformers. In
International Conference on Learning Representa-
tions.

DongHyun Choi, Myeong Cheol Shin, EungGyun Kim,
and Dong Ryeol Shin. 2020. RYANSQL: Recur-
sively applying sketch-based slot fillings for com-
plex text-to-SQL in cross-domain databases. arXiv
preprint arXiv:2004.03125.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186.

Li Dong and Mirella Lapata. 2018. Coarse-to-fine de-
coding for neural semantic parsing. In Proceedings
of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 731–742, Melbourne, Australia. Association
for Computational Linguistics.

Catherine Finegan-Dollak, Jonathan K. Kummerfeld,
Li Zhang, Karthik Ramanathan, Sesh Sadasivam,
Rui Zhang, and Dragomir Radev. 2018. Improving
Text-to-SQL Evaluation Methodology. In Proceed-
ings of the 56th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 351–360.

Yarin Gal and Zoubin Ghahramani. 2016. A Theoreti-
cally Grounded Application of Dropout in Recurrent
Neural Networks. In Advances in Neural Informa-
tion Processing Systems 29, pages 1019–1027.

Jiaqi Guo, Zecheng Zhan, Yan Gao, Yan Xiao,
Jian-Guang Lou, Ting Liu, and Dongmei Zhang.
2019. Towards complex text-to-SQL in cross-
domain database with intermediate representation.
In Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics, pages
4524–4535.

Pengcheng He, Yi Mao, Kaushik Chakrabarti, and
Weizhu Chen. 2019. X-SQL: reinforce schema
representation with context. arXiv preprint
arXiv:1908.08113.

Vincent J. Hellendoorn, Charles Sutton, Rishabh Singh,
Petros Maniatis, and David Bieber. 2020. Global
relational models of source code. In International
Conference on Learning Representations.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Cheng-Zhi Anna Huang, Ashish Vaswani, Jakob
Uszkoreit, Ian Simon, Curtis Hawthorne, Noam
Shazeer, Andrew M. Dai, Matthew D. Hoffman,
Monica Dinculescu, and Douglas Eck. 2019. Music
Transformer. In International Conference on Learn-
ing Representations.

Po-Sen Huang, Chenglong Wang, Rishabh Singh, Wen-
tau Yih, and Xiaodong He. 2018. Natural language
to structured query generation via meta-learning. In
Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 2 (Short Papers), pages 732–738.

Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, Jayant
Krishnamurthy, and Luke Zettlemoyer. 2017. Learn-
ing a neural semantic parser from user feedback. In
Proceedings of the 55th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 963–973.

Amol Kelkar, Rohan Relan, Vaishali Bhardwaj,
Saurabh Vaichal, and Peter Relan. 2020. Bertrand-
DR: Improving text-to-SQL using a discriminative
re-ranker. arXiv preprint arXiv:2002.00557.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
Method for Stochastic Optimization. In Interna-
tional Conference on Learning Representations.

Fei Li and H. V. Jagadish. 2014. Constructing an
interactive natural language interface for relational
databases. Proceedings of the VLDB Endowment,
8(1):73–84.

Christopher D. Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven J. Bethard, and David Mc-
Closky. 2014. The Stanford CoreNLP natural lan-
guage processing toolkit. In Association for Compu-
tational Linguistics (ACL) System Demonstrations,
pages 55–60.

Bryan McCann, Nitish Shirish Keskar, Caiming Xiong,
and Richard Socher. 2018. The natural language de-
cathlon: Multitask learning as question answering.
arXiv preprint arXiv:1806.08730.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory
Chanan, Edward Yang, Zachary DeVito, Zeming
Lin, Alban Desmaison, Luca Antiga, and Adam
Lerer. 2017. Automatic differentiation in PyTorch.

http://arxiv.org/abs/1607.06450
https://doi.org/10.18653/v1/P19-1448
https://doi.org/10.18653/v1/P19-1448
https://doi.org/10.18653/v1/D19-1378
https://doi.org/10.18653/v1/D19-1378
https://openreview.net/forum?id=BJg1f6EFDB
https://doi.org/10.18653/v1/P18-1068
https://doi.org/10.18653/v1/P18-1068
http://aclweb.org/anthology/P18-1033
http://aclweb.org/anthology/P18-1033
http://papers.nips.cc/paper/6241-a-theoretically-grounded-application-of-dropout-in-recurrent-neural-networks.pdf
http://papers.nips.cc/paper/6241-a-theoretically-grounded-application-of-dropout-in-recurrent-neural-networks.pdf
http://papers.nips.cc/paper/6241-a-theoretically-grounded-application-of-dropout-in-recurrent-neural-networks.pdf
https://doi.org/10.18653/v1/P19-1444
https://doi.org/10.18653/v1/P19-1444
https://openreview.net/forum?id=B1lnbRNtwr
https://openreview.net/forum?id=B1lnbRNtwr
https://openreview.net/forum?id=rJe4ShAcF7
https://openreview.net/forum?id=rJe4ShAcF7
http://www.aclweb.org/anthology/P17-1089
http://www.aclweb.org/anthology/P17-1089
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://dx.doi.org/10.14778/2735461.2735468
http://dx.doi.org/10.14778/2735461.2735468
http://dx.doi.org/10.14778/2735461.2735468
http://www.aclweb.org/anthology/P/P14/P14-5010
http://www.aclweb.org/anthology/P/P14/P14-5010
https://openreview.net/forum?id=BJJsrmfCZ

7577

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word rep-
resentation. In Proceedings of the 2014 Conference
on Empirical Methods in Natural Language Process-
ing (EMNLP), pages 1532–1543, Doha, Qatar. Asso-
ciation for Computational Linguistics.

Ana-Maria Popescu, Oren Etzioni, , and Henry Kautz.
2003. Towards a theory of natural language inter-
faces to databases. In Proceedings of the 8th Inter-
national Conference on Intelligent User Interfaces,
pages 149–157.

Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani.
2018. Self-Attention with Relative Position Repre-
sentations. In Proceedings of the 2018 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 2 (Short Papers), pages 464–
468.

Tianze Shi, Kedar Tatwawadi, Kaushik Chakrabarti,
Yi Mao, Oleksandr Polozov, and Weizhu Chen. 2018.
IncSQL: Training Incremental Text-to-SQL Parsers
with Non-Deterministic Oracles. arXiv:1809.05054
[cs].

Haitian Sun, Bhuwan Dhingra, Manzil Zaheer, Kathryn
Mazaitis, Ruslan Salakhutdinov, and William Cohen.
2018. Open domain question answering using early
fusion of knowledge bases and text. In Proceed-
ings of the 2018 Conference on Empirical Methods
in Natural Language Processing, pages 4231–4242,
Brussels, Belgium. Association for Computational
Linguistics.

Lappoon R. Tang and Raymond J. Mooney. 2000. Au-
tomated construction of database interfaces: Inter-
grating statistical and relational learning for seman-
tic parsing. In 2000 Joint SIGDAT Conference on
Empirical Methods in Natural Language Processing
and Very Large Corpora, pages 133–141.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is All
you Need. In Advances in Neural Information Pro-
cessing Systems 30, pages 5998–6008.

Petar Veličković, Guillem Cucurull, Arantxa Casanova,
Adriana Romero, Pietro Liò, and Yoshua Bengio.
2018. Graph Attention Networks. International
Conference on Learning Representations.

Chenglong Wang, Kedar Tatwawadi, Marc
Brockschmidt, Po-Sen Huang, Yi Mao, Olek-
sandr Polozov, and Rishabh Singh. 2018. Robust
Text-to-SQL Generation with Execution-Guided
Decoding. arXiv:1807.03100 [cs].

Navid Yaghmazadeh, Yuepeng Wang, Isil Dillig, and
Thomas Dillig. 2017. Sqlizer: Query synthesis from
natural language. In International Conference on
Object-Oriented Programming, Systems, Languages,
and Applications, ACM, pages 63:1–63:26.

Pengcheng Yin and Graham Neubig. 2017. A Syntactic
Neural Model for General-Purpose Code Generation.
In Proceedings of the 55th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 440–450.

Tao Yu, Michihiro Yasunaga, Kai Yang, Rui Zhang,
Dongxu Wang, Zifan Li, and Dragomir Radev.
2018a. SyntaxSQLNet: Syntax Tree Networks for
Complex and Cross-Domain Text-to-SQL Task. In
Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing, pages
1653–1663.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga,
Dongxu Wang, Zifan Li, James Ma, Irene Li,
Qingning Yao, Shanelle Roman, Zilin Zhang, and
Dragomir Radev. 2018b. Spider: A Large-Scale
Human-Labeled Dataset for Complex and Cross-
Domain Semantic Parsing and Text-to-SQL Task.
In Proceedings of the 2018 Conference on Empiri-
cal Methods in Natural Language Processing, pages
3911–3921.

John M. Zelle and Raymond J. Mooney. 1996. Learn-
ing to parse database queries using inductive logic
programming. In Proceedings of the Thirteenth Na-
tional Conference on Artificial Intelligence - Volume
2, pages 1050–1055.

Rui Zhang, Tao Yu, He Yang Er, Sungrok Shim,
Eric Xue, Xi Victoria Lin, Tianze Shi, Caim-
ing Xiong, Richard Socher, and Dragomir Radev.
2019. Editing-based SQL query generation for
cross-domain context-dependent questions. In Pro-
ceedings of the 2019 Conference on Empirical Meth-
ods in Natural Language Processing.

Victor Zhong, Caiming Xiong, and Richard Socher.
2017. Seq2SQL: Generating Structured Queries
from Natural Language using Reinforcement Learn-
ing. arXiv:1709.00103 [cs].

http://www.aclweb.org/anthology/D14-1162
http://www.aclweb.org/anthology/D14-1162
http://doi.acm.org/10.1145/604045.604070
http://doi.acm.org/10.1145/604045.604070
https://doi.org/10.18653/v1/N18-2074
https://doi.org/10.18653/v1/N18-2074
http://arxiv.org/abs/1809.05054
http://arxiv.org/abs/1809.05054
https://www.aclweb.org/anthology/D18-1455
https://www.aclweb.org/anthology/D18-1455
http://www.aclweb.org/anthology/W00-1317
http://www.aclweb.org/anthology/W00-1317
http://www.aclweb.org/anthology/W00-1317
http://www.aclweb.org/anthology/W00-1317
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
https://openreview.net/forum?id=rJXMpikCZ
http://arxiv.org/abs/1807.03100
http://arxiv.org/abs/1807.03100
http://arxiv.org/abs/1807.03100
http://doi.org/10.1145/3133887
http://doi.org/10.1145/3133887
https://doi.org/10.18653/v1/P17-1041
https://doi.org/10.18653/v1/P17-1041
http://aclweb.org/anthology/D18-1193
http://aclweb.org/anthology/D18-1193
http://aclweb.org/anthology/D18-1425
http://aclweb.org/anthology/D18-1425
http://aclweb.org/anthology/D18-1425
http://dl.acm.org/citation.cfm?id=1864519.1864543
http://dl.acm.org/citation.cfm?id=1864519.1864543
http://dl.acm.org/citation.cfm?id=1864519.1864543
http://arxiv.org/abs/1709.00103
http://arxiv.org/abs/1709.00103
http://arxiv.org/abs/1709.00103

7578

A Auxiliary Relations for Schema
Encoding

In addition to the schema graph edges E (Sec-
tion 4.2) and schema linking edges (Section 4.3),
the edges in EQ also include some auxiliary rela-
tion types to aid the relation-aware self-attention.
Specifically, for each xi, xj ∈ VQ:

• If i = j, then COLUMN-IDENTITY or TABLE-
IDENTITY.

• xi ∈ Q, xj ∈ Q: QUESTION-DIST-d, where

d = clip(j − i,D),

clip(a,D) = max(−D,min(D, a)).

We use D = 2.

• Otherwise, one of COLUMN-COLUMN,
COLUMN-TABLE, TABLE-COLUMN, or
TABLE-TABLE.

B Alignment Loss

The memory-schema alignment matrix is expected
to resemble the real discrete alignments, therefore
should respect certain constraints like sparsity. For
example, the question word “model” in Figure 1
should be aligned with car_names.model
rather than model_list.model or
model_list.model_id. To further bias
the soft alignment towards the real discrete
structures, we add an auxiliary loss to encourage
sparsity of the alignment matrix. Specifically,
for a column/table that is mentioned in the SQL
query, we treat the model’s current belief of the
best alignment as the ground truth. Then we use a
cross-entropy loss, referred as alignment loss, to
strengthen the model’s belief:

align_loss =− 1

|Rel(C)|
∑

j∈Rel(C)

logmax
i
Lcol
i,j

− 1

|Rel(T)|
∑

j∈Rel(T)

logmax
i
Ltab
i,j

where Rel(C) and Rel(T) denote the set of rele-
vant columns and tables that appear in the SQL.

In earlier experiments, we found that the align-
ment loss did improve the model (statistically sig-
nificantly, from 53.0% to 55.4%). However, it does
not make a statistically significant difference in our
final model in terms of overall exact match. We hy-
pothesize that hyperparameter tuning that caused us

Model Exact Match Correctness

RAT-SQL 0.59 0.81
RAT-SQL + BERT 0.67 0.86

Table 7: Consistency of the two RAT-SQL models.

to increase encoding depth eliminated the need for
explicit supervision of alignment. With few layers
in the Transformer, the alignment matrix provided
additional degrees of freedom, which became un-
necessary once the Transformer was sufficiently
deep to build a rich joint representation of the ques-
tion and the schema.

C Consistency of RAT-SQL

In Spider dataset, most SQL queries correspond to
more than one question, making it possible to evalu-
ate the consistency of RAT-SQL given paraphrases.
We use two metrics to evaluate the consistency:
1) Exact Match – whether RAT-SQL produces the
exact same predictions given paraphrases, 2) Cor-
rectness – whether RAT-SQL achieves the same
correctness given paraphrases. The analysis is con-
ducted on the development set.

The results are shown in Table 7. We found that
when augmented with BERT, RAT-SQL becomes
more consistent in terms of both metrics, indicat-
ing the pre-trained representations of BERT are
beneficial for handling paraphrases.

