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Abstract

Unsupervised relation extraction (URE) ex-
tracts relations between named entities from
raw text without manually-labelled data and
existing knowledge bases (KBs). URE meth-
ods can be categorised into generative and dis-
criminative approaches, which rely either on
hand-crafted features or surface form. How-
ever, we demonstrate that by using only named
entities to induce relation types, we can outper-
form existing methods on two popular datasets.
We conduct a comparison and evaluation of
our findings with other URE techniques, to as-
certain the important features in URE. We con-
clude that entity types provide a strong induc-
tive bias for URE.1

1 Introduction

Relation extraction (RE) extracts semantic relations
between entities from plain text. For instance, “Jon
Robin Baitzhead , born in Los Angelestail ...” ex-
presses the relation /people/person/place of birth
between the two head-tail entities. Extracted rela-
tions are then used for several downstream tasks
such as information retrieval (Corcoglioniti et al.,
2016) and knowledge base construction (Al-Zaidy
and Giles, 2018). RE has been widely studied using
fully supervised learning (Nguyen and Grishman,
2015; Miwa and Bansal, 2016; Zhang et al., 2017,
2018) and distantly supervised approaches (Mintz
et al., 2009; Riedel et al., 2010; Lin et al., 2016).

Unsupervised relation extraction (URE) meth-
ods have not been explored as much as fully or
distantly supervised learning techniques. URE is
promising, since it does not require manually an-
notated data nor human curated knowledge bases
(KBs), which are expensive to produce. Therefore,
it can be applied to domains and languages where

1Source code is available at https://github.com/
ttthy/ure

annotated data and KBs are not available. More-
over, URE can discover new relation types, since
it is not restricted to specific relation types in the
same way as fully and distantly supervised meth-
ods. One might argue that Open Information Ex-
traction (OpenIE) can also discover new relations.
However, OpenIE identifies relations based on tex-
tual surface information. Thus, similar relations
with different textual forms may not be recognised.
Unlike OpenIE, URE groups similar relations into
clusters. Despite these advantages, there are only a
few attempts tackling URE using machine learning
(ML) (Hasegawa et al., 2004; Banko et al., 2007;
Yao et al., 2011; Marcheggiani and Titov, 2016;
Simon et al., 2019).

Similarly to other unsupervised learning tasks, a
challenge in URE is how to evaluate results. Recent
approaches (Yao et al., 2011; Marcheggiani and
Titov, 2016; Simon et al., 2019) employ a widely
used data generation setting in distantly supervised
RE, i.e., aligning a large amount of raw text against
triplets in a curated KB. A standard metric score
is computed by comparing the output relation clus-
ters against the automatically annotated relations.
In particular, the NYT-FB dataset (Marcheggiani
and Titov, 2016) which is used for evaluation, has
been created by mapping relation triplets in Free-
base (Bollacker et al., 2008) against plain text arti-
cles in the New York Times (NYT) corpus (Sand-
haus, 2008). Standard clustering evaluation metrics
for URE include B3 (Bagga and Baldwin, 1998),
V-measure (Rosenberg and Hirschberg, 2007), and
ARI (Hubert and Arabie, 1985).

Although the above mentioned experimental set-
ting can be created automatically, there are three
challenges to overcome. Firstly, the development
and test sets are silver, i.e., they include noisy la-
belled instances, since they are not human-curated.
Secondly, the development and test sentences are
part of the training set, i.e., a transductive setting.

https://github.com/ttthy/ure
https://github.com/ttthy/ure
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It is thus unclear how well the existing models per-
form on unseen sentences. Finally, NYT-FB can
be considered highly imbalanced, since only 2.1%
of the training sentences can be aligned with Free-
base’s triplets. Due to the noisy nature of silver
data (NYT-FB), evaluation on silver data will not
accurately reflect the system performance. We also
need unseen data during testing to examine the sys-
tem generalisation. To overcome these challenges,
we will employ the test set of TACRED (Zhang
et al., 2017), a widely used manually annotated
corpus. Regarding the imbalanced data, we will
demonstrate that in fact around 60% (instead of
2.1%) of instances in the training set express rela-
tion types defined in Freebase.

In this work, we present a simple URE approach
relying only on entity types that can obtain im-
proved performance compared to current methods.
Specifically, given a sentence consisting of two
entities and their corresponding entity types, e.g.,
PERSON and LOCATION, we induce relations as
the combination of entity types, e.g., PERSON-
LOCATION. It should be noted that we employ
only entity types because their combinations form
reasonably coarse relation types (e.g., PERSON-
LOCATION covers /people/person/place of birth
defined in Freebase). We further discuss our im-
proved performance in §3.

Our contributions are as follows: (i) We per-
form experiments on both automatically/manually-
labelled datasets, namely NYT-FB and TACRED,
respectively. We show that two methods using
only entity types can outperform the state-of-the-
art models including both feature-engineering and
deep learning approaches. The surprising results
raise questions about the current state of unsuper-
vised relation extraction. (ii) For model design, we
show that link predictor provides a good signal to
train a URE model (Fig 1). We also illustrate that
entity types are a strong inductive bias for URE
(Table 1).

2 Methods for URE

The goal of URE is to predict the relation r be-
tween two entities ehead and etail in a sentence s.
We will describe three recent ML-based methods
tackling URE and our own methods. We divide
the ML-based methods into two main approaches:
generative and discriminative.

2.1 Generative Approach

Yao et al. (2011) extended topic modelling – La-
tent Dirichlet Allocation (LDA) (Blei et al., 2003)
for RE, developing two models, herewith RelLDA
and RelLDA1. In both models, a sentence and an
entity pair perform as a document in topic mod-
elling, while a relation type corresponds to a topic.
RelLDA uses three features, i.e., the shortest de-
pendency path between two entities and the two
entity mentions. RelLDA1 extends RelLDA with
five more features, i.e., the entity types, words and
part-of-speech tags between the two entities.

2.2 Discriminative Approaches

Marcheggiani and Titov (2016) proposed a discrete-
state variational autoencoder (VAE) to tackle URE
(herewith March). Their model consists of two
components: a relation classifier and a link pre-
dictor. The relation classifier, which is discrim-
inative, takes entity types and several linguistic
features (e.g., dependencies) as input to predict the
relation r. The link predictor then uses the (soft)
predicted relation r to predict the missing entity ei
in a specific position {head, tail}, given the other
entity e−i, where if i = head then −i = tail and
vice versa. In other words, entity prediction, in a
self-supervised manner, provides training signals
to learn the relation classifier. However, by using
only entity prediction, only a few relation types are
chosen. They thus used entropy over all relations
as a regulariser. The maximisation of the entropy
regulariser ensures the uniform relation distribution
and allows more relations to be predicted.

Another discriminative method is by Simon et al.
(2019) (herewith Simon) which differs from March
in the following ways: a) firstly, its relation clas-
sifier employs a piece-wise convolutional network
(PCNN) using only surface form without requiring
hand-crafted features; b) secondly, they replaced
entropy with two regularisers: Ls (skewness), to
encourage the relation classifier to be confident in
its prediction, and Ld (dispersion), to ensure sev-
eral relation types are predicted over a minibatch.
Note that, Ls is equivalent to the negation of the
entropy used in March.

2.3 Our Methods

We introduce two entity-based methods, herewith
EType and EType+. Our motivation is that entity
types are helpful for RE, as mentioned in Zhang
et al. (2017) for supervised learning and Ren et al.
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(2017) for distant learning. In URE, Yao et al.
(2011); Marcheggiani and Titov (2016) also used
entity types. We therefore propose EType that in-
duces coarse relation clusters from the entity types.
In particular, given two entity types tehead , tetail
as input, EType would output their concatenation
tehead-tetail as the relation.

One problem with EType is that the number of
relation types is determined by the number of entity
types. For instance, 4 entity types lead to 42 = 16
relation types. To extract an arbitrary number of
relation types, we build a relation classifier that
consists of one-layer feed-forward network taking
entity type combinations as input:

r = FFN(tehead-tetail),

where tehead-tetail is the one hot vector of the entity
type pair. We then employ the link predictor used
in March and the two regularisers used in Simon,
to produce a new method, herewith EType+.

3 Experiments and Results

Evaluation metrics We use the following eval-
uation metrics for our analysis: a) B3 (Bagga and
Baldwin, 1998) used in previous work, which is the
harmonic mean of precision and recall for cluster-
ing task; b) V-measure (Rosenberg and Hirschberg,
2007), and c) ARI (Hubert and Arabie, 1985) used
in Simon et al. (2019). 2 V-measure is analysed
in terms of homogeneity and completeness, while
ARI measures the similarity between two cluster-
ings. We note that V-measure is sensitive to the
dependency between the number of clusters and in-
stances. A relatively small number of clusters com-
pared to the number of instances should be used
to maintain the comparability of using V-measure.
More precisely, we evaluated V-measure of the
trivial homogeneity, where there are only singular
clusters (i.e., each instance is its own cluster). The
V-measure of the trivial homogeneity on NYT-FB
reached 43.77%, which is higher than all the imple-
mented methods in Table 1. Meanwhile, neither B3

nor ARI encounters this problem.
Datasets We employed NYT-FB for training and
evaluation following previous work (Yao et al.,
2011; Marcheggiani and Titov, 2016; Simon et al.,
2019). Because only 2.1% of the sentences in
NYT-FB were aligned against Freebase’s triplets,
we were concerned whether this dataset contains

2We used sklearn.metrics package to compute V-measure
and ARI.

Model B3 V ARI

NYT-FB

RelLDA

c = 10

29.1 30.0 13.3
RelLDA1 36.9 34.7 24.2
March (Ls+Ld) 37.5 38.7 27.6
Simon 39.4 38.3 33.8
EType+ 41.9 40.6 30.7

March� (Ls+Ld) 36.9 37.4 28.1
EType

c = 16
41.7 42.1 30.7

EType+ 41.5 41.3 30.5

RelLDA1
c = 100

29.6 - -
March 35.8 - -

TACRED

March� (Ls+Ld)
c = 10

31.0 43.8 22.6
Simon� 15.7 17.1 6.1
EType+ 43.3 59.7 25.7

March� (Ls+Ld)
c = 16

34.6 47.6 23.2
EType 48.3 64.4 29.1
EType+ 46.1 62.0 27.4

March� c = 100 33.13 43.63 20.21

Table 1: Average results (%) across three runs of
different models (except the EType) on NYT-FB and
TACRED. c indicates the number of clusters in each
method. � indicates our implementation of the cor-
responding model. We note that all methods were
trained on NYT-FB and evaluated on the test set of both
NYT-FB and TACRED.

enough sentences for a model to learn relation
types from Freebase. We thus examined 100 ran-
domly chosen instances from 1.86m non-aligned
sentences. We found that 61% of them (or 60% of
the whole dataset) express relation types in Free-
base. This suggests that the NYT-FB dataset can
be employed to train a relation extractor. However,
there are two further issues when evaluating URE
methods on NYT-FB. Firstly, the development and
test sets are all aligned sentences without human cu-
ration, which means that they include wrong/noisy
labelled instances. In particular, we found that 35
out of 100 randomly chosen sentences were given
incorrect relations. Secondly, the two validation
sets are part of the training set. This setting is ob-
viously not inductive, as it does not evaluate how
a model performs on unseen sentences. Therefore,
we additionally evaluate all methods (except topic
modelling) on the test set of TACRED (Zhang et al.,
2017), a widely used manually annotated corpus
for supervised RE. The statistics of both NYT-FB
and TACRED are provided in Appendix A.
Hyper-parameters We examine three models
RelLDA1, March, and Simon using the reported
hyper-parameters (Yao et al., 2011; Marcheggiani
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Figure 1: Average negative log likelihood losses across
three runs of the link predictor on the training data (not
including negative instances). Each line demonstrates
a different relation input setting.

and Titov, 2016; Simon et al., 2019). For compari-
son, we also evaluate March with the two regularis-
ers of Simon, namely March (Ls + Ld). To evalu-
ate on TACRED, we employed the original March
with n = 100 using the published repository3.
Meanwhile, for March (Ls+Ld) and Simon, we
reimplemented these models and evaluated them
on TACRED. Regarding our methods, EType does
not have hyper-parameters, while EType+ uses the
same optimiser and entity type dimension as in
Simon. All the hyper-parameters used in our exper-
iments are listed in Appendix B.
Results Table 1 demonstrates the average perfor-
mance of our methods across three runs in com-
parison with the three ML models on NYT-FB
and TACRED. Our models outperform the best
performing system of Simon et al. (2019) on
both datasets, except ARI on NYT-FB. ARI is
shown to be used when there are large equal-
sized clusters (Romano et al., 2016) while relation
datasets are generally imbalanced (both NYT-FB
and TACRED in this study; please refer to Ap-
pendix A for the detailed statistics). Due to this
reason, ARI might not be appropriate to evaluate
URE systems. In addition, the ML methods con-
sistently exhibit lower performance on TACRED
than on NYT-FB. The full results are shown in Ap-
pendix C.

4 Discussion

The results of our evaluation demonstrate that our
models outperform previous methods, despite be-
ing simpler than them. These results lead us to the

3github.com/diegma/relation-autoencoder

following findings.

Do ML models employ proper inductive biases?
In common with other unsupervised learning ap-
proaches, there is no guarantee that a URE model
would learn the relation types in the used KBs
and/or annotated data. A common solution is to
employ inductive biases (Wagstaff, 2000) to guide
the learning process towards desired relation types.
Inductive biases can emanate from pre-processed
data. Since our models outperform other methods,
we conclude that entity type information alone con-
stitutes a better bias than the biases employed by
existing ML models. Indeed, entity types consti-
tute a useful bias for this task. Among the topic
modelling based methods, RelLDA1 outperforms
RelLDA, which does not employ entity types. In
a separate experiment, we found that adding entity
types to the Simon model helped to achieve higher
performance than the original version, i.e., 42.74%
vs. 39.4% F1 B3 on the NYT-FB test set. However,
although both RelLDA1 and March also employ
entity types, their performance is still lower than
ours. This is because other syntactic and word fea-
tures used in these two models might cancel out
the useful bias of entity types. (More details are in
the last paragraph of this section.)

Inductive biases can emanate from training sig-
nals. March and Simon are trained from a link
predictor, which provides indirect signals to train
a relation classifier. Hence, the question here is

“can the link predictor induce good training signals?”
To answer this, we examine the link predictor with
alternative settings:
• Rand10 randomly assigns one among 10 re-

lation types to each entity pair;
• Rand10 with silver frequencies, similar to

Rand10, randomly generates relation types
but follows the silver relation distribution;
• One relation assumes all entity pairs sharing

the same relation type;
• EType uses 16 relation types induced from 4

coarse entity types;
• Silver relations (10) takes the top 9 most fre-

quent relation types and groups the rest to-
gether to form the tenth relation type;
• Silver relations (full) considers the full (sil-

ver) annotated relations, i.e., 262 types.
Figure 1 illustrates the average loss values of us-
ing these settings. If high quality relations were
critical for training the link predictor, we would
expect lower losses while using annotated relations.

https://github.com/diegma/relation-autoencoder
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Model B3 V ARI

EType+ 42.5 40.1 29.2
+Entity 40.5 39.9 28.6
+BOW 37.7 38.0 20.5
+DepPath 41.4 39.4 26.7
+POS 41.6 40.4 27.8
+Trigger 41.7 41.3 29.0
+PCNN 40.8 39.6 27.1

Table 2: Study of EType+ in combination with different
features. The results are average across three runs on
the development set.

Indeed, the loss curve of using 10 correct relation
types is consistently below all the others. This
implies that the link predictor is able to provide
reasonable signals for training a relation classifier.
So why are the Simon and March models outper-
formed by our models? As pointed out by Simon
et al. (2019), the link predictor itself cannot be
trained without a good relation classifier. It sug-
gests that the relation classifiers in both methods
need to be improved. Empirical evidence shows
that both Simon and March models are outper-
formed (in B3 and V) by our Etype+, which uses
the same link predictor. We also notice that both
One relation and EType at the end sharing similar
performances. This might imply that we only need
one relation (matrix) to predict head/tail entities, as
the link predictor is very expressive. However, the
silver relations are clearly helpful as during the first
15 epochs their losses are much lower than others.

Why was the performance on TACRED lower?
Despite the fact that TACRED shares similar rela-
tion types with Freebase, we observed that both
the March and Simon models consistently fare less
well in terms of their performance on the TACRED
dataset. More precisely, Simon model results in
significantly worse performance on TACRED, with
15.7% in terms of B3, which is twice as low as on
NYT-FB (39.4%). This performance drop might
be attributed to the distributional shift of the two
datasets: variation and semantic shift in vocabulary
and language structure over time, since NYT was
collected long before TACRED.

How is the performance when combining entity
types with other features? Our experiments us-
ing only entity types surprisingly perform higher
than the previous state-of-the-art methods includ-
ing feature engineering and deep learning models.

However, we know that context information is cru-
cial to distinguish the relation between two entities,
as many RE studies have been proposed to inte-
grate the context information to improve the RE
performance. We conduct experiments when com-
bining entity types with common features for RE
in Table 2. The list of features include: (i) Entity:
textual surface form of two entities, (ii) BOW: bag
of words between two entities, (iii) DepPath: words
on the dependency path between two entities, (iv)
POS: part-of-speech tag sequence between two en-
tities, and (v) Trigger: DepPath without stop words.
In general, naively combining entity types with
other features could not improve the model perfor-
mance. Additionally, BOW feature had negative
effects on the RE performance. This indicates that
bag of words between two entities often include
uninformative and redundant words, i.e., noises,
that are difficult to eliminate using simple neural
architectures. While (i)-(v) are widely used hand-
crafted features for RE, we also incorporated a
neural-based context encoder PCNN which is the
combination of Simon’s PCNN encoder, the entity
masking and position-aware attention proposed in
(Zhang et al., 2017). However, the performance
of combining PCNN is also lower than only entity
types.

5 Conclusion

We have shown the importance of entity types in
URE. Our methods use only entity types, yet they
yield higher performance than previous work on
both NYT-FB and TACRED. We have investigated
the current experimental setting, concluding that a
strong inductive bias is required to train a relation
extraction model without labelled data. URE re-
mains challenging, which requires improved meth-
ods to deal with silver data. We also plan to use dif-
ferent types of labelled data, e.g., domain specific
data sets, to ascertain whether entity type informa-
tion is more discriminative in sub-languages.
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A Datasets

Table 3 shows the statistics of the NYT-
FB (Marcheggiani and Titov, 2016) and TA-
CRED (Zhang et al., 2017) datasets. We followed
the same data split and pre-processing described
in Marcheggiani and Titov (2016). For all methods,
we trained on NYT-FB and evaluated them on both
NYT-FB and TACRED.

Figure 2 illustrates the relation distributions
of two datasets: NYT-FB and TACRED. We
can see that 15/253 most frequent relations ac-
count for 82.97% of the total number of instances
in NYT-FB. Meanwhile, 15/41 relations sum
upto 74.94% of the total number of instances in
TACRED.

B Hyper-parameter Settings

We used the development set to stop the training
process. For every model, we conducted three
runs with different initialised parameters and com-
puted the average performance. We list the hyper-
parameters of different models in Table 4.

C Detailed Results

Table 5 presents the average test scores of three
runs on the NYT-FB and TACRED datasets. We
note that the two models proposed by Marcheg-
giani and Titov (2016) and Simon et al. (2019) are
sensitive to the hyper-parameters and thus difficult
to train. We could not replicate the performance of
Simon on the NYT-FB dataset.

Train Dev Test

NYT-FB (#r = 262)

Raw instances 1,950,557 389,819 1,560,738
Positive 41,685 7,793 33,808

TACRED (#r = 41)

Raw instances 68,124 22,631 15,509
Positive 13,012 5,436 3,325

Table 3: The statistics of the NYT-FB and the
TACRED datasets. #r indicates the number of relation
types in each dataset.

Parameter Ls Ls+ Ld

Optimiser AdaGrad
Number of epochs 10
Batch size 100
L2 regularisation 1e-7
Feature dimension 10
Learning rate 0.1 0.005
Ls coefficient 0.1 0.01
Ld coefficient – 0.02

(a) Marcheggiani and Titov (2016)’s model.

Parameter Value

Optimiser Adam
Learning rate 0.005
Learning rate annealing 0.50.25

Batch size 100
Early stop patience 10
L2 regularisation 2e-11
Word dimension 50
Entity type dimension 10
Ls coefficient 0.01
Ld coefficient 0.02

(b) Simon et al. (2019)’s model.

Parameter Value

Optimiser Adam
Learning rate 0.001
Batch size 100
Early stop patience 10
L2 regularisation 1e-5
Entity type dimension 10
Ls coefficient 0.0001
Ld coefficient 0.02

(c) EType+.

Table 4: Hyper-parameter values used in our experi-
ments.
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Model B3 V-measure ARIF1 P R F1 Hom. Comp.

NYT-FB

RelLDA

n = 10

29.1 24.8 35.2 30.0 26.1 35.1 13.3
RelLDA1 36.9 30.4 47.0 37.4 31.9 45.1 24.2
March (Ls+Ld) 37.5 31.1 47.4 38.7 32.6 47.8 27.6
March (Ls+Ld)‡ 38.7 30.9 51.7 37.6 31.0 47.7 26.1
Simon 39.4 32.2 50.7 38.3 32.2 47.2 33.8
Simon‡ 32.6 28.2 38.9 30.5 26.1 36.8 23.8
EType+ 41.9 31.3 63.7 40.6 31.8 56.2 30.7

March (Ls+Ld)‡
n = 16

36.9 32.0 43.7 37.4 32.6 43.9 28.1
EType 41.7 32.5 58.0 42.1 34.7 53.6 30.7
EType+ 41.5 32.0 59.0 41.3 33.6 53.9 30.5

RelLDA1
n = 100

29.6 - - - - - -
March 35.8 - - - - - -
March‡ 34.8 24.4 62.4 25.9 18.7 42.7 13.1

TACRED

March (Ls+Ld)‡
n = 10

31.0 21.7 54.9 43.8 35.5 57.2 22.6
Simon‡ 15.7 12.1 22.4 17.1 14.6 20.6 6.1
EType+ 43.3 28.0 96.9 59.7 43.4 96.0 25.7

March (Ls+Ld)‡
n = 16

34.6 24.3 61.3 47.6 38.9 61.4 23.2
EType 48.3 32.3 96.3 64.4 48.6 95.6 29.1
EType+ 46.1 30.3 96.9 62.0 45.8 96.1 27.4

March‡ n = 100 33.13 21.83 69.20 43.63 32.96 64.66 20.21

Table 5: Average results (%) across three runs of different models (except the rule-based EType) on two datasets:
the distant supervision NYT-FB and the large supervised dataset TACRED. The model of Marcheggiani and Titov
(2016) is March and the model of Simon et al. (2019) is Simon. ‡ indicates our implementation of the corresponding
model.
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(a) NYT-FB has 253 relation types in total
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(b) TACRED has 41 relation types in total

Figure 2: Relation distribution of NYT-FB and TACRED (%).


