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Abstract

Machine reading is an ambitious goal in NLP
that subsumes a wide range of text understand-
ing capabilities. Within this broad framework,
we address the task of machine reading the
time of historical events, compile datasets for
the task, and develop a model for tackling
it. Given a brief textual description of an
event, we show that good performance can be
achieved by extracting relevant sentences from
Wikipedia, and applying a combination of task-
specific and general-purpose feature embed-
dings for the classification. Furthermore, we
establish a link between the historical event
ordering task and the event focus time task
from the information retrieval literature, show-
ing they also provide a challenging test case
for machine reading algorithms.1

1 Introduction

Machine reading concerns the extraction of entities
and relations from text and the ability to use them
meaningfully, for instance by answering questions
based on them, inferring other relations from them,
or using them to compile knowledge bases. Such
an inclusive task definition necessarily builds on a
wide range of NLP capabilities, from syntactic and
semantic analysis, to the use of world knowledge
and common sense. The inclusive nature of the task
supports the development of general-purpose meth-
ods, but also results in low performance in absolute
terms, difficulty in defining widely agreed-upon
evaluation protocols, and difficulties identifying
the sources of prediction errors (Stanovsky and
Dagan, 2016; Rajpurkar et al., 2016; Clark et al.,
2018).

This paper addresses a sub-task of machine read-
ing, namely the task of estimating when a historical

1Code and data are available at
https://github.com/ltorroba/
machine-reading-historical-events.

*Equal contribution.

Year Event text

O
T

D

2005 107 die in Amagasaki rail crash in Japan.
1939 BMI (Broadcast Music Incorporated) formed.

1864 General Sherman’s armies reach Savannah & 12
day siege begins.

W
O

T
D

1887 Buffalo Bill Cody’s Wild West Show opens in Lon-
don.

1399 Henry IV is proclaimed King of England.

1943 First Flight of the Gloster Meteor, Britain’s first
combat jet aircraft.

Table 1: Entries from the OTD and WOTD datasets.

event took place. This distinguishes it from tradi-
tional question answering (Rajpurkar et al., 2016)
as the answer may not be given in the text but the
models should still be able to place events in the
correct period of time. In turn, this means that
models trained for historical event ordering may
have real-world applications such as to serve as a
fallback for temporal question answering when the
answers are not present in the text and to improve
search engines that leverage the implicit time of
queries (Gupta and Berberich, 2016).

Concretely, given a short text description of a
historical event, and an external data source (hence-
forth contextual information or CI), the task is to
predict the year in which the event happened. The
external source in our case is Wikipedia. For exam-
ple, given the event description “The Government
of Turkey expels Patriarch Constantine VI from
Istanbul,” the task is to infer the year it took place
(i.e., 1925). We select Wikipedia as a source for
contextual information, due to its broad coverage,
and the wide interest it receives in the NLP com-
munity. Indeed, Wikipedia has often featured as a
semi-structured knowledge base, e.g., as a source
of concept grounding (Bunescu and Paşca, 2006)
and indirect supervision (Mintz et al., 2009).

We hypothesize that aside from time expressions,
the CI words themselves give an approximate time
in which an event happened. For example, the pres-

https://github.com/ltorroba/machine-reading-historical-events
https://github.com/ltorroba/machine-reading-historical-events
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ence of the word “spacecraft” in the CI probably
indicates an event that occurred after 1900, while
the presence of the word “sword” most likely in-
dicates an event that occurred before 1900. The
task is therefore different from tasks addressing the
extraction and normalization of time expressions,
or from related tasks pursued in the context of infor-
mation retrieval (see §8). Our results support this
hypothesis, and demonstrate that even when time
expressions are not present in the data, it is still
possible to predict the approximate year in which
an event happened.

We compile two datasets for the task, based on
the websites “Wikipedia On This Day” webpages
(WOTD) and “On This Day” (OTD). We consider
WOTD as an in-domain setting, given that it is
taken from Wikipedia as well (albeit from an en-
tirely disjoint part of Wikipedia). The OTD setting
was selected to be maximally challenging for lever-
aging external data sources, since (1) event descrip-
tions are taken from a different website, and may
be formulated very differently from Wikipedia; (2)
it is an order of magnitude larger, and so the clas-
sifier has plenty of data to train on, even without
relying on external data sources.

Our results show that on WOTD, good perfor-
mance can be obtained by detecting relevant sen-
tences from Wikipedia and extracting year men-
tions in them, but that substantially better perfor-
mance can be reached when additionally encoding
the entire sentences, using neural machinery. In
OTD, CI yields more modest improvements. Re-
sults in absolute terms are high: the best models ob-
tain a mean Kendall’s τ correlation with the correct
event ordering of 0.77 (WOTD) and 0.71 (OTD).

2 Task Definition and Motivation
The historical event ordering (HEO) task is defined
as follows. Given a set of brief event descriptions
and some textual resource, the task is either to pre-
dict the year in which each event occurred, or to
find a ranking of events such that they are ordered
by date of occurrence. The first variant is stronger
than the second, as it implies a ranking. Our evalu-
ation uses both rank correlation (Kendall’s τ ) and
measures of the distance between the year the event
took place and the predicted year. See Section 5.2
for details.
Differences from Question Answering. While
traditional question answering tasks require the an-
swer to be in the text (e.g., Hermann et al., 2015;
Rajpurkar et al., 2016), the HEO task is based on

estimating the time of occurrence of an event. This
estimation is based solely on lexical cues, and does
not require an explicit answer in any text. This
is a major advantage of HEO models, as explicit
answers are not always present in the text for two
reasons: (i) we would need a massive amount of
text for good coverage of historical events, which
may be unfeasible to use in real-world applications;
and (ii) new events are constantly occurring, and
existing machine reading comprehension models
will invariably fail on those (e.g., “When was Don-
ald Trump elected president?” will not be covered
in old data, but could be inferred to have happened
recently based on recognizing the named entity
“Donald Trump”). As answers are not guaranteed to
be in the text, the HEO task is somewhat more chal-
lenging than traditional question answering tasks.
The task’s challenge is also evidenced in that it
requires temporal commonsense reasoning and in
being challenging for humans (see §6).
Real-World Applications. As previously men-
tioned, HEO models do not assume the presence
of the answer in the source text, and can thus be
used for temporal question answering when the
answers are not present in it. By leveraging the
lexical information that exists only in the question
itself, these models can serve as a fallback for such
cases. Other possible applications are dating of his-
torical documents based solely on the documents’
text, improving search engines that leverage the
time of queries (Gupta and Berberich, 2016), as
well as making inferences that involve rough tem-
poral placement of the statement (e.g., inferences
involving refrigerators are unlikely to be relevant
before the 20th century).

3 Data Collection

This work introduces two datasets: WOTD and
OTD. Despite the similarity in their names, we
are not aware of any influence or other relation
between them. Using both datasets thus makes our
experimental analysis less prone to be biased by
dataset-specific artifacts.

Wikipedia On This Day (WOTD) was scraped
from Wikipedia’s On this day webpages.2 The
dataset contains 6,809 entries. Some example
entries are presented in Table 1. Events in
Wikipedia’s On This Day pages are crowdsourced,

2E.g., https://en.wikipedia.org/wiki/
Wikipedia:On_this_day/Today, accessed 03/2018.

https://en.wikipedia.org/wiki/Wikipedia:On_this_day/Today
https://en.wikipedia.org/wiki/Wikipedia:On_this_day/Today
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Figure 1: Distribution of event years in the OTD and
WOTD, binned into bins of 100 years. The y-axis cor-
responds to the proportion of events falling into the bin.

but must adhere to specific guidelines3 which in-
clude the validity and overall relevance of the his-
torical event. The earliest label in this dataset is
1302, and the latest is 2018. The median year is
1855.0 whereas the mean is 1818.7. The standard
deviation is 156.5 years.

On This Day (OTD) is a scrape of the On This
Day – Today in History, Film, Music and Sport (Li,
2018).4 On This Day has a dedicated team that
adds, verifies content, and responds to corrections
from the public.5 The dataset contains 75,135 en-
tries consisting of a sentence describing the event
and the event’s date. We removed 96 events from
the original dataset, which happened BCE (Before
Common Era), and also removed events that had
not happened yet. The earliest event in the dataset
occurred on year 1 CE (Common Era), and the
latest occurred in 2018 CE. The median label is
1960.0, while the mean label is 1913.8, so the dis-
tribution of labels is not uniform: there are more
events occurring in recent times. The standard de-
viation for the labels is 172.3 years.

Examples of entries from OTD are presented in
Table 1. We note that the overwhelming majority
of events in the datasets are real historical events,
and though we did not conduct an exhaustive anal-
ysis, the only two we identified as fictional were
removed by our filters. There are 8 events that
are dated in the future, and all but one of those

3https://en.wikipedia.org/wiki/
Wikipedia:Selected_anniversaries, accessed
04/2020.

4https://www.onthisday.com, accessed 01/2019.
5https://www.onthisday.com/about.php, ac-

cessed 04/2020.

(“Earth’s 1st contact with the extra-terrestrial Vul-
can species in the Star Trek universe”, on 2063
CE) correspond to either calendar occurrences (e.g.,
“Beginning of 2nd Julian Period (1/1 OS)”, on 3268
CE) or astronomical events (e.g., “Comet Swift-
Tuttle approaches close to Earth”, on 2126 CE).
Our pruning strategy (discard events before 1 CE)
was deliberately aggressive, removing 88 events
including widely accepted ones (e.g., “Battle of
Actium”, on 31 BCE); however, it is also effec-
tive in removing potentially fictitious events (e.g.,
“Creation of the world begins according to the cal-
culations of Archbishop James Ussher”, on 4004
BCE) or whose exact date may not be known (e.g.,
“Battle of Megiddo” dated to 1457 BCE, but subject
to debate).

Figure 1 shows the distribution of event years in
OTD and WOTD. Both datasets have significantly
more recent events from the last few centuries. We
use a random 80/10/10 split of each dataset to form
the training, validation and test sets.

4 Algorithmic Approaches

We propose two models: a bag of embeddings
model (BOE) and a recurrent neural network model
(LSTM). Both take a training example and output
a timestamp, in our case the year of the event. We
explore two supervised settings: a classification
setting, where each possible year corresponds to a
different class, and a regression setting, where the
labels are the numerical value of the timestamp.

As baselines, we define two models: one predicts
the mean year of the training set (MEAN), and one
predicts the median year present in the extracted
CI, falling back to the other baseline if no years are
found (CIYEAR).

4.1 Retrieving Relevant Wikipedia Sentences

Key Entities And Actions. We first identify the
key entities and actions in each event description.
Concretely, for a given event description e, we
define its key entities to be phrases from e that are
likely to be the topic of a Wikipedia article that
contains information relevant to e. We define key
actions to be a tuple of all verbs in e, excluding
some aspectual (e.g., “begin”) and auxiliary verbs.
We lemmatize all key actions.

For example, given the event description “The
Sixth Coalition attacks Napoleon Bonaparte in the
Battle of Leipzig”, we mark (“Sixth Coalition”,

https://en.wikipedia.org/wiki/Wikipedia:Selected_anniversaries
https://en.wikipedia.org/wiki/Wikipedia:Selected_anniversaries
https://www.onthisday.com
https://www.onthisday.com/about.php
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“Napoleon Bonaparte”, “Battle of Leipzig”)6 as the
key entities, and “attack” as the key action.

Entities and actions are extracted using a set
of pre-defined rules, based on linguistic features
such as part-of-speech (POS) tag, syntactic depen-
dency labels, and entity type, for words recognized
as named entities. Linguistic features, including
named entities, are extracted using spaCy.7 Some
example rules for detecting key entities are:

1. Take all named entities, excluding some entity
types such as MONEY, PERCENT and ORDINAL.

2. Take all nominal subjects, except pronouns
and nominalized adjectives. For example, for
“The Sixth Coalition attacks Napoleon Bonaparte
in the Battle of Leipzig”, “Sixth Coalition” is
marked as a key entity.

The complete set of rules can be found in the
supplementary material. The majority of key enti-
ties are named entities and are therefore identified
by the first rule above.

Article Retrieval. We use the extracted key en-
tities to retrieve relevant Wikipedia articles. For
each key entity, we retrieve the first search result
returned for the entity name, as proposed by the
Wikipedia API. We use the Python Wikipedia li-
brary8 for performing the queries.

Sentence Filtering. Filtering seeks to identify
sentences related to the historical event in ques-
tion. For example, for the event “The Skye Bridge
is opened”, the sentence “Construction began in
1992 and the bridge was opened by Secretary of
State for Scotland Michael Forsyth on 16 October
1995” from the article “Skye Bridge” is relevant.

We denote by {t1, ..., tk} the key entities for
each event, where k varies from one event to an-
other, and test several filtering methods:

1. Sentences from an article with title ti that con-
tain one or more tj for j 6= i, and a key action.

2. Sentences from an article with title ti that con-
tain one or more tj for j 6= i.

3. Sentences from an article with title ti that con-
tain all tj for j 6= i.

4. Sentences that contain a date.
6In some cases, overlapping entities are extracted. During

the next step of extracting Wikipedia’s articles, we remove
duplicate articles.

7www.spacy.io. We used spaCy’s v2 “en core web lg”
model.

8www.pypi.org/project/wikipedia

5. Sentences from an article with title ti contain
one or more tj for j 6= i, and a date.

Article sections with headers such as “See also”
and “Bibliography” are removed.

Following a manual inspection of the extracted
sentences with each of the methods, we find the
following method works best: (1) find all sentences
according to the first filter; (2) if no relevant sen-
tences are found, apply the second filter instead. In
addition, we add the original textual description of
the event (taken from OTD/WOTD) to the list of
relevant sentences.

Extracting Year Mentions. Given the relevant
sentences for each event, we extract from them all
year mentions. Years are extracted using the follow-
ing method: first, we use named entity recognition
to extract all dates. Second, of the words recog-
nized as dates, we keep only those whose POS
tag is NUMBER.9 We then parse the dates and
extract years, using a simple rule-based parser.10

We present here some statistics regarding years ex-
tracted for the WOTD validation set. For 1.8% of
the events, the real year appeared in the event title
itself. For 59.5% of the events, at least one year
appeared in the contextual information extracted
from Wikipedia. Out of the events for which at
least one year was extracted, 59.5% had the cor-
rect year in the extracted information. In total, for
35.4% of the events, the correct year appeared in
the contextual information extracted.

4.2 Baseline Models

To obtain an estimate of the difficulty of the task,
we design two baseline models. The MEAN model
predicts the mean year seen in the training set,
adding Gaussian noise ε ∼ N (0, 1yr) to break
ties and induce an ordering. The CIYEAR model
extracts year mentions, as detailed above, and pre-
dicts the median of all extracted years entities. If
no years are found, the model defaults to MEAN.

4.3 Bag of Embeddings Model

We use two types of features: (1) the average of
the word embeddings for all lemmatized words in
the extracted sentences, excluding stop words and
punctuation (as defined by SpaCy); (2) the median
value of all year mentions. To represent the me-
dian year, we use one-hot encoding for the tens,

9Again, all linguistic features are extracted using spaCy.
10www.pypi.org/project/python-dateutil

www.spacy.io
www.pypi.org/project/wikipedia
www.pypi.org/project/python-dateutil
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hundreds and thousands of the median year and
concatenate this encoding to the average embed-
ding. We experimented with encoding the least
significant digit as well, but find this lowers results.
We explore two variants of the model:

Classification. In the classification setting, the
final module consists of a multilayer perceptron
(MLP), where class labels are the target years. We
note that in the classification settings, the predicted
years can only be those that appear in the training
set. Since most of our evaluation metrics do not
require an exact prediction, but rather an approxi-
mate prediction, the classification still yields good
results. The final layer is a softmax layer, and the
loss function used is log-loss.

Regression. In the regression setting, the net-
work architecture is an MLP with a single output.
The regression target is the year of occurrence. The
loss function used is L1 loss. We experimented
with mean squared error loss (L2) as well, but this
gave lower performance.

4.4 Long Short Term Memory Model

The LSTM model takes as input the tokens for the
event text and the extracted sentences. A bidirec-
tional LSTM (Hochreiter and Schmidhuber, 1997;
Graves et al., 2005) is used to compute an encod-
ing of the event sentence (e) and each CI sentence
(c1, . . . , cn). We then use an attention mecha-
nism (Bahdanau et al., 2015) to compute a sim-
ilarity score between the event sentence and each
CI sentence, and compute an attention-weighted
average of the CI encodings, c′. When training
models with CI, we concatenate both e and c′ and
use that as input to an MLP that performs the final
year prediction. When not using CI, the only input
to the MLP is e. The structure of the MLP depends
on whether the model is operating on a classifica-
tion or a regression setting. The two variants we
explore are:

Classification. In the classification setting, the
final module is composed of an MLP that computes
the logits of the event happening in a specific year.
All years between the minimum and maximum
year present in the training set are valid targets. We
minimize the cross-entropy loss of the predicted
year.

Regression. In the regression setting, the final
module consists of an MLP with a single output.

Setting LSTM MLP
CI Use Mode L D L D

W
O

T
D No CI Regression 3 200 3 50

Classification 3 200 3 300

CI Regression 2 200 3 200
Classification 2 100 1 50

O
T

D No CI Regression 3 300 2 100
CI 2 200 2 100

Table 2: Setting-specific hyperparameter values for the
LSTM model. L = Layers, D = Layer dimensionality.

The regression target is the normalized year of the
event. We normalize by subtracting the mean year
of the training set and dividing the result by the
standard deviation. We experimented with regres-
sion to unnormalized targets, but found this de-
graded performance. We minimize the L2 loss of
the predicted year.

5 Experimental Setup

In this section we describe our experimental setup
and the evaluation metrics we use.

5.1 Hyperparameters and training

For the BOE model, in the classification setting we
set it to have two hidden layers, each with 1000
neurons. We ran experiments with Glove (Penning-
ton et al., 2014) and FastText (Bojanowski et al.,
2016) word embeddings and found that Glove vec-
tors with dimension 300, pretrained on Wikipedia
2014, performed best. The initial learning rate of
the MLP is set to 0.001. We use L2 regularization
with α = 10−4. In the regression setting the model
has one hidden layer with 32 units. We use Glove
with dimension 300. The initial learning rate is set
to 0.01. In both settings, we use ReLU as an activa-
tion function and Adam for an optimizer (Kingma
and Ba, 2014). We experimented with L1 and L2
regularization but found that this doesn’t improve
performance.

We found the LSTM model to be sensitive to
hyperparameter values, and therefore tuned it in-
dividually for each setting. The final hyperparam-
eters are shown in Table 2. We use the Adam op-
timizer (Kingma and Ba, 2014) with η = 0.001,
β1 = 0.9 and β2 = 0.999, and use PReLU ac-
tivations (He et al., 2015) in the MLP. We train
for a maximum of 100 epochs, doing early stop-
ping if the validation loss has not improved in 25
epochs. Furthermore, we decay the learning rate by
a factor of 0.1 if there is no reduction in validation
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set loss for 10 epochs. Preliminary experiments
with Glove (Pennington et al., 2014), ELMo (Pe-
ters et al., 2018) and FastText (Bojanowski et al.,
2016) word embeddings showed that concatenat-
ing 200-dimensional Glove and 300-dimensional
FastText embeddings performed best. We experi-
mented with L2 regularization and dropout on both
the MLP and LSTM but found that the performance
improvement was negligible, and so we did not use
them for our final experiments. Our LSTM im-
plementation was done using AllenNLP (Gardner
et al., 2018). All hyperparameter tuning was done
against the development data.

5.2 Evaluation Metrics

Kendall’s Tau (τ ), formally Kendall’s rank cor-
relation coefficient (Kendall, 1938, 1945), is a stan-
dard metric used to measure two different rankings
of the same set. Formally, for two rankings X
and Y , the form of a general correlation coeffi-
cient (Daniels, 1944) is

τ =

∑n
i,j=1aijbij

(
∑n

i,j=1a
2
ij)(

∑n
i,j=1b

2
ij)
, (1)

where aij is the score given to a pair (Xi, Xj) and
bij to the pair (Yi, Yj). For Kendall’s τ , aij = 1 if
Xi < Xj and aij = −1 if Xi > Xj , and similarly
for bij and Y . In plain words, τ is the number
of pairs which X and Y order in the same way
minus the number of pairs that are not ordered in
the same way, divided by the total number of pairs.
For the case where there are no ties, Kendall’s τ is
a shifted and scaled version of pairwise accuracy,
where τ = −1.0 corresponds to zero accuracy and
1.0 to perfect accuracy. To accommodate for ties,
we set aij = 0 when Xi = Xj , and bij = 0 when
Yi = Yj , as described by Kendall (1945). This
has the same effect as replacing tied members in
each set with all permutations of a contiguous set
of integer ranks and averaging by the total number
of permutations.

Exact Match. Percentage of events in which the
predicted year exactly matches the gold-standard.

Mean Absolute Error. This is the absolute mean
error for the predictions, in years.

Distance under 20Y and 50Y. The percentage
of events whose prediction error was under 20/50
years.

6 Results

Table 3 presents the results of our experiments.
We report the average of each statistic over 6 runs,
alongside the standard error of the mean at 95%
confidence. We include a detailed comparison of
the different architectures on the WOTD dataset.
We additionally select the best performing BOE
and LSTM models on the WOTD development set
and train them on the OTD dataset.

Our results show that the Wikipedia enrichment
is an essential component of the protocol. For the
WOTD dataset, all models exhibit a statistically
significant improvement in ordering when adding
CI, with the smallest improver being the LSTM
classification model, with a +0.053 change in τ ,
and the largest improver being the BOE regression
model, with a change +0.098 in τ .

For the OTD dataset, the LSTM model showed
a modest but statistically significant improvement
when adding CI. The BOE model presents a mi-
nor decrease in performance; however, we obtain
a statistically significant improvement of +0.027
in τ by restricting the CI to only include year men-
tions.11 As the OTD and the extracted CI are from
different domains, the words of the contextual in-
formation most probably add too much noise for
the BOE model to handle, which is why a perfor-
mance improvement is observed when only includ-
ing years, which are not domain-specific. This
indicates that leveraging CI is important, even in
this more challenging scenario, where the training
data is large and the CI is from another domain, but
also suggests that additional improvements, such
as using domain adaptation techniques (Ziser and
Reichart, 2017) for bridging the domain difference,
are required to obtain better performance.

One difference between the regression and clas-
sification settings is that the latter has higher exact
match metrics than the former. This reflects the
nature of the two architectures: when using L1/L2
regression, the loss is proportional to the difference
in the prediction, whereas in classification what
matters is the probability assigned to the exact year.

On the whole, the LSTM model produces better
predictions than the BOE model, according to most
measures. This is perhaps unsurprising, as it is able
to capture word context when analyzing the inputs,
leading to more effective reasoning.

11This experiment gave the following results: KT - 0.615
± 0.002, EM - 10.8 ± 0.2, 20Y - 67.6 ± 0.3, 50Y - 84.4 ±
0.2, MAE - 36.7 ± 0.4.
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Dataset CI use Mode Model Accuracy
KT EM 20Y 50Y MAE

WOTD

No CI

Regression BOE 0.564 ± 0.008 0.2 ± 0.1 16.8 ± 1.1 40.8 ± 1.5 83.6 ± 2.3
LSTM 0.688 ± 0.004 2.2 ± 0.6 42.7 ± 1.4 68.8 ± 0.3 51.6 ± 0.5

Classification BOE 0.627 ± 0.007 10.9 ± 0.5 49.8 ± 0.6 66.3 ± 0.5 59.3 ± 1.0
LSTM 0.639 ± 0.021 3.5 ± 0.5 39.4 ± 1.1 61.6 ± 1.6 64.5 ± 2.3

Baseline MEAN 0.005 0.3 9.40 28.2 127.2

CI

Regression BOE 0.662 ± 0.008 1.9 ± 0.4 51.4 ± 1.0 67.4 ± 0.4 53.4 ± 1.0
LSTM 0.767 ± 0.008 2.1 ± 0.8 51.5 ± 4.2 77.0 ± 2.0 38.4 ± 2.0

Classification BOE 0.705 ± 0.009 9.1 ± 0.6 61.9 ± 0.9 74.8 ± 0.5 45.8 ± 0.7
LSTM 0.692 ± 0.010 4.1 ± 0.4 44.6 ± 1.9 65.9 ± 1.6 56.9 ± 2.2

Baseline CIYEAR 0.551 13.1 56.2 66.7 64.5

OTD

No CI
Classification BOE 0.588 ± 0.003 11.1 ± 0.2 65.1 ± 0.2 83.1 ± 0.3 38.2 ± 0.4
Regression LSTM 0.683 ± 0.007 3.0 ± 0.3 67.8 ± 0.8 87.3 ± 0.3 29.0 ± 0.4
Baseline MEAN 0.006 0.5 12.9 37.4 85.7

CI
Classification BOE 0.560 ± 0.005 10.0 ± 0.2 64.4 ± 0.3 82.3 ± 0.2 40.3 ± 0.8
Regression LSTM 0.707 ± 0.005 3.2 ± 0.2 70.5 ± 0.6 88.9 ± 0.2 26.7 ± 0.6
Baseline CIYEAR 0.323 6.3 41.7 62.5 60.1

Table 3: Comparison of the BOE and LSTM models under classification (Classification) and regression (Regres-
sion) settings, with and without contextual information (CI) on the WOTD dataset (top), along with results from
best BOE and LSTM models on OTD dataset (bottom), with and without contextual information. We include a
95% confidence interval of the mean of each metric computed over 6 runs. Best models on the OTD dataset were
picked from the WOTD development set. We also include our baseline scores (Baseline). KT = Kendall’s Tau, EM
= Exact Match, 20Y = Distance under 20Y, 50Y = Distance under 50Y, MAE = Mean Absolute Error.

Ablation study. Table 4 presents the results of
two ablation studies on the best performing mod-
els on the WOTD development set, which are the
LSTM regressor and BOE classifier. Both stud-
ies are conducted on the WOTD development set.
To save space, we omit confidence intervals, but a
table including those can be found in the appendix.

Study A was conducted only on datapoints from
the WOTD dataset with contextual information.
We observe that for both models, the impact of
removing the event text and using only the ex-
tracted contextual information leads to a τ change
of −0.043 for BOE and −0.071 for LSTM. This
shows that the heuristics we propose for extracting
CI are effective at retrieving relevant information.

Study B was conducted on all datapoints from
the WOTD dataset. We report the impact of remov-
ing tokens denoting years, dates and numbers from
both the CI and the event text. We remove years
using the method described in §4.1. We remove
dates by removing any tokens within a DATE entity.
We remove numbers using the like num property
of the spaCy tokenizer, which includes different
forms that may be considered numerical (e.g. “1”
and “one”). Clearly, the removal of dates subsumes
the removal of years, and we expect the removal of
numbers to remove at least part of all dates, includ-
ing years, alongside other date-unrelated numbers.

The removal of these features has a very
similar impact. This is particularly the case
for the LSTM model, where the change in

τ was −0.041, −0.042 and −0.051 when re-
moving years, dates and numbers, respectively.
BOE presents similar differences in performance
when removing those features, with a change
in τ of −0.045/−0.031/−0.054 when removing
years/dates/numbers. These results support our hy-
pothesis that substantial information about the time
of an event is encoded in the vocabulary used, and
not only in the time expressions.

Human Performance We compare our results
to human performance on this task. Three partic-
ipants were given 100 randomly selected events
from the WOTD dataset and were asked to predict
years of occurrences, without using any contextual
information. All participants consider themselves
as having good knowledge of history, but are not
history experts. On average, their error was 52.3
years. The participant who had the best results had
a mean error of 34.6 years, which is only 3.8 years
less than our best result on the WOTD dataset.

7 Qualitative Analysis

In order to demonstrate the challenges put forth
by the addressed task, we examine some events
from the OTD development dataset on which our
best performing models, LSTM regressor and BoE
classifier, got significant prediction errors.

We observe that some events contain words that
are usually associated with a different period in
time than the year the event occurred in. For exam-
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Model
Accuracy

KT EM 20Y 50Y MAE

A

BOE 0.674 7.9 49.6 63.1 48.2
– event text 0.631 7.0 48.2 60.6 54.6
LSTM 0.765 1.8 50.2 78.8 39.0
– event text 0.694 1.3 39.9 69.7 50.6

B

BOE 0.668 9.1 55.3 71.0 50.7
– years 0.623 7.4 46.1 65.0 61.1
– dates 0.637 7.4 46.7 64.2 60.5
– numbers 0.614 8.0 46.3 64.2 63.1
LSTM 0.774 1.8 50.4 77.3 39.9
– years 0.733 1.3 41.0 68.5 48.3
– dates 0.732 1.4 42.5 70.1 47.7
– numbers 0.723 1.3 40.1 68.8 49.1

Table 4: Ablation study for BOE and LSTM models.
Study A was conducted only on datapoints from the
WOTD dataset with contextual information, and we re-
port the impact of removing the event text from both
models. Study B was conducted on all datapoints from
the WOTD dataset, and we report the impact of remov-
ing tokens denoting years, dates and numbers. Tokens
of these types were removed from the event text and
from the contextual information. KT = Kendall’s Tau,
EM = Exact Match, 20Y = Distance under 20Y, 50Y =
Distance under 50Y, MAE = Mean Absolute Error.

ple, “Portuguese expel Jesuits” occurred in 1911,
but most Jesuits-related events in our training data
occurred in the 16th century. One of these events
which is particularly similar to the above is “En-
glish parliament expels Jesuits”, which is dated to
1584. Probably for these reasons the LSTM and
BOE had similar outputs for this event – 1559 and
1581, respectively. Another example for such an
event is “Order of Merit instituted by King Edward
VII”, which occurred in 1902, but the word “King”
normally appears in events dated to earlier cen-
turies. The LSTM model output for this event is
1527, and BOE model output is 1639. Both events
had no CI extracted for them, therefore the models
had to rely on words in the event description only.

An example for which relevant CI was extracted
but the models still erred substantially is the event
“All female jury hears case of Judith Catchpole
accused of killing her child (acquit her) in Patuxent
County, Maryland”. This event is dated to 1656, but
the BOE model prediction for the event is 1957, and
the LSTM model prediction, 1873, is only slightly
better. The contextual information extracted for
this event was “Upon her arrival she was accused of
several crimes, resulting in a trial on September 22,
1656 in the General Provincial Court in Patuxent
County, Maryland”. The exact date of occurrence
does appear in the extracted data, and still both

models have a substantial prediction error. This
is probably due to the fact that our training data
contains many “court” and “jury” related events,
where most events containing “court” are relatively
recent (19th century and later), and almost all “jury”
related events are dated after 1900.

In some cases, the extracted CI can mislead our
models. For the event “Scotland and France form
an alliance, the beginnings of the Auld Alliance,
against England” that occurred in 1295, LSTM pre-
dicted the year 1659. Five sentences were extracted
for this event, which contained the years 1603 and
1707. Another example is “Over 250 years after
their deaths, William Penn and his wife Hannah
Callowhill Penn are made Honorary Citizens of the
United States” occurred in 1984. The CI extracted
includes the exact true date of the event, but also
includes information regarding the Penns’ lives,
and contains years ranging between 1680 to 1726.
This is probably the cause of error for the BOE
model, which predicts the year 1721, whereas the
LSTM model may have been able to better filter
the correct CI, and predict the year 1921.

Errors can also arise from terms that are ambigu-
ous between time periods. “Queen Elizabeth” is
such a term: it can indicate an event from the 16th
century, but also an event from the 20th/21st cen-
turies. Indeed, we notice confusion of the BOE
model on events related to Queen Elizabeth. For
example, “Francis Drake knighted by Queen Eliza-
beth I aboard Golden Hind at Deptford” occurred
in 1581, but the BOE model predicts the year 2013
– even though the true target year appears in the
extracted CI for the event: “I visited the royal dock-
yard on 4 April 1581 to knight the adventurer Fran-
cis Drake.” Similarly, the event “Ted Hughes is
appointed British Poet Laureate by Queen Eliza-
beth II” occurred in 1984, but the BOE model pre-
dicts the year 1579, which corresponds to Queen
Elizabeth I. We note that for those two events the
LSTM model gave better predictions (1566 for the
first event and 1981 for the second), which may be
related to the inherent difficulty of BOE to address
multi-word expressions like “Queen Elizabeth I”.

8 Related Work

Work on event ordering can largely be categorized
into event ordering in context, which aims to or-
der event instances within a given text or discourse
and is tackled as part of the TempEval shared tasks
(UzZaman et al., 2013), and lexical event order-
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ing (Abend et al., 2015), which attempts to order
event types by their prototypical temporal order.
Somewhat in between these lines of work is cross-
document event ordering (Minard et al., 2015),
which orders events that are mentioned across dif-
ferent documents. However, this task does not rely
on machine reading external textual resources as
we do here, and does not focus on historical events
that by their nature are described in a variety of
(often incompatible) ways.

A related line of work to ours was pursued in
the context of information retrieval (IR). Jatowt
et al. (2013) tackled the task of estimating what
the “focus time” of a given document is. Focus
time is defined as the time to which the main event
addressed by the document refers to. They do so
by computing the association of words and time
expressions, based on their co-occurrence, using a
bag-of-words method.

Das et al. (2017) address the task of focus time
prediction for short event descriptions, which re-
sembles the task at hand. They do so by using
cosine similarity to rank a set of candidate years
for each event, all of which are computed using
word embeddings. In a similar vein, Morbidoni
et al. (2018) find the focus time of short event de-
scriptions by relying on year mention statistics in
related Wikipedia articles and DBpedia entries.

While these two works are related to our task
in spirit, our work is not an instance of the event
focus time (EFT) task. In fact, we believe the EFT
task can be seen as a special case of the HEO task.
This is evidenced by the approach of EFT systems,
which exhibits traditional IR design and techniques,
such as producing a ranking of candidate predic-
tions for each document, and is evaluated using
ranking-specific metrics that forbid system designs
such as predicting years using regression. As HEO
subsumes EFT, we attempted to evaluate the perfor-
mance of EFT systems in the HEO task, but have
been unable to obtain code for either of the sys-
tems. We have also been unable to reimplement the
systems: (Das et al., 2017) leaves implementation
details unspecified, and (Morbidoni et al., 2018)
utilizes a proprietary system.

Another related line of work seeks to create time-
lines of temporal events by predicting their starting
and ending points. McClosky and Manning (2012)
address the problem of ensuring semantically con-
sistent timelines by finding patterns in the ordering
of endpoints of different event types, which adds a

common sense reasoning component to the system.
Leeuwenberg and Moens (2018) construct a rela-
tive timeline of events directly, which allows them
to circumvent typical pitfalls of pair-wise classi-
fiers, such as computationally intractable inference
and constructing globally inconsistent orderings
(with cycles). Our work takes a similar approach
but instead is able to construct an absolute timeline
for the restricted domain of historical events.

Within the domain of temporal text understand-
ing, the extraction and normalization of temporal
expression may inform the task at hand. For exam-
ple, Kuzey et al. (2016) defined the task of tagging
temporal expressions, which are named events or
facts with temporal scope, such as “second term
of Angela Merkel”. They used a rule-based sys-
tem to detect such expressions in free-text and map
these expressions to a knowledge base (KB) con-
taining time scopes of temporal events and facts.
This approach requires the existence of KB records
containing time scopes for the events.

9 Conclusion

In this paper we argued that the task of predict-
ing the time of historical events strikes a balance
between being a focused task, with transparent
evaluation and interpretable results, and presenting
challenges that are not simple to overcome using
standard NLP models. We outlined a procedure to
extract the CI related to an event and compared two
approaches for the task, using bag of embeddings
and an LSTM, showing that the latter achieves the
best performance. Future work will explore the use
of domain adaptation techniques to enhance perfor-
mance where the domains of the CI and event text
differ substantially.
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A Key Entities Extraction

We introduce the full set of rules for key entity ex-
traction. The following are considered key entities:

1. Named entities, excluding the following la-
bels: MONEY, TIME, PERCENT, DATA, OR-
DINAL, QUANTITY, CARDINAL.

2. A compound whose head, or the head of its
head, is the root of the sentence. For exam-
ple, in the event: “Apollo program: Apollo 14
returns to Earth after the third manned Moon
landing.”, this rule will extract “Apollo pro-
gram”.

3. An adjectival modifier or nominal modifier
whose head is the root, where the root is not
a verb. For example, in the event “Mexi-
can–American War: The first large-scale am-
phibious assault in U.S. history is launched in
the Siege of Veracruz.”, this rule will extract
“Mexican–American War”.

4. All nominal subjects, except pronouns and
nominalized adjectives. An example for this
rule can be found in the paper itself.

5. All passive nomial subjects that are proper
nouns. For example, in the event “The USS
George Washington is launched. It is the first

nuclear-powered ballistic missile submarine.”,
this rule extracts “USS George Washington”.

6. All direct objects that are proper nouns.

We note that for all rules except the first we take
all the sub-tree to which the word we found belongs.
We remove from the sub-tree determiners, puncu-
tation and adverbs. In the example given above –
“The USS George Washington is launched. It is the
first nuclear-powered ballistic missile submarine.”
– the word that complies to the fifth rule above is
“Washington”, but we extract “USS George Wash-
ington”. In addition, we remove relative clauses of
the phrase. For example, in the event “The British
Parliament passes the Stamp Act that introduces a
tax to be levied directly on its American colonies.”,
we are interested in extracting “Stamp Act”, but we
leave out the part “that introduces a tax...”. Simi-
larly, from the event “The debut exhibition of the
Belitung shipwreck, containing the largest collec-
tion of Tang dynasty artifacts found in one loca-
tion, begins in Singapore.”, we leave out the part
“containing the largest...” when extracting “debut
exhibition of Belitung shipwreck”.

B Extended Ablation Results

Refer to Table 5 for an expanded table of the abla-
tion experiments that includes metric error.
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Model
Accuracy

KT EM 20Y 50Y MAE

A

BOE 0.674 ± 0.010 7.9 ± 0.7 49.6 ± 0.6 63.1 ± 0.4 48.2 ± 1.8
– event text 0.631 ± 0.009 7.0 ± 0.6 48.2 ± 0.7 60.6 ± 0.7 54.6 ± 1.1
LSTM 0.765 ± 0.009 1.8 ± 0.4 50.2 ± 4.6 78.8 ± 1.9 39.0 ± 2.1
– event text 0.694 ± 0.011 1.3 ± 0.4 39.9 ± 5.1 69.7 ± 4.3 50.6 ± 3.3

B

BOE 0.668 ± 0.007 9.1 ± 0.4 55.3 ± 0.8 71.0 ± 0.7 50.7 ± 1.2
– years 0.623 ± 0.007 7.4 ± 0.3 46.1 ± 0.7 65.0 ± 0.2 61.1 ± 0.7
– dates 0.637 ± 0.008 7.4 ± 0.5 46.7 ± 0.5 64.2 ± 0.8 60.5 ± 1.6
– numbers 0.614 ± 0.007 8.0 ± 0.3 46.3 ± 0.7 64.2 ± 1.0 63.1 ± 0.7
LSTM 0.774 ± 0.006 1.8 ± 0.3 50.4 ± 3.6 77.3 ± 1.4 39.9 ± 1.6
– years 0.733 ± 0.007 1.3 ± 0.5 41.0 ± 1.2 68.5 ± 0.9 48.3 ± 1.4
– dates 0.732 ± 0.004 1.4 ± 0.2 42.5 ± 0.6 70.1 ± 1.0 47.7 ± 0.6
– numbers 0.723 ± 0.007 1.3 ± 0.3 40.1 ± 1.2 68.8 ± 0.7 49.1 ± 1.0

Table 5: Ablation study for BOE and LSTM models. We include a 95% confidence interval of the mean of each
metric computed over 6 runs. Study A was conducted only on datapoints from the WOTD dataset with contextual
information, and we report the impact of removing the event text from both models. Study B was conducted on
all datapoints from the WOTD dataset, and we report the impact of removing tokens denoting years, dates and
numbers. Tokens of these types were removed from the event text and from the contextual information. KT =
Kendall’s Tau, EM = Exact Match, 20Y = Distance under 20Y, 50Y = Distance under 50Y, MAE = Mean Absolute
Error.


