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Abstract

In this work, we explore the implicit event ar-
gument detection task, which studies event ar-
guments beyond sentence boundaries. The ad-
dition of cross-sentence argument candidates
imposes great challenges for modeling. To
reduce the number of candidates, we adopt a
two-step approach, decomposing the problem
into two sub-problems: argument head-word
detection and head-to-span expansion. Evalu-
ated on the recent RAMS dataset (Ebner et al.,
2020), our model achieves overall better per-
formance than a strong sequence labeling base-
line. We further provide detailed error analy-
sis, presenting where the model mainly makes
errors and indicating directions for future im-
provements. It remains a challenge to de-
tect implicit arguments, calling for more future
work of document-level modeling for this task.

1 Introduction

Event argument detection is a key component in
the task of event extraction. It resembles semantic
role labeling (SRL) in that the main target is to
find argument spans to fill the roles of event frames.
However, event arguments can go beyond sentence
boundaries: there can be non-local or implicit argu-
ments at the document level. Figure 1 shows such
an example: for the purchase event, which is trig-
gered by the word “bought”, its money argument
appears in the previous sentence.

Implicit arguments have been under-explored in
event extraction. Most of previous systems (Li
et al., 2013; Chen et al., 2015; Nguyen et al., 2016;
Wang et al., 2019) only consider local arguments in
the same sentence of the event trigger. While incor-
porating implicit arguments requires corresponding
annotations, few exists in most of the widely used
event datasets, like ACE2005 (LDC, 2005; Walker
et al., 2006) and RichERE (LDC, 2015). There are
several annotation efforts for implicit arguments

(a) The new computer cost 3000 dollars, while the
old one cost 1000 dollars. Nevertheless, he still
bought the more expensive one.

(b) The new computer cost 3000 dollars, while the
old one cost 1000 dollars. Therefore, he bought
the cheaper one.

Tokens:      ... cost 3000  dolloars  , ...       ... still  bought  the more ...
Indicators:  ...    0     0           0       0 ...      ...    1        0         1     1    ...

BERT Encoder

...                          ...           ...                              ...

   Biaffine
Role-Scorer

Head-to-Span
    Expander

left         right                      arg            trigger

BERT
Reprs.

Decoders

Figure 1: Examples of implicit arguments and model
illustration. The bold text indicates the trigger word
for the purchase event, while the underlined text indi-
cates its non-local “money” argument in the previous
sentence. Our model first detects the head-word “dol-
lars”, and then expands it to the whole span.

in SRL, including G&C (Gerber and Chai, 2010,
2012), SemEval-2010 (Ruppenhofer et al., 2009,
2010), and 80Days (Feizabadi and Padó, 2014). Yet
most are performed with different ontologies such
as Nombank (G&C) and FrameNet (SemEval-2010
and 80Days); on different domains (e.g. novels);
and in smaller scales (G&C and 80Days only cover
10 types of predicates). The lack of annotations
poses challenges to train and transfer implicit argu-
ment models for event extraction.

Recently, Ebner et al. (2020) create the Roles
Across Multiple Sentences (RAMS) dataset, which
covers multi-sentence implicit arguments for a
wide range of event and role types. They fur-
ther develop a span-based argument linking model
and achieve relatively high scores. However, they
mainly explore a simplified setting that assumes
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the availability of gold argument spans. We ex-
tend their work and explore the more challenging
full detection problem that predicts argument spans
among all possible candidates. The difficulty of the
full problem is highlighted in Figure 1. Both “3000
dollars” and “1000 dollars” are good candidates
for the money role of the purchase event, but the
selections are different given different contexts.

When considering all possible candidate spans
that may occur in any sentences, their quadratic
number poses great challenges for the detection. In-
spired by dependency-based SRL (Surdeanu et al.,
2008; Hajič et al., 2009), we take the syntacti-
cal head-words as the proxy for full argument
spans, hypothesizing that the head-words can con-
tain enough information to fill the argument roles.
Based on this, we adopt a two-step approach: first
detecting the head-words of the arguments, and
adopting a second step of head-to-span expansion.
Actually, this type of two-step setup is not uncom-
mon in prior work of information extraction, includ-
ing entity detection (Lin et al., 2019), coreference
resolution (Peng et al., 2015) and document-level
pseudo-coreference (Jauhar et al., 2015; Liu et al.,
2016). By considering only individual tokens in
the detection step, the system only needs to han-
dle a candidate space whose size scales linearly
in respective to the number of tokens instead of
quadratically.

With the same setting of fine-tuning BERT (De-
vlin et al., 2019) encoder, we show the effective-
ness of our model by obtaining overall better results
than a strong sequence-labeling model. We further
provide detailed error analysis, showing that the
main difficulties of the task are upon non-local and
non-core arguments. Our analysis shows that the
implicit argument task is quite challenging, calling
for more future work on document-level semantic
understanding for this task.

2 Model

The goal of event argument detection is to create
labeled links between argument spans and the pred-
icate (event trigger). Recent state-of-the-art solu-
tions for sentence-level SRL perform the detection
in an end-to-end setting, such as span-based (He
et al., 2018; Ouchi et al., 2018), and sequence
labeling models (He et al., 2017; Shi and Lin,
2019). However, span-based models face great
challenges when considering arguments across sen-
tence boundaries, since the computational complex-

ity of such models grows quadratically to deal with
O(N2) span candidates given N tokens. While
traditional sequence labeling models can run in
linear-time, they are less flexible and extensible
in complex scenarios like overlapping mentions
and multiple roles for one mention. In this work,
we take a two-step approach that decomposes the
problem explicitly into two sub-problems, based
on the hypothesis that head-words can usually cap-
ture the information of the mention spans. Figure
1 illustrates the three main modules of our model:
1) BERT-based Encoder, 2) Argument Head-Word
Detector, and 3) Head-to-span Expander.

2.1 BERT-based Encoder
Our encoding module is a BERT-based contextual-
ized encoder. The input contains a predicate word
(or occasionally a span), which triggers an event,
together with its multi-sentence context. We re-
fer to the sentence containing the event trigger as
the center sentence. We concatenate the tokens
within the 5-sentence window (the window size
used in RAMS annotation) of the center sentences,
and feed them to BERT to obtain the contextual
representation e of each token. In addition, we add
special token type ids indicators: tokens of
the event trigger are assigned 0, other tokens in
the center sentence get 1, and tokens in surround-
ing sentences get 01. We only adopt the indica-
tors when fine-tuning BERT, since the pre-trained
BERT originally uses them as segment ids.

2.2 Argument Head-word Detector
Instead of directly deciding argument spans, we
first identify the head-words of the arguments. The
hypothesis is that the head-word is able to represent
the meaning of the whole span. In this way, this
sub-problem mimics a token-pairwise dependency-
parsing problem. Following (Dozat and Manning,
2017, 2018), we adopt a biaffine module to calcu-
late Prr(p, c): the probability of a candidate word c
filling an argument role r in the frame governed by
a predicate p. We first take the contextualized rep-
resentations of the candidate (ec) and the predicate
(ep), which are calculated by BERT as described in
§2.1. “Biaffiner” further gives the pairwise score
based on these representations, and Prr(p, c) is then

1We overload 0 because pre-trained BERT only has two
types of token type id. Nevertheless, the trigger words
are still distinguishable since they appear inside center sen-
tences, and are separated from other sentences.
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given by softmax with the scores:

Prr(p, c) =
expBiaffiner(ep, ec)∑

c′∈C∪{ε} expBiaffiner(ep, ec′)

where the normalization is done over the argument
candidate set C (or null ε, whose score is fixed
to 0) for each role, following (Ebner et al., 2020;
Ouchi et al., 2018). During training, we use the
cross-entropy loss to guide the network to pick
head-words of gold arguments (or ε if there are
no arguments for this role). If there are multiple
arguments for one role, we view them as individual
instances and sum the losses. At inference time,
we simply pick the maximumly-scored argument
(or ε) for each role.

2.3 Head-to-span Expander
The second module expands each head-word of the
argument to its full span. We view it as a com-
bination of left and right boundary classification
problems. Taking the left-expanding scenario (L)
as example, for each head-word h, we generate
a set of candidate spans by adding words one by
one on the left up to K words (we empirically set
K = 7), and calculate the probability of word b
being the boundary as follow:

PrL(h, b) =
expMLPL(eh, eb)∑

b′∈(h−K,h] expMLPL(eh, eb′)

Here, the input to the Multi-layer Perceptron (MLP)
is again the contextualized representations as de-
picted in §2.1. During training, we minimize cross-
entropy losses on the left and right respectively.
At test time, we expand to the maximumly-scored
boundary words on both sides.

3 Experiment

We conduct all experiments2 on the RAMS (v1.0)
dataset and focus on the event argument detection
task: given (gold) event triggers and their multi-
sentence contexts, predicting the argument spans
from raw input tokens. Following (Ebner et al.,
2020), we only use gold event types in the type-
constrained decoding (TCD) setting.

Through our experiments, we adopt the pre-
trained bert-base-cased model. We train all
the models for maximumly 20 epochs. If fine-
tuning BERT, we set the initial learning rate to 5e-
5; otherwise, it is set to 2e-4. We jointly train our

2Our implementation is publicly available at https://
github.com/zzsfornlp/zmsp

+TCD Dev. F1 Test P Test R Test F1

Span no 69.9 62.8 74.9 68.3
yes 75.1 78.1 69.2 73.3

Head no 71.0 71.5 66.2 68.8
yes 74.3 81.1 66.2 73.0

Table 1: Comparison of Span-based (Ebner et al., 2020)
and Head-based (ours) models on RAMS, given gold
argument spans. “+TCD” indicates whether applying
type-constrained decoding based on gold event types.

argument-detector and span-expander, with loss
multipliers of 1.0 and 0.5, respectively.

Since head-words are not annotated, we apply a
simple rule: utilizing predicted dependency trees,
we heuristically pick the word that has the smallest
arc distance to the dependency root as the head.
Ties are broken by choosing the rightmost one.
There are cases where this procedure does not al-
ways give the perfect head, or there is no single
head-word for a span (e.g., in multi-word expres-
sions or conjunction). Nevertheless, we find this
strategy works well in practice.

3.1 Argument Linking with Gold Spans
Setting To compare our model with span-based
models, we first evaluate in the same setting of
(Ebner et al., 2020) that assumes gold argument
spans. We directly apply the head rule on the gold
spans and consider the head-words as candidates.
We also adopt the same BERT setting: learning a
linear combination of layers 9, 10, 11 and 12, and
applying neither the special input indicators nor
fine-tuning.

Results Table 1 compares our results with the re-
ported results of the span-based model from (Ebner
et al., 2020). The results show that the head-word
approach can get comparable results to the span-
based counterpart. This matches our hypothesis
that head-words contain sufficient information of
surrounding words using contextualized embed-
ding, making them reasonable alternatives to full
argument spans.

3.2 Full Argument Detection
Setting This setting considers all arguments from
any spans in the multi-sentence context. Unless oth-
erwise noted, here we use the last layer of BERT
and apply fine-tuning for the whole model. We
compare with a strong BERT-based BIO-styled se-
quence labeling model (Shi and Lin, 2019). We

https://github.com/zzsfornlp/zmsp
https://github.com/zzsfornlp/zmsp
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+TCD Dev. Test

SpanF1 HeadF1 SpanF1 HeadF1

Seq. no 38.1±0.7 45.7±0.7 39.3±0.4 47.1±0.7
yes 39.2±0.7 46.7±0.8 40.5±0.4 48.0±0.5

Head no 38.9±0.6 46.4±0.7 40.1±0.7 47.7±0.9
yes 40.3∗±0.6 48.0∗±0.7 41.8∗±0.6 49.7∗±0.8

Table 2: Comparison of the sequence-labeling model
(Seq.) and our Head-based model for argument detec-
tion on RAMS v1.0. All results are averaged over five
runs, ‘∗’ denotes that the result of Head model is sig-
nificantly better than the corresponding Seq. model (by
paired randomization test, p < 0.05).

SpanF1 HeadF1

BERT-Full 38.9±0.6 46.4±0.7
No-Indicator 35.6±0.4 42.9±0.4
No-FineTuning 34.4±0.5 40.0±0.4

LSTM 26.6±0.4 31.9±0.6

Table 3: Ablation on the encoder for the head-based ar-
gument detection model (on development set, no type-
constrained decoding). “BERT-Full” is our full fine-
tuned BERT encoder, “No-Indicator” ablates indicating
inputs, “No-FineTuning” freezes all pre-trained param-
eters of BERT, and “LSTM” replaces the BERT with a
bi-directional LSTM encoder.

adopt a modified version3 from AllenNLP and re-
train it on RAMS with similar settings: adopting
special input indicators and fine-tuning BERT. For
arguments that have multiple roles labels, we sim-
ply concatenate the labels as a new class.

Results Table 2 shows the main results for full
argument detection. Since the criterion of full-span
matching might be too strict in some way, we also
report head-word based F1 scores by evaluating
solely on head-word matches (obtained using the
same head rules). The results show that our head-
word based approach gets better results on aver-
age without type-constrained decoding and signifi-
cantly better results after adopting type-constrained
decoding with gold event types. Our head-driven
approach is also flexible and easily extensible to
more complex scenarios like nesting mentions or
multiple roles, while keeping the linear complexity.

Ablation Table 3 lists the ablation results on the
encoder. The results show that the BERT encoder
contributes much to the performance of our full

3https://github.com/
allenai/allennlp/blob/
b89ff098372656b674ec71457dda071222fd05ae/
allennlp/models/srl_bert.py

d=-2 d=-1 d=0 d=1 d=2
(3.6%) (7.5%) (82.8%) (4.0%) (2.1%)

Seq. 14.0±0.6 14.0±2.4 41.2±0.9 15.7±1.0 4.2±2.5
Head 15.6±1.7 15.3±1.0 43.4±0.7 17.8±2.6 8.5±6.2

Table 4: Performance breakdown for Span-F1 by
argument-trigger distance d (on development set, no
type-constrained decoding). Numbers in parentheses at
the second row indicate the distribution over distance d.

model. Fine-tuning BERT and the special indicator
inputs can provide further improvements.

On Sentence Distances Table 4 lists the perfor-
mance breakdown on different sentence distances
between arguments and triggers. As opposed to the
relative consistent performance in the gold span set-
ting, as shown in (Ebner et al., 2020), we notice a
dramatic performance drop on non-local arguments.
There may be two main reasons: 1) data imbalance,
since non-local implicit arguments appear much
less frequently (only around 18% in RAMS) than
local ones; 2) lack of direct syntax signals, mak-
ing the connections between the implicit arguments
and event triggers much weaker than the local ones.

On Argument Roles We also investigate perfor-
mance breakdowns on different argument roles.
The results are shown in Figure 2, where we take
the top-20 frequent roles to get more robust re-
sults. We can observe that our model performs
better on core roles such as “communicator”, “em-
ployee” and “victim” (with F1 > 50), but struggles
on non-core roles, like “instrument”, “origin” and
“destination”, with F1 scores of around 20 to 30.
The F1 scores correlate well (with Pearson and
Spearman correlation coefficients of 0.64 and 0.70,
respectively) with the local percentages: the more
often one role appears locally around the event trig-
ger, the better results it can obtain. These patterns
are not surprising if we consider the possible un-
derlying reasoning. The non-core arguments are
not closely related with the event trigger, and thus
can appear more freely at other places (or some-
times even be omitted), leading to a lower local
percentage and also being harder to detect.

3.3 Manual Analysis
To further investigate in detail what type of errors
the model makes, we sample 200 event frames
from the development set and manually compare
our model’s predictions with the gold annotations.
Overall, there are 459 annotated arguments and 442

https://github.com/allenai/allennlp/blob/b89ff098372656b674ec71457dda071222fd05ae/allennlp/models/srl_bert.py
https://github.com/allenai/allennlp/blob/b89ff098372656b674ec71457dda071222fd05ae/allennlp/models/srl_bert.py
https://github.com/allenai/allennlp/blob/b89ff098372656b674ec71457dda071222fd05ae/allennlp/models/srl_bert.py
https://github.com/allenai/allennlp/blob/b89ff098372656b674ec71457dda071222fd05ae/allennlp/models/srl_bert.py
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Category Description Example Count
(Percentage)

Correct Correct - 348 (38.6%)

Span Unimportant
span mismatch

The [monument]artifact to fallen Soviet sailorsartifact in Limbazi, was de-
molishedDestroy by activists.

82 (9.1%)

Coref. Co-references The United Statesdestination gets more energy domestically, as [the
country]destination continues to rely on oil importsTranport from elsewhere.

60 (6.7%)

Possi. Possible annota-
tion problems

A Chinese officialparticipant said dialogueDiscussion was needed to resolve
issues on the Korean peninsula.

44 (4.9%)

Partial Partially correct [His]recipient family, advisers and alliesrecipient set about acquiringPurchase
expensive overseas homes and positions in the country.

26 (2.9%)

Frame Frame errors Relation was wrecked last November when [Turkey]killer attacker shotLifeDie
down a fighter jet over the boarder.

31 (3.4%)

Others Other errors - 310 (34.4%)

Table 5: Examples and results of error analysis. In the examples, the bold text indicates the trigger word, followed
by its event type noted in green. Arguments in gold annotations are indicated by the underlined spans with red role
types, while the predicted arguments are indicated by [bracketed] spans with blue role types.

0.65 0.70 0.75 0.80 0.85 0.90 0.95
Local-Percentage

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

F1

place
recipient

communicator

participant

giver

victim
artifact

beneficiary

instrument

attacker

target

preventer

transporter

origin

defendant

destination

injurer
crime

employee

Figure 2: Performance breakdown of Span-F1 on the
top-20 frequent roles (on development set, no type-
constrained decoding). x-axis represents the percent-
age of local arguments for this role, while y-axis de-
notes the role specific Span-F1 scores. The two blue
dashed lines denote the overall F1 scores (0.389) and
local percentage (82.8%).

predicted ones. For both annotated and predicted
arguments, we assign them to one of seven cate-
gories, and the results are listed in Table 5. Here,
the “Span” errors denote unimportant span mis-
matches, and they take nearly 9% of all items. If
we ignore these errors, the performance can reach
around 47%, which roughly matches the automat-
ically evaluated Head-F1 scores. In some way,
this supports our intuition to adopt a two-step ap-
proach, since the decisions of the span ranges may
be separated from the core problem of argument
detection, where head-words can be reasonable rep-
resentatives. Another major source of errors comes
from “Coref.”, which is not surprising since the

same entities can have multiple appearances at the
document level. Our analysis indicates that this is
a problem that should be further investigated for
both modeling and evaluation. Another notable
type of error is frame mismatch (“Frame”). In the
main setting (without type-constrained decoding),
our model neither utilizes nor predicts event frame
types, meaning that the frame information purely
comes from the trigger words. Therefore, roles
belonging to other event frames may be predicted.
Finally, the “Others” category includes the ones
where we cannot find obviously intuitive patterns.
We would identify most of them as the more diffi-
cult cases, whose error breakdown follows similar
patterns to the overall ones as shown in Figure 2.

4 Conclusion

In this work, we propose a flexible two-step ap-
proach for implicit event argument detection. Our
head-word based approach effectively reduces the
candidate size and achieves good results on the
RAMS dataset. We further provide detailed error
analysis, showing that non-local and non-core argu-
ments are the main difficulties. We hope that this
work can shed some light and inspire future work
at this line of research.
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