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Abstract
Image captioning is a multimodal problem
that has drawn extensive attention in both the
natural language processing and computer vi-
sion community. In this paper, we present
a novel image captioning architecture to bet-
ter explore semantics available in captions and
leverage that to enhance both image represen-
tation and caption generation. Our models first
construct caption-guided visual relationship
graphs that introduce beneficial inductive bias
using weakly supervised multi-instance learn-
ing. The representation is then enhanced with
neighbouring and contextual nodes with their
textual and visual features. During genera-
tion, the model further incorporates visual rela-
tionships using multi-task learning for jointly
predicting word and object/predicate tag se-
quences. We perform extensive experiments
on the MSCOCO dataset, showing that the
proposed framework significantly outperforms
the baselines, resulting in the state-of-the-art
performance under a wide range of evaluation
metrics. The code of our paper has been made
publicly available. 1

1 Introduction

Automatically generating a short description for
a given image, a problem known as image cap-
tioning (Chen et al., 2015), has drawn extensive
attention in both the natural language processing
and computer vision community. Inspired by the
success of encoder-decoder frameworks with the
attention mechanism, previous efforts on image
captioning adopt variants of pre-trained convolu-
tion neural networks (CNN) as the image encoder
and recurrent neural networks (RNN) with visual
attention as the decoder (Lu et al., 2017; Anderson
et al., 2018; Xu et al., 2015; Lu et al., 2018).

Many previous methods translate image repre-
sentation into natural language sentences without

1 https://github.com/Gitsamshi/WeakVRD-Captioning

Figure 1: Visual relationship graphs from a pre-trained
detection model (Yao et al., 2018) (upper) and from the
ground-truth caption (bottom).

explicitly investigating semantic cues from texts
and images. To remedy that, some research has
also explored to detect high-level semantic con-
cepts presented in images to improve caption gen-
eration (Wu et al., 2016; Gan et al., 2017; You
et al., 2016; Fang et al., 2015; Yao et al., 2017).
It is believed by many that the inductive bias that
leverages structured combination of concepts and
visual relationships is of importance, which has led
to better captioning models (Yao et al., 2018; Guo
et al., 2019; Yang et al., 2019). These approaches
obtain visual relationship graphs using models pre-
trained from visual relationship detection (VRD)
datasets, e.g., Visual Genome (Krishna et al., 2017),
where the visual relationships capture semantics
between pairs of localized objects connected by
predicates, including spatial (e.g., cake-on-desk)
and non-spatial semantic relationships (e.g., man-
eat-food) (Lu et al., 2016).

As in many other joint text-image modeling prob-
lems, it is crucial to obtain a good semantic rep-
resentation in image captioning that bridges se-
mantics in language and images. The existing ap-
proaches, however, have not yet adequately lever-
aged the semantics available in captions to con-
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struct image representation and generate captions.
As shown in Figure 1, although VRD detection
models present a strong capacity in predicting
salient objects and the most common predicates,
they often ignore predicates vital for captioning
(e.g., “grab” in this example). Exploring better
models would still be highly desirable.

A major challenge for establishing a struc-
tural connection between captions and images
is that the links between predicates and the cor-
responding object regions are often ambiguous:
within the “image-level” label (obj1, pred, obj2)
extracted from captions, there may exist multiple
object regions corresponding to obj1 and obj2. In
this paper, we propose to use weakly supervised
multi-instance learning to detect if a bag of object
(region) pairs in an image contain certain predi-
cates, e.g., predicates appearing in ground-truth
captions here (or in other applications, they can be
any given predicates under concerns). Based on
that we can construct caption-guided visual rela-
tionship graphs.

Once the visual relationship graphs (VRG) are
built, we propose to adapt graph convolution op-
erations (Marcheggiani and Titov, 2017) to obtain
representation for object nodes and predicate nodes.
These nodes can be viewed as image representation
units used for generation.

During generation, we further incorporate visual
relationships—we propose multi-task learning for
jointly predicting word and tag sequences, where
each word in a caption could be assigned with a
tag, i.e., object, predicate, or none, which takes as
input the graph node features from the above visual
relationship graphs. The motivation for predicting
a tag in each step is to regularize which types of in-
formation should be taken into more consideration
for generating words: predicate nodes features, ob-
ject nodes features, or the current state of language
decoder. We study different types of multi-task
blocks in our models.

As a result, our models consist of three ma-
jor components: constructing caption-guided vi-
sual relationship graphs (CGVRG) with weakly-
supervised multi-instance learning, building
context-aware CGVRG, and performing multi-task
generation to regularize the network to take into
account explicit predicate object/predicate con-
straints. We perform extensive experiments on
the MSCOCO (Lin et al., 2014) image captioning
dataset with both supervised and Reinforcement

learning strategy (Rennie et al., 2017). The ex-
periment results show that the proposed models
significantly outperform the baselines and achieve
the state-of-the-art performance under a wide range
of evaluation metrics. The main contributions of
our work are summarized as follows:

• We propose to construct caption-guided vi-
sual relationship graphs that introduce ben-
eficial inductive bias by better bridging cap-
tions and images. The representation is further
enhanced with neighbouring and contextual
nodes with their textual and visual features.

• Unlike existing models, we propose multi-task
learning to regularize the network to take into
account explicit object/predicate constraints
in the process of generation.

• The proposed framework achieves the state-of-
the-art performance on the MSCOCO image
captioning dataset. We provide detailed anal-
yses on how this is attained.

2 Related Work

Image Captioning A prevalent paradigm of ex-
isting image captioning methods is based on the
encoder-decoder framework which often utilizes a
CNN-plus-RNN architecture for image encoding
and text generation (Donahue et al., 2015; Vinyals
et al., 2015; Karpathy and Fei-Fei, 2015). Soft or
hard visual attention mechanism (Xu et al., 2015;
Chen et al., 2017) has been incorporated to focus
on the most relevant regions in each generation
step. Furthermore, adaptive attention (Lu et al.,
2017) has been developed to decide whether to
rely on visual features or language model states in
each decoding step. Recently, bottom-up attention
techniques (Anderson et al., 2018; Lu et al., 2018)
have also been proposed to find the most relevant
regions based on bounding boxes.

There has been increasing work focusing on
filling the gap between image representation and
caption generation. Semantic concepts and at-
tributes detected from images have been demon-
strated to be effective in boosting image captioning
when used in the encoder-decoder frameworks (Wu
et al., 2016; You et al., 2016; Gan et al., 2017;
Yao et al., 2017). Visual relationship (Lu et al.,
2016) and scene graphs (Johnson et al., 2015) have
been further employed for image encoder in a uni-
modal (Yao et al., 2018) or multi-modal (Yang et al.,
2019; Guo et al., 2019) manner to improve the over-
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Figure 2: An overview of the proposed image captioning framework.

all performance via the graph convolutional mech-
anism (Marcheggiani and Titov, 2017). Besides,
Kim et al. (2019) proposes a relationship-based cap-
tioning task to lead better understanding of images
based on relationship. As discussed in introduction,
we will further explore the relational semantics
available in captions for both constructing image
representation and generating caption.

Visual Relationship Detection Visual relations
between objects in an image have attracted more
studies recently. Conventional visual relation de-
tection have dealt with 〈subject-predicate-object〉
triples, including spatial relation and other seman-
tic relation. Lu et al. (2016) detect the triples by
performing subject, object, and predicate classifica-
tion separately. Li et al. (2017) attempt to encode
more distinguishable visual features for visual rela-
tionships detection. Probabilistic output of object
detection (Dai et al., 2017; Zhang et al., 2017) is
also considered to reason about the visual relation-
ships.

3 The Models

Given an image I , the goal of image captioning is
to generate a visually grounded natural language
sentence. We learn our model by minimizing the
cross-entropy loss with regard to the ground truth
caption S∗ = {w∗1, w∗2, ..., w∗T }:

LXE = − log p(S∗|I) (1)

= −
T∑
t=1

log p(w∗t |w∗<t, I) (2)

The model is further tuned with a Reinforcement
Learning (RL) objective (Rennie et al., 2017) to
maximize the reward of the generated sentence S:

JRL = ES∼p(S|I)(d(S,S
∗)) (3)

where d is a sentence-level scoring metric.
An overview of our image captioning framework

is depicted in Figure 2, with the detail of the com-
ponents described in the following sections.

3.1 Caption-Guided Visual Relationship
Graph (CGVRG) with Weakly
Supervised Learning

A general challenge of modeling p(S|I) is obtain-
ing a better semantic representation in the multi-
modal setting to bridge captions and images. Our
framework first focuses on constructing caption-
guided visual relationship graphs (CGVRG).

3.1.1 Extracting Visual Relationship Triples
and Detecting Objects

The process of constructing CGVRG first ex-
tracts relationship triples from captions using tex-
tual scene graph parser as described in (Schuster
et al., 2015). Our framework employs Faster R-
CNN (Ren et al., 2015) to recognize instances of
objects and returns a set of image regions for ob-
jects: V = {v1, v2, · · · , vn}.

3.1.2 Constructing CGVRG

The main focus of CGVRG is constructing visual
relationship graphs. As discussed in introduction,
the existing approaches use pre-trained VRD (vi-
sual relationship detection) models, which often
ignore key relationships needed for captioning.
This gap can be even more prominent if the do-
main/data used to train image-captioning is farther
from where VRD is pretrained. A major challenge
to use predicate triples from captions to construct
CGVRG is that, the links between predicates and
the corresponding object regions are often ambigu-
ous as discussed in introduction. To solve this
problem, we use weakly supervised, multi-instance
learning.
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Obtaining Representation for Object Region
Pairs For an image I with a list of salient
object regions obtained in object detection
{v1, v2, · · · , vn}, we have a set of region pairs
U = {u1,u2, · · · ,uN}, where N = n(n − 1).
As shown in Figure 3(b), the visual features of
any two object regions and their union box will
be collected to compute prjun , the probability that
a region pair un is associated with the predicate
rj , where rj ∈ R and R = {r1, r2, · · · , rM} in-
clude frequent predicates obtained from the cap-
tions in training data. The feed-forward network
of Figure 3(b) will be trained in weakly supervised
training.

Weakly Supervised Multi-Instance Training
As shown in Figure 3(c), during training, one ob-
ject pair t = (o1, o2), e.g., (women, hat), can corre-
spond to multiple pairs of object regions: the four
women-hat combinations between the two women
and two hats. To make our description clearer, we
refer to t = (o1, o2) as an object pair, and the
four women-hat pairs in the image as object re-
gion pairs. Accordingly, for a triple we extracted
t = (o1, r, o2), r ∈ R, e.g., (woman, in, hat), the
predicate r (i.e., in) can be associated with multiple
object region pairs (here, (w0, h0), (w0, h1), (w1,
h0), and (w1, h1)).

To predict predicates over object region pairs, we
propose to use Multi-Instance Learning (Fang et al.,
2015) as our weakly supervised learning approach.
Multi-Instance Learning receives a set of labeled
bags, each bag containing a set of instances. A bag
would be labeled negative if all the instances in it
are negative. On the other hand, a bag is labeled
positive if there is at least one positive instance in
the bag.

In our problem, an instance is a region pair.
Therefore for a candidate predicate r ∈ R (e.g.,
in), we use Nr to denote the object region pairs
corresponding to predicate r. If r appears in the
caption S, Nr would be a positive bag. We use
N \ Nr to denote the negative bag for r. When r
is not contained in the caption, the entire N would
be the negative bag (the last row of Figure 3(c)).
The probability of a bag b having the predicate rj
is measured with “noisy-OR”:

p
rj
b = 1−

∏
n∈b

(1− prjun) (4)

where prjun has been introduced above. We adopt
the cross-entropy loss on the basis of all predicate

Figure 3: Subcomponents in constructing CGVRG: (a)
detecting objects and extracting triples; (b) obtaining
representation for object region pairs; (c) examples of
positive and negative bags in multi-instance learning
for predicate “in” and “feed”, respectively. Here, w, h,
and g denote woman, hat, and giraffe, respectively.

probabilities over bags, given an image I and cap-
tion S:

L(I)=−
M∑
j=1

[
1(rj∈S)(log p

rj
Nrj

+log(1−prjN\Nrj
))

+1(rj /∈S)(log(1−p
rj
N ))

]
(5)

where the indicator function 1condition = 1 if the
condition is true, otherwise 1condition = 0.

Constructing the Graphs Once obtaining the
trained module, we can build a CGVRG graph
G = (V, E) for a given image I , where the node
set V includes two types of nodes: object nodes
and predicate nodes. We denote oi as the ith object
node and rij as a predicate node that connects oi
and oj (refer to Figure 1 or the middle part of Fig-
ure 2). The edges in E are added based on triples;
i.e., (oi, rij , oj) will assign two directed edges from
node oi to rij and from rij to oj , respectively.

Note that due to the use of the proposed weakly
supervised models, the acquired graphs can now
contain predicates that exist in captions but not in
the VRD models used in the previous work that
does not explicitly consider predicates in captions.
We will show in our experiments that this improves
captioning quality.

3.2 Context-Aware CGVRG
We further enhance CGVRG in the context of both
modalities, images and text, using graph convolu-
tion networks. We first integrate visual and textual
features: the textual features for each node are
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from a word embedding and the visual features are
regional visual representations extracted via RoI
pooling from Faster R-CNN. The specific features
goi ,grij for object oi and predicate rij are shown
as follows:

goi = φo([g
t
oi ;g

v
oi ]) (6)

grij = φr(g
t
rij ) (7)

where φr and φo are feed-forward networks using
ReLU activation; gt

oi ,g
t
rij , and gv

oi denote textual
features of oi, rij and visual features of oi, respec-
tively.

We present the process of encoding G to produce
a new set of context-aware representation X . The
representation of predicate rij and oi are computed
as follows:

xrij = fr([goi ;goj ;grij ]) (8)

(9)

xoi =
1

Ni

 ∑
r∈Nout(oi)

fout([goi ;gr])

+
∑

r∈Nin(oi)

fin([goi ;gr])


where fr, fin, fout are feed-forward networks us-
ing ReLU activation. Nin and Nout denote the ad-
jacent nodes with oi as head and tail, respectively.
Ni is the total number of adjacent nodes.

3.3 Multi-task Caption Generation
Unlike the existing image-captioning models, we
further incorporate visual relationships into genera-
tion — we propose multi-task learning for jointly
predicting word and tag sequences as each word in
a caption will be assigned a tag, i.e., object, predi-
cate, or none. The module takes as input the graph
node features from the context-aware CGVRG. The
output of the generation module is hence the se-
quence of words y = {y1, · · · , yT } as well as the
tags z = {z1, · · · , zT }. Two different approaches
are leveraged to train the two tasks jointly.

The bottom LSTM is used to align a textual state
to graph node representations:

h1
t = LSTM(h1

t−1, [h
2
t−1;x; ewt ]) (10)

where LSTM means one step of recurrent unit com-
putation via LSTM; x is the mean-pooled repre-
sentation of all nodes in the graph; h1

t−1 and h2
t−1

denote hidden states of bottom and top LSTM in
time step t−1, respectively; e is the word embed-
ding table.

The state h1t is then used as a query to attend
over graph node features {xo} and {xr} separately
to get attended features x̂r

t and x̂o
t :

x̂r
t = ATT(h1

t , {xr}) (11)

x̂o
t = ATT(h1

t , {xo}) (12)

where ATT is a soft-attention operation between a
query and graph node features.

The top LSTM works as a language model de-
coder, in which the hidden state h2

0 is initialized
with the mean-pooled semantic representation of
all detected predicates {r}. In time step t, the input
consists of the output from the bottom LSTM layer
h1t and attended graph features x̂r

t , x̂o
t :

h2
t = LSTM(h2

t−1, [h
1
t ; x̂

o
t ; x̂

r
t ]) (13)

3.3.1 Multi-task Learning
We propose two different blocks to perform the
two tasks jointly, as shown in Figure 4. In each
step, a multi-task learning block deals with task
s1 as predicting a tag zt and task s2 as predicting
a word yt. Specifically MT-I treats the two tasks
independent of each other:

p(zt|y<t, I) = softmax(fz(h
2
t )) (14)

p(yt|y<t, I) = softmax(fy(h
2
t )) (15)

where fz and fy are feed-forward networks with
ReLU activation. Inspired by the adaptive atten-
tion mechanism (Lu et al., 2017), MT-II further
exploits the probability from p(zt|y<t, I) to inte-
grate the representation of current hidden state h2t
and attended features from graph x̂r

t , x̂
o
t :

p(yt|y<t, I) = softmax(fy(ĥ
2
t )), (16)

ĥ2
t = h2

t pna + x̂r
tpr + x̂o

tpo (17)

p(zt|y<t, I) = softmax(fz(h
2
t )) (18)

where pna, pr, po denote the probabilities of tag zt
being “none”, “predicate”, and “object”, respec-
tively. The multi-task loss function is as follows:

LMT (I)=−
T∑
t=1

logp(yt|y<t, I)+γlogp(zt|y<t, I)

(19)

where γ is the hyper-parameter to balance the two
tasks.
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Figure 4: An overview of multi-task caption generation
module. Subfigure (a) is a two-layer LSTM; Subfigure
(b) depicts two different types of multi-task block.

3.4 Training and Inference

The overall training process can be broken down
into two parts: the CGVRG detection module train-
ing period and the caption generator training pe-
riod; the latter includes cross-entropy optimization
and the CIDEr-D optimization. For CGVRG detec-
tion module training, the detection module is opti-
mized with the multi-instance learning loss in Equa-
tion 5. For caption generator training, the model is
first optimized with the cross-entropy loss in Equa-
tion 19, and then we directly optimize the model
with the expected sentence-level reward (CIDEr-D
in this work) shown in Equation 3 by self critical
sequence learning (Rennie et al., 2017).

In the inference stage, given an image, the
CGVRG detection module obtains a graph upon
them. The graph convolution network encodes
graphs to obtain the context aware multi-modal
representations. Then graph object/predicate node
features are further provided to the multi-task cap-
tion generation module to generate sequences with
beam search.

4 Experiments

4.1 Datasets and Experiment Setup

MSCOCO We perform extensive experiments
on the MSCOCO benchmark (Lin et al., 2014).
The Karpathy split (Karpathy and Fei-Fei, 2015)
is adopted for our model selection and offline test-
ing, which contains 113K training images, 5K val-
idation images and 5K testing images. As for
the online test server, the result is trained on the
entire training and validation set (123K images).
To evaluate the generated captions, we employ

standard evaluation metrics: SPICE (Anderson
et al., 2016), CIDEr-D (Vedantam et al., 2015),
METEOR (Denkowski and Lavie, 2014), ROUGE-
L (Lin, 2004), and BLEU (Papineni et al., 2002).

Visual Genome We use the Visual Genome (Kr-
ishna et al., 2017) dataset to pre-train our object
detection model. The dataset includes 108K im-
ages. To pre-train the object detection model with
Faster R-CNN, we strictly follow the setting in (An-
derson et al., 2018), taking 98K/5K/5K for training,
validation, and testing, respectively. The split is
carefully selected to avoid contamination of the
MSCOCO validation and testing sets, since nearly
51K Visual Genome images are also included in
the MSCOCO dataset.

Implementation Details We use Faster R-
CNN (Ren et al., 2015) to identify and localize
instances of objects. The object detection phase
consists of two modules. The first module proposes
object regions using a deep CNN, i.e., ResNet-
101 (He et al., 2016). The second module extracts
feature maps using region-of-interest pooling for
each box proposals. Practically, we take the fi-
nal output of the ResNet-101 and perform non-
maximum suppression for each object class with
an IoU threshold. As a result, we obtain a set
of image regions, V = {v1, v2, · · · , vn}, where
n ∈ [10, 100] varies with input images and confi-
dence thresholds. Each region is represented as a
2,048-dimensional vector obtained from the pool5
layer after the RoI pooling. We then apply a feed-
forward network with a 1000-dimensional output
layer for predicates classification. The network of
the same size is also used for feature projection
(φo, φi) and GCN (fr, fin, fout). In the decoder
LSTM, the word embedding dimension is set to
be 1,000 and the hidden unit dimension in the top-
layer and bottom-layer LSTM is set to be 1,000
and 512, respectively. The trade-off parameter γ
in multi-task learning is 0.15. The whole system is
trained with the Adam optimizer. We set the initial
learning rate to be 0.0005 and mini-batch size to
be 100. The maximum number of training epochs
is 30 for Cross-entropy and CIDEr-D optimization
respectively. For sequence generation in the infer-
ence stage, we adopt the beam search strategy and
set the beam size to be 3.

We construct object and predicate categories for
VRD training. Similar to (Lu et al., 2018), we man-
ually expand the original 80 object categories to
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Cross entropy CIDEr-D optimization

B1 B4 ME RG CD SP B1 B4 ME RG CD SP

SCST - 31.3 26.0 54.3 101.3 - - 33.3 26.3 55.3 111.4 -
LSTM-A 75.4 35.2 26.9 55.8 108.8 20.0 78.6 35.5 27.3 56.8 118.3 20.8
Up-Down (Baseline) 77.2 36.2 27.0 56.4 113.5 20.3 79.8 36.3 27.7 56.9 120.1 21.4
StackCap 76.2 35.2 26.5 - 109.1 - 78.6 36.1 27.4 - 120.4 -
CAVP - - - - - - - 38.6 28.3 58.5 126.3 21.6
GCN-LSTM 77.3 36.8 27.9 57.0 116.3 20.9 80.5 38.2 28.5 58.3 127.6 22.0
VSUA - - - - - - - 38.4 28.5 58.4 128.6 22.0
SGAE 77.6 36.9 27.7 57.2 116.7 20.9 80.8 38.4 28.4 58.6 127.8 22.1

This Work (MT-I) 78.1 38.4 28.2 58.0 119.0 21.1 80.8 38.9 28.8 58.7 129.6 22.3
This Work (MT-II) 77.9 38.0 28.1 57.6 117.8 21.3 80.5 38.6 28.7 58.4 128.7 22.4

Table 1: Single-model performances on the MSCOCO dataset (Karpathy split) in both cross-entropy and RL
training period. B1, B4, ME, RG, CD, and SP denote BLEU-1, BLEU-4, METEOR, ROUGE, CIDEr-D and
SPICE, respectively.

B4 ME RG CD

c5 c40 c5 c40 c5 c40 c5 c40

GCN-LSTM* 38.7 69.7 28.5 37.6 58.5 73.4 125.3 126.5
VSUA 37.4 68.3 28.2 37.1 57.9 72.8 123.1 125.5
SGAE 38.5 69.7 28.2 37.2 58.6 73.6 123.8 126.5

Baseline 36.9 68.5 27.6 36.7 57.1 72.4 117.9 120.5
This Work 38.6 70.1 28.6 37.8 58.8 74.5 125.1 126.7

Table 2: The performance on COCO online test server
of various methods that incorporate visual relation-
ships. * denotes that their training batch size and
epochs are far beyond average setting in (Anderson
et al., 2018; Yang et al., 2019).

413 fine-grained categories by utilizing a list of
caption tokens. For example, the object category

“person” is expanded to a list of fine-grained cate-
gories [“boy”,“man”, · · ·]. Then for all extracted
triples that have both objects appearing in the 413
category list, we select the 200 most frequent pred-
icates as our predicate categories.

4.2 Quantitative Analysis

Model Comparison We compare our models
with the following state-of-the-art models: (1)
SCST (Rennie et al., 2017) employs an improved
policy gradient algorithm by utilizing its own infer-
ence output to normalize the rewards; (2) LSTM-
A (Yao et al., 2017) integrates the detected im-
age attributes into the CNN-plus-RNN image cap-
tioning framework; (3) Up-Down (Anderson et al.,
2018) uses both a bottom-up and top-down atten-
tion mechanism to focus more on salient object re-
gions; (4) GCN-LSTM (Yao et al., 2018) leverages
graph convolutional networks over the detected ob-
jects and relations; (5) CAVP (Liu et al., 2018) pro-
poses a context-aware policy network by account-
ing for visual attentions as context for generation;
(6) VSUA (Guo et al., 2019) exploits the alignment

between words and different categories of graph
nodes; (7) SAGE (Yang et al., 2019) utilizes an
additional graph encoder to incorporate language
inductive bias into the encoder-decoder framework.

Our baseline is built on Up-Down (Anderson
et al., 2018). We propose two variants of final
models using different multi-task blocks, namely
MT-I and MT-II shown in Fig 4(b). We conduct ex-
tensive comparisons on the dataset with the above
state-of-the-art techniques. We also perform de-
tailed analysis to demonstrate the impact of differ-
ent components of our framework.

Table 1 lists the results of various single models
on the MSCOCO Karpathy split. Our model outper-
forms the baseline model significantly, with CIDEr-
D scores being improved from 113.5 to 119.0 and
120.1 to 129.6 in the cross-entropy and CIDEr-D
optimization period, respectively. In addition, the
model with MT-II shows an advantage over that
with MT-I on SPICE, which implies that the pro-
posed adaptive visual attention mechanism works
in multi-task block II.

Table 2 compares our model with three models
that also incorporate VRG, plus the baseline model,
on the MSCOCO online test server. Our model im-
proves significantly from the baseline (from 120.5
to 126.7 in CIDEr-D) and has achieved the best
results across all evaluation metrics on c40 (40 ref-
erence captions).

Figure 5 shows the effect of taking different
weights γ in the multi-task loss item (Equation 19).
The results indicate that the weight around 0.15
yields the best performance in both multi-task
blocks. Meanwhile, Figure 6 shows the ablation
analysis by removing the multi-task caption genera-
tion and graph convolution operation, respectively,
to check the effect of these components. The results
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Figure 5: Test results (cross-entropy optimization) on
various γ.

Figure 6: Ablation results (CIDEr-D optimization).

show that both the graph convolution operation and
multi-task learning help improve the quality of the
generated captions.

Note that the code of our paper has been made
publicly available in the webpage provided in the
abstract.

Human evaluation We performed human evalu-
ation with three non-author human subjects, using
a five-level Likert scale. For each image and each
pair of systems in comparison (MT-I vs. Up-Down,
MT-I vs. GCN-LSTM, and MT-I vs. SGAE), we
show the captions generated by the two systems to
the human subjects. We ask each subject if the first
caption sentence is: significantly better (2), better
(1), equal (0), worse (−1), or significantly worse
(−2), compared to the second.

Following (Zhao et al., 2019), we obtain the
subjects’ ratings for fidelity (the first caption is
superior in terms of making less mistakes?), infor-
mativeness (the first caption provides more infor-
mative and detailed description?), and fluency (the
first caption is more fluent?). For each question
asked for an image, we calculate the average of the
three subjects’ scores. For each pair of models in
comparison, we randomly sampled 50 images from
the Karpathy testset.

• MT-I vs. Up-Down: For fidelity, MT-I is
better or significantly better on 44% images
(where the average of the three human sub-
jects’ scores is larger than 0.5), equal to Up-
Down on 46% images (the average is in range
[−0.5, 0.5]), and worse or significantly worse
on 10% images (average is less than −0.5).

For informativeness, MT-I is better or signifi-
cantly better on 60% images, equal on 34%,
and worse or significantly worse on 6%. For
fluency, the numbers are 18%, 72%, and 10%.

• MT-I vs. GCN-LSTM: For fidelity, MT-I is
better or significantly better on 40% images,
equal to GCN-LSTM on 52%, and worse or
significantly worse on 8%. For informative-
ness, the numbers are 32%, 50%, and 18%,
respectively. For fluency, the numbers are
12%, 76%, and 12%.

• MT-I vs. SGAE: For fidelity, MT-I is better
or significantly better on 36% images, equal
to SGAE on 56%, and worse or significantly
worse on 8%. For informativeness, the num-
bers are 30%, 48%, and 22%, respectively.
For fluency, the numbers are 6%, 90%, and
4%.

4.3 Qualitative Analysis

Figure 7 shows several specific examples, each
including an image, a detected caption guided vi-
sual relationship graph, a ground truth sentence,
a generated word sequence, and a learned visual
relationship composition. We can see that the pro-
posed model generates more accurate captions co-
herent to the visual relationship detected in the
image. Consider the upper middle demo as an
example; our model extracts a visual relationship
graph covering the critical predicates “filled with”
and “in front of” for understanding the image, thus
producing a comprehensive description. In addi-
tion, we observe that the model generates the triple
(table, filled with, food), which is a new compo-
sition that has not appeared in the training set.

Figure 8 visualizes the effect of our tag sequence
generation process. Specifically, we visualize the
tag probabilities of the “object”, “predicate”, and
“none” category in each generation step. Our model
successfully learns to distinguish the correct cate-
gory for each time step, which is in consistent with
the tag of the predicted word. For example, for the
generated words “flying over”, the probability for
the “predicate” category is the highest, which is
also true for words like “bird” and “water”.

5 Conclusions

This paper presents a novel image captioning ar-
chitecture that constructs caption-guided visual re-
lationship graphs to introduce beneficial inductive
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Figure 7: Several image captioning examples generated by our model.

Figure 8: Examples of generated word and tag se-
quences.

bias to better utilize captions. The representation
is further enhanced with text and visual features
of neighbouring nodes. During generation, the
network is regularized to take into account ex-
plicit object/predicate constraints with multi-task
learning. Extensive experiments are performed on
the MSCOCO dataset, showing that the proposed
framework significantly outperforms the baselines,
resulting in the state-of-the-art performance under
various evaluation metrics. In the near future we
plan to extend the proposed approach to several
other language-vision modeling tasks.
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