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Abstract

Historical text normalization, the task of map-
ping historical word forms to their modern
counterparts, has recently attracted a lot of
interest (Bollmann, 2019; Tang et al., 2018;
Lusetti et al., 2018; Bollmann et al., 2018;
Robertson and Goldwater, 2018; Bollmann
et al., 2017; Korchagina, 2017). Yet, virtu-
ally all approaches suffer from the two lim-
itations: 1) They consider a fully supervised
setup, often with impractically large manually
normalized datasets; 2) Normalization hap-
pens on words in isolation. By utilizing a sim-
ple generative normalization model and ob-
taining powerful contextualization from the
target-side language model, we train accurate
models with unlabeled historical data. In re-
alistic training scenarios, our approach often
leads to reduction in manually normalized data
at the same accuracy levels.

1 Introduction

Text normalization is the task of mapping texts
written in some non-standard variety of language
L (a dialect or an earlier diachronic form) to some
standardized form, typically the official mod-
ern standard variety of L (Table 1). Examples
include the normalization of informal English-
language tweets (Han and Baldwin, 2011); quasi-
phonetic transcriptions of dialectal Swiss German
(Samardžić et al., 2015); and historical documents
such as religious texts in 15th-century Icelandic
(Bollmann et al., 2011; Pettersson et al., 2013b;
Ljubešić et al., 2016, inter alia).

Text can to a large extent be normalized by
replacing non-standard words with their standard
counterparts. Because of this often-made as-
sumption, this task is also known as “lexical” or
“spelling normalization” (Han and Baldwin, 2011;
Tang et al., 2018).

There has been a lot of interest in historical and
dialectal text normalization over the past years.
Earlier works attempt type-level normalization by
way of search for standardized words (Pettersson
et al., 2013a; Bollmann, 2012). More recently,
the dominant approach casts the problem as prob-
abilistic type-level character transduction. Most
commonly, a fully-supervised machine translation
system transduces words in isolation (Bollmann,
2019). The use of context is limited to employ-
ing a target-side language model for an improved,
contextualized decoding (Ljubešić et al., 2016;
Etxeberria et al., 2016; Jurish, 2010).

In this paper, we develop simple approaches
to semi-supervised contextualized text normaliza-
tion. On the example of historical text normal-
ization, we show that one can reduce the amount
of supervision by leveraging unlabeled histori-
cal text and utilizing context at training. Our
methods build on familiar techniques for semi-
supervised learning such as generative modeling
and expectation–maximization and unify previous
work (search, noisy channel, contextualized de-
coding, neural character-level transduction) in a
simple setup.

We experimentally validate the strength of our
models on a suite of historical datasets. In ad-
dition to the token-level supervision scenario, we
show benefits of a more economic supervision by
a word-type normalization dictionary.

2 Historical text normalization

Most normalization approaches attempt to learn
a function from historical to modern word types
without taking context into consideration. This
is based on the observation that morpho-syntactic
differences between the non-standard and standard
varieties (e.g. in word order, grammatical case dis-
tinctions) are negligible and normalization ambi-
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wermuttsafft in die ohren getropfft t eodtet die w eurme darinnen
wermutsaft in die ohren getropft tötet die würmer darin
wormwood juice in the ears dripped kills the worms inside

Table 1: Historical text normalization. An excerpt from the RIDGES corpus of 15th–17th century German scien-
tific writing (Odebrecht et al., 2017). Top=Early New High German, middle=Modern Standard German.

guity is often not very high. Some earlier works
cast text normalization as search over standardized
word forms (Pettersson et al., 2013a; Bollmann,
2012). Hand-crafted rules or a string-distance
metric (Levenshtein, 1966) with parameters esti-
mated from the labeled data are used to retrieve
best matching standard candidates.

Another line of work follows a principled prob-
abilistic solution: a noisy channel model (Shan-
non, 1948), which consists of a channel p(x | y)
and a language model p(y) (Jurish, 2010; Petters-
son et al., 2013b; Samardžić et al., 2015; Etxe-
berria et al., 2016; Ljubešić et al., 2016; Scher-
rer and Ljubešić, 2016). The channel model op-
erates at the character level and takes the form of
either a character alignment model (Brown et al.,
1993) or a weighted finite-state transducer (WFST,
Mohri, 1997). Channel model parameters are es-
timated from a manually normalized corpus. The
language model is often trained on external target-
side data. Some works perform normalization
of words in context. Jurish (2010) and Etxeber-
ria et al. (2016) decode sequences of historical
word tokens by combining a character-level chan-
nel with a word-level language model p(y1:m).
Scherrer and Ljubešić (2016) learn a character
alignment model directly over untokenized seg-
ments of historical texts.

Numerous neural approaches to text normal-
ization (Tang et al., 2018; Lusetti et al., 2018;
Bollmann et al., 2018; Robertson and Goldwa-
ter, 2018; Bollmann et al., 2017; Korchagina,
2017) learn a discriminative model p(y | x)—
parameterized with some generic encoder-decoder
neural network—that performs the traditional
character-level transduction of isolated words.
The models are trained in a supervised fashion on
a lot of manually labeled data. For example, Tang
et al. (2018) train on tens of thousands of labeled
pairs, including for varieties that share more than
75% of their vocabularies. Except Lusetti et al.
(2018), who use a target-side language model to
rerank base model hypotheses in context, no other
approach in this group uses context in any way.

3 The role of context

If non-standard language exhibits normalization
ambiguity, one would expect contextualization to
reduce it. For example, historical German “desz”
in the RIDGES corpus (Odebrecht et al., 2017)
normalizes to three modern word types: “das”,
“des” (various forms of the definite article), and
“dessen” (relative pronoun whose). Knowing the
context (e.g. whether the historical word occurs
clause-initially or before a neuter noun) would
help normalize “desz” correctly. As suggested by
Ljubešić et al. (2016), the accuracy of the oracle
that normalizes words in isolation by always se-
lecting their most frequent normalization upper-
bounds the accuracy of non-contextual systems.

Many historical normalization corpora do not
have high normalization ambiguity (Table 3). The
upper bound on accuracy for non-contextual nor-
malization is 97.0 on average (±0.02) and is above
92.4 for every historical language that we study
here, indicating that lexical normalization is a very
reasonable strategy.

Even if context may sometimes not be neces-
sary for adequately solving the task in a fully su-
pervised manner, we would expect contextualiza-
tion to lead to more accurate unsupervised and
semi-supervised generative models.

4 Methods

4.1 Contextualized generative model
We start off with a generative model in the form of
a noisy channel over sequences of words (Eq. 1).
The channel model factorizes over non-standard
words, and a non-standard word xi depends only
on the corresponding standardized word yi. The
simple structure of our model follows from the
lexical normalization assumption.

pθ(

historical︷︸︸︷
x1:m ,

modern︷︸︸︷
y1:m ) ≈

language model︷ ︸︸ ︷
p(y1:m)

channel︷ ︸︸ ︷
m∏
i=1

pθ(xi | yi)

(1)
Compared to a discriminative model, which

would directly capture the mapping from non-
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standard word sequences x1:m to standardized
y1:m without having to account for how non-
standard data arise, this model offers some impor-
tant advantages. First, it can be trained by maxi-
mizing marginal likelihood p(x1:m), which leads
to semi-supervised learning. Second, we can use a
language model estimated from arbitrary external
text.

The only model parameters are the parameters θ
of the channel model pθ(xi | yi). The parameters
of the language model p(y1:m) are held fixed.

4.2 Neural channel

The channel model p(xi | yi) stochastically maps
standardized words to non-standard words. Any
type-level normalization model from §2 can be ap-
plied here (in the reverse direction from the nor-
malization task).

For our experiments, we use the neural trans-
ducer of Makarov and Clematide (2018) as it has
been shown to perform strongly on morphological
character transduction tasks. Parameterized with a
recurrent encoder and decoder, the model defines a
conditional distribution over edits pθ(x,a | y) =∏|a|
j=1 pθ(aj | a1:j−1,y), where y = y1, . . . , y|y|

is a standardized word as a character sequence
and a = a1 . . . a|a| an edit action sequence. Us-
ing this model as a channel requires computing
the marginal likelihood pθ(x | y), which is in-
tractable due to the recurrent decoder. We approx-
imate pθ(x | y) by pθ(x,a

∗ | y), where a∗ is
a minimum cost edit action sequence from y to
x. This works well in practice as the network pro-
duces a highly peaked distribution with most prob-
ability mass placed on minimum cost edit action
sequences.

4.3 Language model

We consider two language model factorizations,
which lead to different learning approaches.

Neural HMM. If the language model is an n-
gram language model

p(y1:m) ≈
m+1∏
i=1

p(yi | yi−n+1:i−1), (2)

the overall generative model has the form of an
n-gram Hidden Markov Model (HMM) with tran-
sition probabilities given by the language model
and emission probabilities by the channel. HMM
has been proposed for this problem before but with

different parameterizations (Jurish, 2010; Etxeber-
ria et al., 2016). For simplicity, we use count-
based language models in the experiments. Full
neural parametarization can be achieved with n-
gram feedforward neural language models (Ben-
gio et al., 2003).

RNN LM-based model. Our second language
model is a word-level recurrent neural language
model (RRN-LM, Mikolov, 2012). It does not
make any independence assumptions, which in-
creases expressive power yet precludes exact in-
ference in the generative model.

4.4 Expectation–maximization

Let U be a set of unlabeled non-standard sen-
tences, Vx the set of non-standard word types in
U , and Vy the vocabulary of the standardized va-
riety. In the unsupervised case, we train by max-
imizing the marginal likelihood of U with respect
to the channel parameters θ:

LU (U, θ) =
∑

x1:m∈U
log

∑
y1:m∈Vmy

pθ(x1:m, y1:m) (3)

For an n-gram neural HMM, this can be solved us-
ing generalized expectation–maximization (GEM,
Neal and Hinton, 1998; Berg-Kirkpatrick et al.,
2010). We compute the E-step with the forward–
backward algorithm. In the M-step, given the pos-
terior p(y | x) for each non-standard word type x,
we maximize the following objective with respect
to θ with a variant of stochastic gradient ascent:

LM (U, θ) =
∑
x∈Vx

∑
y∈Vy

p(y | x) log pθ(x | y) (4)

GEM provably increases the marginal likelihood.
We train the RNN LM-based model with

hard expectation–maximization (hard EM, Sam-
dani et al., 2012). This is a simple alterna-
tive to approximate inference. Hard EM does
not guarantee to increase the marginal likelihood,
but often works in practice (Spitkovsky et al.,
2010). The difference from GEM is the E-
step. To compute it, we decode U with beam
search. Let B =

⋃
x1:m∈U{y1:m ∈ V m

y |
y1:m is in the beam for x1:m}. We set the poste-
rior p(Y = y | X = x) to be proportional to the
sum of the probabilities of sentence-wise normal-
izations from B where x gets normalized as y.
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Semi-supervised training. We linearly com-
bine the maximum likelihood (MLE) of the set
S = {(x,y)i}ni=1 of labeled normalization pairs
with the marginal likelihood of U (Eq. 3):

L(S,U, θ) =
∑

(x,y)∈S

log pθ(x | y) + λLU (U, θ) (5)

λ ≥ 0 controls how much information from U
flows into the parameter update. The difference
from the unsupervised case is that the M-step com-
putes Eq. 4 scaled with λ and the MLE of S.

In practice, we initially pretrain the channel
on the labeled data and then move to full semi-
supervised training with some non-zero λ fixed for
the rest of training.

4.5 Proposal of standardized candidates

Candidate set heuristic. Performing EM with
the full modern vocabulary Vy as the set of pos-
sible normalization candidates is vastly imprac-
tical: The forward–backward algorithm runs in
O(m|Vy|n) time. In related tasks, this has lead
to training heuristics such as iterative EM (Ravi
and Knight, 2011). To keep this computation man-
ageable, we propose generating a candidate set
C(x) of k modern words for each non-standard
word x. To this end, we use approximate nearest
neighbor search with edit distance (Hulden, 2009).
The algorithm efficiently searches through an FST,
which encodes a part of the vocabulary, with the
A∗ search. We encode different word frequency
bands of the vocabulary as separate FSTs, which
we search in parallel. We rerank the candidates
taking into account non-standard and standardized
words’ relative frequencies (see Appendix). Thus,
all summations and maximizations over Vy are
performed over the reduced set C(x).

Our heuristic embodies normalization by search
(§2) and could be replaced with a more informed
search and reranking algorithm (Bollmann, 2012;
Baron and Rayson, 2008).

Candidate generation with direct model. The
candidate set heuristic is too restrictive. It is hard
to achieve perfect coverage at manageable can-
didate set sizes (e.g. if x and target y have no
characters in common as e.g. historical German
“sy” 7→ “sie” (they)). Worse still, this approach
completely fails if the target y does not appear
in the corpus. This could be because the corpus
is small (e.g. most Wikipedias); rich morphology

Algorithm 1 GEM training (§4.4)
Full version uses restarts and candidate pruning (see Ap-
pendix).
Input: Unlabeled dataset U , labeled dataset S, development
set, number of modern candidates k to generate, number of
EM epochs K, mixture parameter λ combining the unsuper-
vised and supervised objectives.

1: Compute k candidates C(x) for each non-standard word
type x ∈ Vx from U (by either method in § 4.5).

2: Randomly initialize channel parameters θ(0).
3: if labeled dataset S 6= ∅ then pretrain θ(0) on S.
4: for epoch t← 1 to K do
5: E-step:
6: Q← 0k×|Vx|

7: Compute channel scores pθ(t−1)(x | y) for all x ∈
Vx and y ∈ C(x). (Use uniform scores if t = 1 and
S = ∅.)

8: for non-standard word sequence x1:m ∈ U do
9: Run forward–backward or beam search (§4.4) to

compute each word’s posterior p(Yi | x1:m).
10: for position i← 1 to m do
11: Q(y,xi) ← Q(y,xi) + p(Yi = y | x1:m)

for all y ∈ C(xi).
12: Normalize: p(y | x) ← Q(y,x)/

∑
yQ(y,x) for

all x ∈ Vx and y ∈ C(x).

13: M-step:
14: Start training from θ(t−1) and use p(y | x) in unsu-

pervised objective LM (U, θ) (Eq. 4):
15: θ(t) ← argmax

θ

∑
(x,y)∈S

log pθ(x | y) + λLM (U, θ)

16: return θ(t) leading to best accuracy on development set

or orthographic conventions lead to a vast num-
ber of word types (e.g. Hungarian); or the target
word is not even attested in the standardized va-
riety (e.g. “czuhant” 7→ ∗“zehant” (immediately)
in the Anselm historical German corpus (Krasselt
et al., 2015)). We, therefore, also consider candi-
date generation with a direct model qφ(y | x).

We bootstrap a direct model from a contextual-
ized generative model. We fit it by minimizing the
cross-entropy of the direct model relative to the
posterior of the generative model p(y | x). For a
semi-supervised generative model, this combines
with the MLE of the labeled set S (κ ≥ 0):

L(S,U, φ) =
∑

(x,y)∈S

log qφ(y | x)

+ κ
∑
x∈Vx

∑
y∈Vy

p(y | x) log qφ(y | x), (6)

Any type-level normalization model from prior
work could be used here. We choose the direct
model to be a neural transducer, like the channel.
It generates candidates using beam search.
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4.6 Prediction and reranking

We consider two ways of sentence-wise decod-
ing with our generative models. The first uses
the maximum a posteriori (MAP) decision rule,
which finds a normalization that maximizes the
posterior p(y1:m | x1:m). Depending on the fac-
torization of the language model, we solve this
exactly (with the Viterbi algorithm) or approxi-
mately (with beam search).

The other approach is to learn a reranker model
on the development set. The model rescores
sentence hypotheses ŷ1:m generated by the base
model (with k-best Viterbi or beam search). It uses
rich non-local features—the hypothesis’ scores
under a word- and character-level RNN language
models—as well as length-normalized base model
score, mean out-of-vocabulary rate and edit dis-
tance from x1:m (see Appendix). We implement a
PRO reranker (Hopkins and May, 2011) that uses
hamming loss.

5 Experiments

For our experiments, we use eight datasets com-
piled by various researchers (Pettersson, 2016;
Ljubešić et al., 2016; Bollmann, 2018) from his-
torical corpora (Tables 2 and 3).1

Seven languages are Indo-European: Germanic
(English, German, Icelandic, and Swedish), Ro-
mance (Portuguese and Spanish), and Slavic
(Slovene). Additionally, we experiment with Hun-
garian, a Finno-Ugric language. From the Slovene
dataset, we only use the collection of the older and
more challenging texts in the Bohorič alphabet.

The data are of different genres (letters, reli-
gious and scientific writings). The earliest texts
are in 14th-c. Middle English. In many datasets,
the proportion of identity normalizations is sub-
stantial. The smallest word overlap is in the Hun-
garian data (18%), the largest is in English (75%).

All corpora are tokenized and aligned at the seg-
ment and token level. For some datasets, either
segments do not coincide with grammatical sen-
tences, or the data have no segment boundaries at
all (e.g. Hungarian or Icelandic). In such cases, to
make input amenable to training with context, we
resort to sentence splitting on punctuation marks.

1The datasets are featured in the large-scale study of Boll-
mann (2019), who conveniently provides most data in a uni-
fied format at https://github.com/coastalcph/
histnorm/.

Algorithm 2 MAP decoding or reranking (§4.6)
Input: Non-standard word sequence x1:m, number of mod-
ern candidates c to generate, number of sentence hypotheses
k to generate.

1: for i← 1 to m do
2: Compute c candidates C(xi) (§4.5).
3: Compute channel scores p(xi | y) for all y ∈ C(xi).
4: if MAP decoding then
5: Decode using Viterbi or beam search:
6: y∗1:m ← argmax

y1:m∈Vm
y

p(x1:m,y1:m)

7: else
8: Produce k hypotheses using k-best Viterbi or beam:
9: R(x1:m)← argmax

R⊆Vm
y s.t. |R|=k

∑
y1:m∈R

p(x1:m,y1:m)

10: Rerank using a linear model with non-local features:
11: y∗1:m ← argmax

ŷ1:m∈R(x1:m)

ψ>g(x1:m, ŷ1:m)

12: return best hypothesis y∗1:m

We also split very long segments to ensure the
maximum segment length of fifty words.

Token alignment is largely one-to-one, with
rare exceptions. Clitization and set phrases (e.g.
German “muõu” 7→ “musst du” (you must),
“aller handt” 7→ “allerhand” (every kind of ))
are common causes for many-to-one alignments,
which our models fail to capture properly.

State-of-the-art. We compare our models to the
strongest models for historical text normalization:

• the Norma tool (Bollmann, 2012), which imple-
ments search over standardized candidates; and

• the character-level statistical machine transla-
tion model (cSMT, Ljubešić et al., 2016), which
uses the Moses toolkit (Koehn et al., 2007). This
approach estimates a character n-gram language
model on external data and fits a MERT reranker
model (Och, 2003) on the development set.

According to Bollmann (2019), Norma performs
best in the low-resource setting (≤ 500 labeled to-
kens), and cSMT should be preferred in all other
data conditions. Norma’s strong performance in
the low-resource scenario derives from the fact
that searching for candidates can be fairly easy for
some languages e.g. English. The reranker trained
on the development set is key to cSMT’s strength.

Realistic low-resource setting. Our contextual-
ized models are particularly appealing when la-
beled data are limited to at most a couple of thou-
sand annotated word pairs. This would be the most
common application scenario in practice, and ap-
proaches requiring tens of thousands of training

https://github.com/coastalcph/histnorm/
https://github.com/coastalcph/histnorm/
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period train dev reference
de 1482–1652 41.9 9.7 Odebrecht et al. (2017)

en 1386–1698 147.8 16.3 Markus (1999)

es 15th–19th c. 97.3 11.7 Vaamonde (2017)

is 15th c. 49.6 6.1 Rögnvaldsson et al. (2012)

pt 15th–19th c. 222.5 26.7 Vaamonde (2017)

hu 1440–1541 134.0 16.7 Simon (2014)

sl 1750–1840s 50.0 5.8 Erjavec (2012)

sv 1527–1812 24.5 2.2 Fiebranz et al. (2011)

Table 2: Historical normalization datasets. Train and
development set sizes in thousands of tokens.

samples would be ruled out as unrealistic. We,
therefore, experiment with small labeled training
set sizes n ranging from 500 to 5K. Additionally,
we consider the unsupervised scenario (n = 0),
which might be less relevant practically (even a
small amount of labeled data might lead to sub-
stantial improvement) but allows us to demon-
strate most directly the advantage of our approach.

To keep the experiments close to the real-life
application scenario (Kann et al., 2019), we addi-
tionally cap the size of the development set at 2K

tokens. Otherwise, we require that the develop-
ment set have 500 tokens more than the labeled
set S to ensure that we validate on not too small
a number of word types (e.g. at 1K tokens, we get
only about 600 word types on average).

Finally, the unlabeled set U comprises non-
standard word sequences from all the remaining
non-test data. Our sampled development sets are
much smaller compared to the original develop-
ment set from the official data split. Not to waste
any data, we also include the historical part of the
rest of the original development set into the unla-
beled set U . The labeled training set S is sampled
uniformly at random from U with targets.

Semi-supervised training with type-level nor-
malization dictionary. Supervision by type-
level dictionary (as opposed to token-level annota-
tions) is a simple and effective way of reducing the
amount of manually labeled data (Garrette et al.,
2013). We simulate type-level normalization dic-
tionary construction by selecting d most frequent
non-standard word types from the original train-
ing set. We build a labeled set S by pairing them
with the most frequent standard word types that
they normalize to. We experiment on German and
Slovene. We use a development set of 500 tokens.

Experimental setup. We use Wikipedia dumps
for training language models and the candidate set

I NC H Seg C@50 C@150
de 43.8 95.6 .155 Y 91.0 94.2
en 74.9 98.0 .087 Y 94.7 96.3
es 72.9 97.2 .125 Y 94.3 95.8
hu 17.6 98.0 .075 N 78.1 81.2
is 46.7 92.4 .213 N 84.3 86.2
pt 65.3 97.4 .129 Y 92.3 94.7
sl 41.1 98.3 .057 N 90.7 92.1
sv 59.9 99.2 .026 Y 89.8 91.5
avg 52.8 97.0 .108 89.2 91.5

Table 3: Historical normalization datasets (cont.).
I=proportion of identity normalizations, NC=accuracy
of the non-contextual oracle that selects the most
frequent normalization for each historical word,
H=normalization entropy, Seg=whether the dataset is
sentence-segmented (Y=yes, N=no), C@z=C(x) cov-
erage of the dataset at z standard candidates per his-
torical word type x. All statistics are computed on the
official training sets.

heuristic. For the neural HMM, we fit count-based
bigram language models using KenLM (Heafield
et al., 2013). All RNN language models are
parameterized with a Long Short-Term Memory
cell (Hochreiter and Schmidhuber, 1997) and use
dropout regularization (Zaremba et al., 2014). The
HMMs useC(x) of 150 candidates, the RNN LM-
based models use 50 candidates.

We train for 15 iterations of EM setting λ =
κ = 0.8 throughout. We optimize the neural chan-
nel with mini-batched AdaDelta (Zeiler, 2012).

We set the beam size of the RNN LM-based
models to four for both final decoding and the E-
step. For reranking, the base HMMs output 150 k-
best sentence hypotheses and the RNN LM-based
models output the beam. The reranker models are
trained with the perceptron algorithm.

The direct models are trained with AdaDelta.
We decode them with beam search and rerank the
beam with a PRO reranker using the channel and
direct model scores and relative frequency as fea-
tures. We use the top two reranked candidates as
the new candidate set. We refer the reader to the
Appendix for further details on training.

We train Norma and cSMT on our data splits us-
ing the training settings suggested by the authors.

6 Discussion

The semi-supervised contextualized approach re-
sults in consistent improvements for most lan-
guages and labeled data sizes (Tables 4 and 5).
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de en es hu is pt sl sv avg
identity 44.36 75.29 73.40 17.53 47.62 65.19 40.74 58.59 52.84
best supervised 88.22 95.24 95.02 91.70 87.31 95.18 93.30 91.13 92.14

n = 0

neural HMM 77.49 87.94 88.75 68.25 77.44 82.63 80.84 75.82 79.89
+rerank 81.02 89.92 89.29 68.66 77.09 84.92 83.52 77.19 81.45
+direct+rerank 79.28 89.21 89.71 70.54 78.91 83.81 84.67 79.88 82.00

RNN LM-based 80.70 90.47 87.04 57.86 73.20 82.95 81.01 78.30 78.94
+rerank 80.80 90.18 86.69 57.91 73.75 83.32 82.55 78.16 79.17
+direct+rerank 81.15 91.06 88.16 63.75 79.87 84.27 85.08 81.61 81.87

n = 500

Norma (Bollmann, 2012) 74.00 84.24 86.41 62.57 76.56 81.62 78.04 77.77 77.65
cSMT (Ljubešić et al., 2016) 76.28 85.17 88.88 68.31 79.00 83.00 83.67 81.66 80.75
neural HMM 80.34 88.97 90.34 69.00 78.38 86.88 85.23 80.08 82.40

+rerank 82.89 90.81 91.00 69.88 78.68 88.53 85.75 81.62 83.64
+direct+rerank 82.55 90.48 91.55 71.04 80.90 87.75 86.68 84.55 84.44

RNN LM-based 82.33 91.12 89.78 62.50 75.93 85.84 83.42 80.88 81.48
+rerank 82.42 91.19 90.14 62.21 75.93 86.01 83.85 81.08 81.60
+direct+rerank 83.23 91.66 90.18 67.70 81.63 87.26 87.54 84.11 84.16

n = 1, 000

Norma (Bollmann, 2012) 75.52 85.27 87.94 64.84 77.49 83.56 79.16 79.35 79.14
cSMT (Ljubešić et al., 2016) 78.91 86.89 90.44 70.35 80.32 85.14 85.53 84.82 82.85
neural HMM 80.91 89.51 90.82 70.55 79.86 87.52 85.11 81.95 83.28

+rerank 83.34 91.18 92.28 70.95 79.92 89.06 85.81 83.19 84.47
+direct+rerank 82.68 91.18 92.15 73.17 82.38 88.98 87.32 85.78 85.45

RNN LM-based 82.84 91.35 90.45 65.02 77.80 87.03 83.53 82.77 82.60
+rerank 83.14 91.23 90.49 64.73 78.68 87.41 84.77 83.33 82.97
+direct+rerank 83.39 91.76 91.22 69.13 81.22 87.65 87.60 85.86 84.73

Table 4: Test set results for unsupervised and semi-supervised (500 and 1,000 tokens) settings. Best results within
each category are highlighted in bold and, where applicable, are statistically significant compared to cSMT (p <
0.05, McNemar’s test). Best supervised results are quoted from Bollmann (2019).

Compared to cSMT, an average error reduction
ranges from 19% (n = 500) to almost 3% (n =
5K) or 8% excluding Hungarian, the language on
which the models perform worst. Reranking pro-
vides an important boost (almost 5% error re-
duction compared to the base model, and almost
8% for neural HMMs), and bootstrapping direct
model candidates results in even better perfor-
mance (almost 14% error reduction).

Unsupervised case. Remarkably, with no la-
beled training data (and only a 500-token labeled
development set), the best configuration achieves
88.4% of the top scores reported for fully super-
vised models (Table 2 of Bollmann (2019)). It out-
performs the Norma baseline trained on n = 1K

labeled samples, reducing its error by almost 4%.

Effects of unlabeled dataset size. We typically
see strong performance for languages where the
unlabeled dataset U is large (≈ official training
and development sets together, Table 2). This in-

cludes English, that shows little ambiguity (Ta-
ble 3) and so would be expected to profit less from
contextualization.

Effects of the modern corpus and preprocess-
ing. The size and coverage of the Wikipedia
dump (Table 3) for Icelandic and particularly Hun-
garian degrade the models’ performance and are
likely the key reason why cSMT outperforms all
contextual models for Hungarian as the labeled
dataset increases (n = 2.5K and n = 5K), despite
the large amount of unlabeled Hungarian text. The
RNN LM-based models are hit worst due to the
poorest coverage. The lack of original segment
boundaries (Table 3, Icelandic is only partially
segmented) further exacerbates performance.

Remarkably, the overall approach works despite
language models and candidate sets using out-of-
domain standardized data. Leveraging in-domain
data such as collections of literary works from
the time period of the source historical text could
lead to even better performance (Berg-Kirkpatrick
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de en es hu is pt sl sv avg avg\hu
identity 44.36 75.29 73.40 17.53 47.62 65.19 40.74 58.59 52.84 57.87
best supervised 88.22 95.24 95.02 91.70 87.31 95.18 93.30 91.13 92.14 92.19

n = 2.5K

cSMT (Ljubešić et al., 2016) 82.08 88.66 91.47 75.85 82.06 87.82 88.32 87.28 85.56 86.95
neural HMM 82.16 89.72 92.07 70.73 81.00 88.54 85.56 82.38 84.02 85.92

+rerank 84.64 91.58 92.96 71.52 80.77 89.99 86.48 84.44 85.30 87.27
+direct+rerank 84.85 91.48 93.26 74.34 81.86 90.02 88.04 86.80 86.33 88.04

RNN LM-based 83.55 91.79 92.11 67.70 79.19 88.38 85.01 84.06 83.97 86.30
+rerank 83.87 91.84 92.56 67.94 79.64 88.36 85.68 84.31 84.27 86.61
+direct+rerank 84.83 92.16 92.57 72.45 82.91 89.54 †88.12 86.22 86.10 88.05

direct model (from RNN LM) 83.59 91.39 91.79 72.57 83.40 89.75 87.92 †86.94 85.92 87.83
n = 5K

cSMT (Ljubešić et al., 2016) 83.50 90.02 92.52 79.16 83.09 89.83 89.40 †88.51 87.04 88.16
neural HMM 83.15 89.51 92.74 71.92 80.88 89.38 86.52 83.75 84.73 86.56

+rerank 85.19 91.37 93.85 72.72 81.05 90.99 87.52 85.28 86.00 87.89
+direct+rerank 85.76 91.90 94.24 75.74 83.42 90.79 †89.18 88.29 87.41 89.08

RNN LM-based 84.50 92.11 92.64 69.03 79.79 89.07 85.51 85.01 84.71 86.95
+rerank 85.04 92.15 92.36 69.34 79.97 89.48 86.13 85.49 85.00 87.23
+direct+rerank 85.82 92.41 92.32 74.39 83.77 89.86 88.93 87.71 86.90 88.69

direct model (from RNN LM) 85.03 91.84 92.54 75.86 83.97 90.21 88.48 88.56 87.06 88.66

Table 5: Test set results for semi-supervised setting (2,500 and 5,000 tokens). Best results within each category are
in bold. The differences between cSMT and the best of the proposed models are statistically significant (p < 0.05,
McNemar’s test) unless marked with †. Best supervised results are quoted from Bollmann (2019).

et al., 2013).

Candidate generation with direct model. Gen-
erating candidates with the direct model leads to
large gains for languages with poor coverage (Ice-
landic and Hungarian RNN LM-based models see
an average error reduction of over 20% and 14%
respectively). At larger labeled dataset sizes (Ta-
ble 5), bootstrapping a direct model and rerank-
ing its output without context becomes an effective
strategy (Icelandic, Portuguese).

Normalization ambiguity. We would expect
languages with higher normalization ambiguity
to profit from contextualization (Ljubešić et al.,
2016). German, Portuguese, and Spanish gain
even in the most competitive semi-supervised 5K

condition, consistent with the amount of ambigu-
ity they exhibit (Table 3). Losses and modest gains
are observed for languages with the lowest ambi-
guity rates (Slovene, Swedish).

We look at the accuracies on unambiguous and
ambiguous normalizations (Figure 1). The con-
textual model consistently outperforms cSMT on
ambiguous tokens, often by a wide margin and
even when cSMT is better overall (Slovene). An
extreme case is German at n = 5K, where the
two approaches perform similarly on unambigu-
ous tokens, yet cSMT suffers considerably on am-
biguous ones (38% error reduction by the neural

HMM). German ranks second by normalization
ambiguity (Table 3).

Type-level normalization dictionary. We ob-
serve gains equivalent to using a token-level
dataset of at least double the dictionary size (Ta-
ble 6). Slovene profits a lot from dictionary su-
pervision, with 1K-type model performing close
to the 5K-token model.

n de sl
250 82.08 85.43
1K 83.29 86.33

RNN LM-based neural HMM

Table 6: Test set results for supervision by type-level
normalization dictionary.

Shortcomings of the approach. The general
problem of our approach, as well as most ap-
proaches that we build on, is reliance on gold to-
kenization. Overall, we have faced minor issues
with tokenization (one notable example is Swedish
where 0.6% of the target-side test data are words
with a colon for which we fail to retrieve can-
didates from Wikipedia). Tokenization remains
a challenge for normalization of unpreprocessed
non-standard data (Berg-Kirkpatrick et al., 2013).
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Figure 1: Test set performance breakdown by unambiguous and ambiguous tokens in n = 1K (top) and n = 5K
(bottom) semi-supervised conditions. Comparisons are between neural HMM (+direct+rerank, green) and cSMT
(Ljubešić et al., 2016, violet). Ambiguity (=whether a historical word normalizes into more than one standard
word type) is computed on the official training data.

7 Future work

Clearly, one can simultaneously use both methods
of candidate generation (§4.5). We leave it for fu-
ture work to verify whether this leads to an im-
proved performance.

Computing the posterior p(y | x) in both gener-
ative models is hard, which is why we are forced to
reduce the number of admissible candidates y and,
in the case of the RNN LM-based model, approx-
imate the posterior with maximization. This prob-
lem can be addressed in a principled way by using
variational inference (Jordan et al., 1999), a frame-
work for approximate inference that deals with in-
tractable distributions. We leave it for future work
to validate its effectiveness for this problem.

As noted earlier, it is a simplification to assume
that non-standard text is tokenized. Being able
to normalize across token boundaries (by merg-
ing multiple non-standard tokens or splitting one
into multiple standardized ones) is crucial for tack-
ling real-world text normalization tasks and re-
lated problems such as optical character recogni-
tion error correction. An appealing direction for
future work would be developing a joint model for
text tokenization and normalization. One family of
latent-variable models that would be suitable for
this task are segmental recurrent neural networks
(SRNNs, Kong et al., 2016). SRNNs explicitly
model input segmentation and have been success-
fully applied to online handwriting recognition,
Chinese word segmentation, joint word segmenta-
tion and part-of-speech tagging (Kong et al., 2016;
Kawakami et al., 2019).

8 Conclusion

This paper proposes semi-supervised contextual
normalization of non-standard text. We focus
on historical data, which has gained attention in
the digital humanities community over the past
years. We develop simple contextualized genera-
tive neural models that we train with expectation–
maximization. By leveraging unlabeled data and
accessing context at training time, we train accu-
rate models with fewer manually normalized train-
ing samples. No labeled training data are neces-
sary to achieve 88.4% of the best published per-
formance that uses full training sets. Strong gains
are observed for most of the considered languages
across realistic low-resource settings (up to 5K la-
beled training tokens). The techniques developed
here readily apply to other types of normalization
data (e.g. informal, dialectal). We will make our
implementation publicly available.2
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Appendix

Candidate set generation. We extract the text
from the Wikipedia dumps with Wikiextractor,3

tokenize it with multifit,4 and preprocess the to-
kens using the procedure of Bollmann (2019).
We remove all words containing characters that
have a relative frequency ≤ 0.0001. We parti-
tion the types into frequency bins with upper limits
of 1, 2, 5, 10, 100, 103, 104, 105, 106,∞. For each
frequency bin, we extract an initial candidate list
based on minimum edit distance, ED(h,m). For
the computation of edit distance, we ignore all
diacritical marks of the letters (by ignoring com-
posing characters according to the Unicode stan-
dard). We rerank our modern candidates based on
a frequency ratio fh,m = #h

#m that punishes rare

3https://github.com/attardi/
wikiextractor

4https://github.com/n-waves/multifit

https://github.com/attardi/wikiextractor
https://github.com/attardi/wikiextractor
https://github.com/n-waves/multifit
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modern candidates for frequent historical words.
Using the smallest supervised development set
(500 tokens)—required by all our experiments—
we compute coverage over all languages, and set
the log base for squeezing the frequency ratio to
200. Finally, a penalty for rare modern forms
based on their frequency is added. The score for
reranking the candidate list is: sh,m = ED(h,m)+
max(log200(fh,m), 0) + 1

#(m) .

Neural channel training. In every M-step (the
maximization of Eq. 4), we start training from the
previous EM iteration’s best parameters θ(t−1) and
train for 25 epochs with 15 epochs of patience. We
optimize the parameters with AdaDelta (Zeiler,
2012) using mini-batches of size 20. We do not
update on candidates whose posterior probability
is below ε = 0.01 · λ−1. If the development
set scores

∑
(x,y)∈ dev pθ(x | y) do not increase

compared to the previous EM iteration, we restart
training from randomly initialized parameters and
using the type-level posterior probability from the
best generative model found so far. That model,
decoded using MAP decoding, has so far produced
the highest normalization accuracy on the devel-
opment set. In the semi-supervised scenario, we
initially pretrain the channel for 50 epochs and 15
epochs of patience using mini-batches of size 1, as
suggested by Makarov and Clematide (2018).

Sentence-wise reranker. Table 7 shows the fea-
tures used in the sentence-wise PRO reranker
(Hopkins and May, 2011). We learn the reranker
parameters on the development set using percep-
tron as our binary classification learning algorithm
(we also experimented with different losses and a
stochastic gradient learner from the sklearn li-
brary (Pedregosa et al., 2011), but this did not pro-
duce any gains).

Direct model training. We optimize direct
models with AdaDelta using mini-batches of size
10. We train for 60 epochs with 15 epochs of pa-
tience. We decode them with beam search with
beam width eight. We learn a PRO reranker on
the development set using hypotheses from the
beam. To represent hypotheses, we use features
such as the direct model probability of the hy-
pothesis qφ(ŷ | x), its channel model probabil-
ity pθ(x | ŷ), its unigram probability, the relative
frequency of the (historical word, hypothesis) pair
in the training data, or the edit distance between
the hypothesis and the historical input word (Ta-

pWORD-RNN-LM(ŷ1:m)/m
pCHAR-RNN-LM(ŷ1:m)/m
pWORD-TRIGRAM-LM(ŷ1:m)/m
length m
p(x1:m, ŷ1:m)/m
1/m

∑m
i=1 ED(xi, ŷi)

1−#OOV (ŷ1:m)/m
1/m

∑m
i=1 p̂TRAIN(xi, ŷi)

1/m
∑m

i=1 1{(xi, ŷi) ∈ TRAIN}
1/m

∑m
i=1 1{same-suffixk(xi, ŷi)}

1/m
∑m

i=1 1{same-prefixk(xi, ŷi)}

Table 7: Features for sentence reranker. x1:m is a non-
standard sentence and ŷ1:m is a standardized sentence
candidate.

ble 8). We rank hypotheses with a combination of
normalized edit distance (NED) and accuracy:

∆(y, ŷ) = 1{y = ŷ} − NED(y, ŷ) (7)

Thus, a hypothesis ŷ attains the highest score of
+1 if it is identical to the target y of a develop-
ment set sample and the lowest score of −1 if the
number of edits from ŷ to y equals the maximum
of their lengths.

pUNIGRAM-LM(ŷ) pCHAR-RNN-LM(ŷ)
pφ(x | ŷ) qφ(ŷ | x)
NED(x, ŷ) ED(x, ŷ)
p̂TRAIN(x, ŷ) (x, ŷ) ∈ TRAIN?

same-suffixk(x, ŷ)? subsequence(x, ŷ)?
same-prefixk(x, ŷ)? subsequence(ŷ,x)?

Table 8: Features used to rerank hypotheses generated
from the direct model. x is a historical word and ŷ is a
modern language hypothesis.


