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Abstract

Knowledge graph (KG) embeddings learn low-
dimensional representations of entities and re-
lations to predict missing facts. KGs often ex-
hibit hierarchical and logical patterns which
must be preserved in the embedding space.
For hierarchical data, hyperbolic embedding
methods have shown promise for high-fidelity
and parsimonious representations. However,
existing hyperbolic embedding methods do
not account for the rich logical patterns in
KGs. In this work, we introduce a class
of hyperbolic KG embedding models that si-
multaneously capture hierarchical and logi-
cal patterns. Our approach combines hyper-
bolic reflections and rotations with attention
to model complex relational patterns. Exper-
imental results on standard KG benchmarks
show that our method improves over previ-
ous Euclidean- and hyperbolic-based efforts
by up to 6.1% in mean reciprocal rank (MRR)
in low dimensions. Furthermore, we observe
that different geometric transformations cap-
ture different types of relations while attention-
based transformations generalize to multiple
relations. In high dimensions, our approach
yields new state-of-the-art MRRs of 49.6% on
WN18RR and 57.7% on YAGO3-10.

1 Introduction

Knowledge graphs (KGs), consisting of (head en-
tity, relationship, tail entity) triples, are popular
data structures for representing factual knowledge
to be queried and used in downstream applications
such as word sense disambiguation, question an-
swering, and information extraction. Real-world
KGs such as Yago (Suchanek et al., 2007) or Word-
net (Miller, 1995) are usually incomplete, so a com-
mon approach to predicting missing links in KGs
is via embedding into vector spaces. Embedding
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Figure 1: A toy example showing how KGs can simul-
taneously exhibit hierarchies and logical patterns.

methods learn representations of entities and re-
lationships that preserve the information found in
the graph, and have achieved promising results for
many tasks.

Relations found in KGs have differing properties:
for example, (Michelle Obama, married to, Barack
Obama) is symmetric, whereas hypernym relations
like (cat, specific type of, feline), are not (Figure
1). These distinctions present a challenge to em-
bedding methods: preserving each type of behavior
requires producing a different geometric pattern
in the embedding space. One popular approach
is to use extremely high-dimensional embeddings,
which offer more flexibility for such patterns. How-
ever, given the large number of entities found in
KGs, doing so yields very high memory costs.

For hierarchical data, hyperbolic geometry of-
fers an exciting approach to learn low-dimensional
embeddings while preserving latent hierarchies.
Hyperbolic space can embed trees with arbitrarily
low distortion in just two dimensions. Recent re-
search has proposed embedding hierarchical graphs
into these spaces instead of conventional Euclidean
space (Nickel and Kiela, 2017; Sala et al., 2018).
However, these works focus on embedding simpler
graphs (e.g., weighted trees) and cannot express
the diverse and complex relationships in KGs.

We propose a new hyperbolic embedding ap-
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proach that captures such patterns to achieve the
best of both worlds. Our proposed approach pro-
duces the parsimonious representations offered by
hyperbolic space, especially suitable for hierar-
chical relations, and is effective even with low-
dimensional embeddings. It also uses rich trans-
formations to encode logical patterns in KGs, pre-
viously only defined in Euclidean space. To ac-
complish this, we (1) train hyperbolic embeddings
with relation-specific curvatures to preserve mul-
tiple hierarchies in KGs; (2) parameterize hyper-
bolic isometries (distance-preserving operations)
and leverage their geometric properties to capture
relations’ logical patterns, such as symmetry or
anti-symmetry; (3) and use a notion of hyperbolic
attention to combine geometric operators and cap-
ture multiple logical patterns.

We evaluate the performance of our approach,
ATTH, on the KG link prediction task using the
standard WN18RR (Dettmers et al., 2018; Bordes
et al., 2013), FB15k-237 (Toutanova and Chen,
2015) and YAGO3-10 (Mahdisoltani et al., 2013)
benchmarks. (1) In low (32) dimensions, we im-
prove over Euclidean-based models by up to 6.1%
in the mean reciprocical rank (MRR) metric. In par-
ticular, we find that hierarchical relationships, such
as WordNet’s hypernym and member meronym, sig-
nificantly benefit from hyperbolic space; we ob-
serve a 16% to 24% relative improvement versus
Euclidean baselines. (2) We find that geometric
properties of hyperbolic isometries directly map to
logical properties of relationships. We study sym-
metric and anti-symmetric patterns and find that
reflections capture symmetric relations while rota-
tions capture anti-symmetry. (3) We show that
attention based-transformations have the ability
to generalize to multiple logical patterns. For in-
stance, we observe that ATTH recovers reflections
for symmetric relations and rotations for the anti-
symmetric ones.

In high (500) dimensions, we find that both hy-
perbolic and Euclidean embeddings achieve similar
performance, and our approach achieves new state-
of-the-art results (SotA), obtaining 49.6% MRR
on WN18RR and 57.7% YAGO3-10. Our exper-
iments show that trainable curvature is critical to
generalize hyperbolic embedding methods to high-
dimensions. Finally, we visualize embeddings
learned in hyperbolic spaces and show that hyper-
bolic geometry effectively preserves hierarchies in
KGs.

2 Related Work

Previous methods for KG embeddings also rely
on geometric properties. Improvements have been
obtained by exploiting either more sophisticated
spaces (e.g., going from Euclidean to complex or
hyperbolic space) or more sophisticated operations
(e.g., from translations to isometries, or to learning
graph neural networks). In contrast, our approach
takes a step forward in both directions.

Euclidean embeddings In the past decade, there
has been a rich literature on Euclidean embeddings
for KG representation learning. These include
translation approaches (Bordes et al., 2013; Ji et al.,
2015; Wang et al., 2014; Lin et al., 2015) or tensor
factorization methods such as RESCAL (Nickel
et al., 2011) or DistMult (Yang et al., 2015). While
these methods are fairly simple and have few pa-
rameters, they fail to encode important logical prop-
erties (e.g., translations can’t encode symmetry).

Complex embeddings Recently, there has been
interest in learning embeddings in complex space,
as in the ComplEx (Trouillon et al., 2016) and Ro-
tatE (Sun et al., 2019) models. RotatE learns ro-
tations in complex space, which are very effective
in capturing logical properties such as symmetry,
anti-symmetry, composition or inversion. The re-
cent QuatE model (Zhang et al., 2019) learns KG
embeddings using quaternions. However, a down-
side is that these embeddings require very high-
dimensional spaces, leading to high memory costs.

Deep neural networks Another family of meth-
ods uses neural networks to produce KG embed-
dings. For instance, R-GCN (Schlichtkrull et al.,
2018) extends graph neural networks to the multi-
relational setting by adding a relation-specific ag-
gregation step. ConvE and ConvKB (Dettmers
et al., 2018; Nguyen et al., 2018) leverage the ex-
pressiveness of convolutional neural networks to
learn entity embeddings and relation embeddings.
More recently, the KBGAT (Nathani et al., 2019)
and A2N (Bansal et al., 2019) models use graph
attention networks for knowledge graph embed-
dings. A downside of these methods is that they
are computationally expensive as they usually re-
quire pre-trained KG embeddings as input for the
neural network.

Hyperbolic embeddings To the best of our
knowledge, MuRP (Balažević et al., 2019) is the
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only method that learns KG embeddings in hy-
perbolic space in order to target hierarchical data.
MuRP minimizes hyperbolic distances between
a re-scaled version of the head entity embedding
and a translation of the tail entity embedding. It
achieves promising results using hyperbolic em-
beddings with fewer dimensions than its Euclidean
analogues. However, MuRP is a translation model
and fails to encode some logical properties of rela-
tionships. Furthermore, embeddings are learned in
a hyperbolic space with fixed curvature, potentially
leading to insufficient precision, and training relies
on cumbersome Riemannian optimization. Instead,
our proposed method leverages expressive hyper-
bolic isometries to simultaneously capture logical
patterns and hierarchies. Furthermore, embeddings
are learned using tangent space (i.e., Euclidean) op-
timization methods and trainable hyperbolic curva-
tures per relationship, avoiding precision errors that
might arise when using a fixed curvature, and pro-
viding flexibility to encode multiple hierarchies.

3 Problem Formulation and Background

We describe the KG embedding problem setting
and give some necessary background on hyperbolic
geometry.

3.1 Knowledge graph embeddings

In the KG embedding problem, we are given a set
of triples (h, r, t) ∈ E ⊆ V ×R×V , where V and
R are entity and relationship sets, respectively. The
goal is to map entities v ∈ V to embeddings ev ∈
UdV and relationships r ∈ R to embeddings rr ∈
UdR , for some choice of space U (traditionally R),
such that the KG structure is preserved.

Concretely, the data is split into ETrain and ETest

triples. Embeddings are learned by optimizing a
scoring function s : V × R × V → R, which
measures triples’ likelihoods. s(·, ·, ·) is trained
using triples in ETrain and the learned embeddings
are then used to predict scores for triples in ETest.
The goal is to learn embeddings such that the scores
of triples in ETest are high compared to triples that
are not present in E .

3.2 Hyperbolic geometry

We briefly review key notions from hyperbolic ge-
ometry; a more in-depth treatment is available in
standard texts (Robbin and Salamon). Hyperbolic
geometry is a non-Euclidean geometry with con-
stant negative curvature. In this work, we use the d-
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Figure 2: An illustration of the exponential map
expx(v), which maps the tangent space TxM at the
point x to the hyperbolic manifold M .

dimensional Poincaré ball model with negative cur-
vature −c (c > 0): Bd,c = {x ∈ Rd : ||x||2 < 1

c},
where || · || denotes the L2 norm. For each point
x ∈ Bd,c, the tangent space T c

x is a d-dimensional
vector space containing all possible directions of
paths in Bd,c leaving from x.

The tangent space T c
x maps to Bd,c via the ex-

ponential map (Figure 2), and conversely, the log-
arithmic map maps Bd,c to T c

x . In particular, we
have closed-form expressions for these maps at the
origin:

expc
0(v) = tanh(

√
c||v||) v√

c||v|| , (1)

logc0(y) = arctanh(
√
c||y||) y√

c||y|| . (2)

Vector addition is not well-defined in the hyper-
bolic space (adding two points in the Poincaré ball
might result in a point outside the ball). Instead,
Möbius addition ⊕c (Ganea et al., 2018) provides
an analogue to Euclidean addition for hyperbolic
space. We give its closed-form expression in Ap-
pendix A.1. Finally, the hyperbolic distance on
Bd,c has the explicit formula:

dc(x,y) =
2√
c
arctanh(

√
c|| − x⊕c y||). (3)

4 Methodology

The goal of this work is to learn parsimonious hy-
perbolic embeddings that can encode complex log-
ical patterns such as symmetry, anti-symmetry, or
inversion while preserving latent hierarchies. Our
model, ATTH, (1) learns KG embeddings in hyper-
bolic space in order to preserve hierarchies (Sec-
tion 4.1), (2) uses a class of hyperbolic isometries
parameterized by compositions of Givens transfor-
mations to encode logical patterns (Section 4.2),
(3) combines these isometries with hyperbolic at-
tention (Section 4.3). We describe the full model
in Section 4.4.
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4.1 Hierarchies in hyperbolic space

As described, hyperbolic embeddings enable us
to represent hierarchies even when we limit our-
selves to low-dimensional spaces. In fact, two-
dimensional hyperbolic space can represent any
tree with arbitrarily small error (Sala et al., 2018).

It is important to set the curvature of the hy-
perbolic space correctly. This parameter provides
flexibility to the model, as it determines whether
to embed relations into a more curved hyperbolic
space (more “tree-like”), or into a flatter, more
“Euclidean-like” geometry. For each relation, we
learn a relation-specific absolute curvature cr, en-
abling us to represent a variety of hierarchies. As
we show in Section 5.5, fixing, rather than learn-
ing curvatures can lead to significant performance
degradation.

4.2 Hyperbolic isometries

Relationships often satisfy particular properties,
such as symmetry: e.g., if (Michelle Obama,
married to, Barack Obama) holds, then (Barack
Obama, married to, Michelle Obama) does as well.
These rules are not universal. For instance, (Barack
Obama, born in, Hawaii) is not symmetric.

Creating and curating a set of deterministic rules
is infeasible for large-scale KGs; instead, embed-
ding methods represent relations as parameterized
geometric operations that directly map to logical
properties. We use two such operations in hyper-
bolic space: rotations, which effectively capture
compositions or anti-symmetric patterns, and reflec-
tions, which naturally encode symmetric patterns.

Rotations Rotations have been successfully used
to encode compositions in complex space with the
RotatE model (Sun et al., 2019); we lift these to
hyperbolic space. Compared to translations or ten-
sor factorization approaches which can only infer
some logical patterns, rotations can simultaneously
model and infer inversion, composition, symmetric
or anti-symmetric patterns.

Reflections These isometries reflect along a fixed
subspace. While some rotations can represent sym-
metric relations (more specifically π−rotations),
any reflection can naturally represent symmetric
relations, since their second power is the identity.
They provide a way to fill-in missing entries in
symmetric triples, by applying the same operation
to both the tail and the head entity. For instance,
by modelling sibling of with a reflection, we can

0 0

(a) Rotations

0 0

(b) Reflections

Figure 3: Euclidean (left) and hyperbolic (right) isome-
tries. In hyperbolic space, the distance between start
and end points after applying rotations or reflections is
much larger than the Euclidean distance; it approaches
the sum of the distances between the points and the ori-
gin, giving more “room” to separate embeddings. This
is similar to trees, where the shortest path between two
points goes through their nearest common ancestor.

directly infer (Bob, sibling of, Alice) from (Alice,
sibling of, Bob) and vice versa.

Parameterization Unlike RotatE which models
rotations via unitary complex numbers, we learn
relationship-specific isometries using Givens trans-
formations, 2× 2 matrices commonly used in nu-
merical linear algebra. Let Θr := (θr,i)i∈{1,... d

2
}

and Φr := (φr,i)i∈{1,... d
2
} denote relation-specific

parameters. Using an even number of dimensions d,
our model parameterizes rotations and reflections
with block-diagonal matrices of the form:

Rot(Θr) = diag(G+(θr,1), . . . , G
+(θr, d

2
)), (4)

Ref(Φr) = diag(G−(φr,1), . . . , G
−(φr,n

2
)), (5)

where G±(θ) :=

[
cos(θ) ∓sin(θ)
sin(θ) ±cos(θ)

]
. (6)

Rotations and reflections of this form are hyper-
bolic isometries (distance-preserving). We can
therefore directly apply them to hyperbolic embed-
dings while preserving the underlying geometry.
Additionally, these transformations are computa-
tionally efficient and can be computed in linear time
in the dimension. We illustrate two-dimensional
isometries in both Euclidean and hyperbolic spaces
in Figure 3.

4.3 Hyperbolic attention
Of our two classes of hyperbolic isometries, one or
the other may better represent a particular relation.
To handle this, we use an attention mechanism to
learn the right isometry. Thus we can represent
symmetric, anti-symmetric or mixed-behaviour re-
lations (i.e. neither symmetric nor anti-symmetric)
as a combination of rotations and reflections.

Let xH and yH be hyperbolic points (e.g., re-
flection and rotation embeddings), and a be an
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attention vector. Our approach maps hyperbolic
representations to tangent space representations,
xE = logc0(xH) and yE = logc0(yH), and com-
putes attention scores:

(αx, αy) = Softmax(aTxE ,aTyE).

We then compute a weighted average using the
recently proposed tangent space average (Chami
et al., 2019; Liu et al., 2019):

Att(xH ,yH ;a) := expc
0(αxx

E + αyy
E). (7)

4.4 The ATTH model

We have all of the building blocks for ATTH, and
can now describe the model architecture. Let
(eHv )v∈V and (rHr )r∈R denote entity and relation-
ship hyperbolic embeddings respectively. For a
triple (h, r, t) ∈ V × R × V , ATTH applies
relation-specific rotations (Equation 4) and reflec-
tions (Equation 5) to the head embedding:

qH
Rot = Rot(Θr)e

H
h , q

H
ref = Ref(Φr)e

H
h . (8)

ATTH then combines the two representations using
hyperbolic attention (Equation 7) and applies a
hyperbolic translation:

Q(h, r) = Att(qH
Rot,q

H
Ref ;ar)⊕cr rHr . (9)

Intuitively, rotations and reflections encode log-
ical patterns while translations capture tree-like
structures by moving between levels of the hierar-
chy. Finally, query embeddings are compared to
target tail embeddings via the hyperbolic distance
(Equation 3). The resulting scoring function is:

s(h, r, t) = −dcr(Q(h, r), eHt )2 + bh + bt, (10)

where (bv)v∈V are entity biases which act as mar-
gins in the scoring function (Tifrea et al., 2019;
Balažević et al., 2019).

The model parameters are then
{(Θr,Φr, r

H
r ,ar, cr)r∈R, (e

H
v , bv)v∈V}. Note

that the total number of parameters in ATTH is
O(|V|d), similar to traditional models that do not
use attention or geometric operations. The extra
cost is proportional to the number of relations,
which is usually much smaller than the number of
entities.

Dataset #entities #relations #triples ξG
WN18RR 41k 11 93k -2.54
FB15k-237 15k 237 310k -0.65
YAGO3-10 123k 37 1M -0.54

Table 1: Datasets statistics. The lower the metric ξG is,
the more tree-like the knowledge graph is.

5 Experiments

In low dimensions, we hypothesize (1) that hyper-
bolic embedding methods obtain better represen-
tations and allow for improved downstream per-
formance for hierarchical data (Section 5.2). (2)
We expect the performance of relation-specific ge-
ometric operations to vary based on the relation’s
logical patterns (Section 5.3). (3) In cases where
the relations are neither purely symmetric nor anti-
symmetric, we anticipate that hyperbolic attention
outperforms the models which are based on solely
reflections or rotations (Section 5.4). Finally, in
high dimensions, we expect hyperbolic models
with trainable curvature to learn the best geometry,
and perform similarly to their Euclidean analogues
(Section 5.5).

5.1 Experimental setup

Datasets We evaluate our approach on the link
prediction task using three standard competition
benchmarks, namely WN18RR (Bordes et al.,
2013; Dettmers et al., 2018), FB15k-237 (Bor-
des et al., 2013; Toutanova and Chen, 2015) and
YAGO3-10 (Mahdisoltani et al., 2013). WN18RR
is a subset of WordNet containing 11 lexical re-
lationships between 40,943 word senses, and has
a natural hierarchical structure, e.g., (car, hyper-
nym of, sedan). FB15k-237 is a subset of Free-
base, a collaborative KB of general world knowl-
edge. FB15k-237 has 14,541 entities and 237 re-
lationships, some of which are non-hierarchical,
such as born-in or nationality, while others have
natural hierarchies, such as part-of (for organiza-
tions). YAGO3-10 is a subset of YAGO3, contain-
ing 123,182 entities and 37 relations, where most
relations provide descriptions of people. Some re-
lationships have a hierarchical structure such as
playsFor or actedIn, while others induce logical
patterns, like isMarriedTo.

For each KG, we follow the standard data aug-
mentation protocol by adding inverse relations
(Lacroix et al., 2018) to the datasets. Addition-
ally, we estimate the global graph curvature ξG (Gu
et al., 2019) (see Appendix A.2 for more details),
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WN18RR FB15k-237 YAGO3-10
U Model MRR H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

Rd RotatE .387 .330 .417 .491 .290 .208 .316 .458 - - - -
MuRE .458 .421 .471 .525 .313 .226 .340 .489 .283 .187 .317 .478

Cd ComplEx-N3 .420 .390 .420 .460 .294 .211 .322 .463 .336 .259 .367 .484
Bd,1 MuRP .465 .420 .484 .544 .323 .235 .353 .501 .230 .150 .247 .392

Rd
REFE .455 .419 .470 .521 .302 .216 .330 .474 .370 .289 .403 .527
ROTE .463 .426 .477 .529 .307 .220 .337 .482 .381 .295 .417 .548
ATTE .456 .419 .471 .526 .311 .223 .339 .488 .374 .290 .410 .537

Bd,c
REFH .447 .408 .464 .518 .312 .224 .342 .489 .381 .302 .415 .530
ROTH .472 .428 .490 .553 .314 .223 .346 .497 .393 .307 .435 559
ATTH .466 .419 .484 .551 .324 .236 .354 .501 .397 .310 .437 .566

Table 2: Link prediction results for low-dimensional embeddings (d = 32) in the filtered setting. Best score in bold
and best published underlined. Hyperbolic isometries significantly outperform Euclidean baselines on WN18RR
and YAGO3-10, both of which exhibit hierarchical structures.
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M
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R
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MurP
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Figure 4: WN18RR MRR dimension for d ∈
{10, 16, 20, 32, 50, 200, 500}. Average and standard
deviation computed over 10 runs for ROTH.

which is a distance-based measure of how close a
given graph is to being a tree. We summarize the
datasets’ statistics in Table 1.

Baselines We compare our method to SotA mod-
els, including MurP (Balazevic et al., 2019), MurE
(which is the Euclidean analogue or MurP), RotatE
(Sun et al., 2019), ComplEx-N3 (Lacroix et al.,
2018) and TuckER (Balazevic et al., 2019). Base-
line numbers in high dimensions (Table 5) are taken
from the original papers, while baseline numbers in
the low-dimensional setting (Table 2) are computed
using open-source implementations of each model.
In particular, we run hyper-parameter searches over
the same parameters as the ones in the original
papers to compute baseline numbers in the low-
dimensional setting.

Ablations To analyze the benefits of hyperbolic
geometry, we evaluate the performance of ATTE,
which is equivalent to ATTH with curvatures set
to zero. Additionally, to better understand the
role of attention, we report scores for variants of
ATTE/H using only rotations (ROTE/H) or reflec-
tions (REFE/H).

Evaluation metrics At test time, we use the scor-
ing function in Equation 10 to rank the correct tail
or head entity against all possible entities, and use
in use inverse relations for head prediction (Lacroix
et al., 2018). Similar to previous work, we compute
two ranking-based metrics: (1) mean reciprocal
rank (MRR), which measures the mean of inverse
ranks assigned to correct entities, and (2) hits at
K (H@K, K ∈ {1, 3, 10}), which measures the
proportion of correct triples among the top K pre-
dicted triples. We follow the standard evaluation
protocol in the filtered setting (Bordes et al., 2013):
all true triples in the KG are filtered out during
evaluation, since predicting a low rank for these
triples should not be penalized.

Training procedure and implementation We
train ATTH by minimizing the full cross-entropy
loss with uniform negative sampling, where neg-
ative examples for a triple (h, r, t) are sampled
uniformly from all possible triples obtained by per-
turbing the tail entity:

L =
∑

t′∼U(V)

log(1+exp(yt′s(h, r, t
′))), (11)

where yt′ =

{
−1 if t′ = t

1 otherwise.

Since optimization in hyperbolic space is practi-
cally challenging, we instead define all parameters
in the tangent space at the origin, optimize embed-
dings using standard Euclidean techniques, and use
the exponential map to recover the hyperbolic pa-
rameters (Chami et al., 2019). We provide more
details on tangent space optimization in Appendix
A.4. We conducted a grid search to select the learn-
ing rate, optimizer, negative sample size, and batch
size, using the validation set to select the best hy-
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Relation KhsG ξG ROTE ROTH Improvement
member meronym 1.00 -2.90 .320 .399 24.7%
hypernym 1.00 -2.46 .237 .276 16.5%
has part 1.00 -1.43 .291 .346 18.9%
instance hypernym 1.00 -0.82 .488 .520 6.56%
member of domain region 1.00 -0.78 .385 .365 -5.19%
member of domain usage 1.00 -0.74 .458 .438 -4.37%
synset domain topic of 0.99 -0.69 .425 .447 5.17%
also see 0.36 -2.09 .634 .705 11.2%
derivationally related form 0.07 -3.84 .960 .968 0.83%
similar to 0.07 -1.00 1.00 1.00 0.00%
verb group 0.07 -0.50 .974 .974 0.00%

Table 3: Comparison of H@10 for WN18RR relations.
Higher KhsG and lower ξG means more hierarchical.

perparameters. Our best model hyperparameters
are detailed in Appendix A.3. We conducted all
our experiments on NVIDIA Tesla P100 GPUs and
make our implementation publicly available∗.

5.2 Results in low dimensions

We first evaluate our approach in the low-
dimensional setting for d = 32, which is approxi-
mately one order of magnitude smaller than SotA
Euclidean methods. Table 2 compares the perfor-
mance of ATTH to that of other baselines, includ-
ing the recent hyperbolic (but not rotation-based)
MuRP model. In low dimensions, hyperbolic
embeddings offer much better representations for
hierarchical relations, confirming our hypothesis.
ATTH improves over previous Euclidean and hy-
perbolic methods by 0.7% and 6.1% points in MRR
on WN18RR and YAGO3-10 respectively. Both
datasets have multiple hierarchical relationships,
suggesting that the hierarchical structure imposed
by hyperbolic geometry leads to better embeddings.
On FB15k-237, ATTH and MurP achieve similar
performance, both improving over Euclidean base-
lines. We conjecture that translations are sufficient
to model relational patterns in FB15k-237.

To understand the role of dimensionality, we
also conduct experiments on WN18RR against
SotA methods under varied low-dimensional set-
tings (Figure 4). We include error bars for our
method with average MRR and standard deviation
computed over 10 runs. Our approach consistently
outperforms all baselines, suggesting that hyper-
bolic embeddings still attain high-accuracy across
a broad range of dimensions.

Additionally, we measure performance per re-
lation on WN18RR in Table 3 to understand the
benefits of hyperbolic geometric on hierarchical re-
lations. We report the Krackhardt hierarchy score

∗Code available at https://github.com/
tensorflow/neural-structured-learning/
tree/master/research/kg_hyp_emb

Relation Anti-symmetric Symmetric ROTH REFH ATTH
hasNeighbor 7 3 .750 1.00 1.00
isMarriedTo 7 3 .941 .941 1.00
actedIn 3 7 .145 .110 .150
hasMusicalRole 3 7 .431 .375 .458
directed 3 7 .500 .450 .567
graduatedFrom 3 7 .262 .167 .274
playsFor 3 7 .671 .642 .664
wroteMusicFor 3 7 .281 .188 .266
hasCapital 3 7 .692 .731 .731
dealsWith 7 7 .286 .286 .429
isLocatedIn 7 7 .404 .399 .420

Table 4: Comparison of geometric transformations on
a subset of YAGO3-10 relations.

(KhsG) (Balažević et al., 2019) and estimated cur-
vature per relation (see Appendix A.2 for more
details). We consider a relation to be hierarchical
when its corresponding graph is close to tree-like
(low curvature, high KhsG). We observe that hyper-
bolic embeddings offer much better performance
on hierarchical relations such as hypernym or has
part, while Euclidean and hyperbolic embeddings
have similar performance on non-hierarchical rela-
tions such as verb group. We also plot the learned
curvature per relation versus the embedding dimen-
sion in Figure 5b. We note that the learned curva-
ture in low dimensions directly correlates with the
estimated graph curvature ξG in Table 3, suggesting
that the model with learned curvatures learns more
“curved” embedding spaces for tree-like relations.

Finally, we observe that MurP achieves lower
performance than MurE on YAGO3-10, while
ATTH improves over ATTE by 2.3% in MRR. This
suggests that trainable curvature is critical to learn
embeddings with the right amount of curvature,
while fixed curvature might degrade performance.
We elaborate further on this point in Section 5.5.

5.3 Hyperbolic rotations and reflections

In our experiments, we find that rotations work well
on WN18RR, which contains multiple hierarchi-
cal and anti-symmetric relations, while reflections
work better for YAGO3-10 (Table 5). To better
understand the mechanisms behind these observa-
tions, we analyze two specific patterns: relation
symmetry and anti-symmetry. We report perfor-
mance per-relation on a subset of YAGO3-10 re-
lations in Table 4. We categorize relations into
symmetric, anti-symmetric, or neither symmetric
nor anti-symmetric categories using data statistics.
More concretely, we consider a relation to satisfy a
logical pattern when the logical condition is satis-
fied by most of the triplets (e.g., a relation r is sym-
metric if for most KG triples (h, r, t), (t, r, h) is
also in the KG). We observe that reflections encode

https://github.com/tensorflow/neural-structured-learning/tree/master/research/kg_hyp_emb
https://github.com/tensorflow/neural-structured-learning/tree/master/research/kg_hyp_emb
https://github.com/tensorflow/neural-structured-learning/tree/master/research/kg_hyp_emb
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Figure 5: (a): ROTH offers improved performance in low dimensions; in high dimensions, fixed curvature degrades
performance, while trainable curvature approximately recovers Euclidean space. (b): As the dimension increases,
the learned curvature of hierarchical relationships tends to zero.

symmetric relations particularly well, while rota-
tions are well suited for anti-symmetric relations.
This confirms our intuition—and the motivation for
our approach—that particular geometric properties
capture different kinds of logical properties.

5.4 Attention-based transformations

One advantage of using relation-specific transfor-
mations is that each relation can learn the right
geometric operators based on the logical properties
it has to satisfy. In particular, we observe that in
both low- and high-dimensional settings, attention-
based models can recover the performance of the
best transformation on all datasets (Tables 2 and 5).
Additionally, per-relationship results on YAGO3-
10 in Table 4 suggest that ATTH indeed recovers
the best geometric operation.

Furthermore, for relations that are neither sym-
metric nor anti-symmetric, we find that ATTH
can outperform rotations and reflections, suggest-
ing that combining multiple operators with atten-
tion can learn more expressive operators to model
mixed logical patterns. In other words, attention-
based transformations alleviate the need to conduct
experiments with multiple geometric transforma-
tions by simply allowing the model to choose which
one is best for a given relation.

5.5 Results in high dimensions

In high dimensions (Table 5), we compare against
a variety of other models and achieve new SotA
results on WN18RR and YAGO3-10, and third-
best results on FB15k-237. As we expected, when
the embedding dimension is large, Euclidean and
hyperbolic embedding methods perform similarly
across all datasets. We explain this behavior by not-
ing that when the dimension is sufficiently large,

both Euclidean and hyperbolic spaces have enough
capacity to represent complex hierarchies in KGs.
This is further supported by Figure 5b, which
shows the learned absolute curvature versus the
dimension. We observe that curvatures are close to
zero in high dimensions, confirming our expecta-
tion that ROTH with trainable curvatures learns a
roughly Euclidean geometry in this setting.

In contrast, fixed curvature degrades perfor-
mance in high dimensions (Figure 5a), confirming
the importance of trainable curvatures and its im-
pact on precision and capacity (previously studied
by (Sala et al., 2018)). Additionally, we show the
embeddings’ norms distribution in the Appendix
(Figure 7). Fixed curvature results in embeddings
being clustered near the boundary of the ball while
trainable curvatures adjusts the embedding space
to better distribute points throughout the ball. Pre-
cision issues that might arise with fixed curvature
could also explain MurP’s low performance in high
dimensions. Trainable curvatures allow ROTH to
perform as well or better than previous methods in
both low and high dimensions.

5.6 Visualizations

In Figure 6, we visualize the embeddings learned
by ROTE versus ROTH for a sub-tree of the or-
ganism entity in WN18RR. To better visualize the
hierarchy, we apply k inverse rotations for all nodes
at level k in the tree.

By contrast to ROTE, ROTH preserves the tree
structure in the embedding space. Furthermore, we
note that ROTE cannot simultaneously preserve the
tree structure and make non-neighboring nodes far
from each other. For instance, virus should be far
from male, but preserving the tree structure (by
going one level down in the tree) while making
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WN18RR FB15k-237 YAGO3-10
U Model MRR H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

Rd

DistMult .430 .390 .440 .490 .241 .155 .263 .419 .340 .240 .380 .540
ConvE .430 .400 .440 .520 .325 .237 .356 .501 .440 .350 .490 .620
TuckER .470 .443 .482 .526 .358 .266 .394 .544 - - - -
MurE .475 .436 .487 .554 .336 .245 .370 .521 .532 .444 .584 .694

Cd ComplEx-N3 .480 .435 .495 .572 .357 .264 .392 .547 .569 .498 .609 .701
RotatE .476 .428 .492 .571 .338 .241 .375 .533 .495 .402 .550 .670

Hd Quaternion .488 .438 .508 .582 .348 .248 .382 .550 - - - -
Bd,1 MurP .481 .440 .495 .566 .335 .243 .367 .518 .354 .249 .400 567

Rd
REFE .473 .430 .485 .561 .351 .256 .390 .541 .577 .503 .621 .712
ROTE .494 .446 .512 .585 .346 .251 .381 .538 .574 .498 .621 .711
ATTE .490 .443 .508 .581 .351 .255 .386 .543 .575 .500 .621 .709

Bd,c
REFH .461 .404 .485 .568 .346 .252 .383 .536 .576 .502 .619 .711
ROTH .496 .449 .514 .586 .344 .246 .380 .535 .570 .495 .612 .706
ATTH .486 .443 .499 .573 .348 .252 .384 .540 .568 .493 .612 .702

Table 5: Link prediction results for high-dimensional embeddings (best for d ∈ {200, 400, 500}) in the filtered
setting. DistMult, ConvE and ComplEx results are taken from (Dettmers et al., 2018). Best score in bold and
best published underlined. ATTE and ATTH have similar performance in the high-dimensional setting, performing
competitively with or better than state-of-the-art methods on WN18RR, FB15k-237 and YAGO3-10.
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(a) ROTE embeddings.
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(b) ROTH embeddings.

Figure 6: Visualizations of the embeddings learned by
ROTE and ROTH on a sub-tree of WN18RR for the hy-
pernym relation. In contrast to ROTE, ROTH preserves
hierarchies by learning tree-like embeddings.

these two nodes far from each other is difficult in
Euclidean space. In hyperbolic space, however, we
observe that going one level down in the tree is
achieved by translating embeddings towards the
left. This pattern essentially illustrates the transla-
tion component in ROTH, allowing the model to
simultaneously preserve hierarchies while making
non-neighbouring nodes far from each other.

6 Conclusion

We introduce ATTH, a hyperbolic KG embed-
ding model that leverages the expressiveness of
hyperbolic space and attention-based geometric
transformations to learn improved KG representa-
tions in low-dimensions. ATTH learns embeddings
with trainable hyperbolic curvatures, allowing it
to learn the right geometry for each relationship
and generalize across multiple embedding dimen-
sions. ATTH achieves new SotA on WN18RR and
YAGO3-10, real-world KGs which exhibit hierar-

chical structures. Future directions for this work in-
clude exploring other tasks that might benefit from
hyperbolic geometry, such as hypernym detection.
The proposed attention-based transformations can
also be extended to other geometric operations.
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Ré. 2019. Learning mixed-curvature representations
in product spaces. In International Conference on
Learning Representations.

Guoliang Ji, Shizhu He, Liheng Xu, Kang Liu, and
Jun Zhao. 2015. Knowledge graph embedding via
dynamic mapping matrix. In Proceedings of the
53rd Annual Meeting of the Association for Compu-
tational Linguistics and the 7th International Joint
Conference on Natural Language Processing (Vol-
ume 1: Long Papers), pages 687–696.

Diederik P Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In International
Conference for Learning Representations.

David Krackhardt. 1994. Graph theoretical dimensions
of informal organizations. In Computational organi-
zation theory, pages 107–130. Psychology Press.

Timothée Lacroix, Nicolas Usunier, and Guillaume
Obozinski. 2018. Canonical tensor decomposition
for knowledge base completion. International Con-
ference on Machine Learning.

Yankai Lin, Zhiyuan Liu, Maosong Sun, Yang Liu,
and Xuan Zhu. 2015. Learning entity and relation
embeddings for knowledge graph completion. In
Twenty-ninth AAAI Conference on Artificial Intelli-
gence.

Qi Liu, Maximilian Nickel, and Douwe Kiela. 2019.
Hyperbolic graph neural networks. In Advances
in Neural Information Processing Systems, pages
8228–8239.

Farzaneh Mahdisoltani, Joanna Biega, and Fabian M
Suchanek. 2013. Yago3: A knowledge base from
multilingual wikipedias.

George A Miller. 1995. Wordnet: a lexical database for
english. Communications of the ACM, 38(11):39–
41.

Deepak Nathani, Jatin Chauhan, Charu Sharma, and
Manohar Kaul. 2019. Learning attention-based
embeddings for relation prediction in knowledge
graphs. In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguistics.
Association for Computational Linguistics.

Dai Quoc Nguyen, Tu Dinh Nguyen, Dat Quoc
Nguyen, and Dinh Phung. 2018. A Novel Embed-
ding Model for Knowledge Base Completion Based
on Convolutional Neural Network. In Proceed-
ings of the 16th Annual Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies
(NAACL-HLT), pages 327–333.

Maximilian Nickel, Volker Tresp, and Hans-Peter
Kriegel. 2011. A three-way model for collective
learning on multi-relational data. In International
Conference on Machine Learning, pages 809–816.
Omnipress.

Maximillian Nickel and Douwe Kiela. 2017. Poincaré
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A Appendix

Below, we provide additional details. We start by
providing the formula for the hyperbolic analogue
of addition that we use, along with additional hy-
perbolic geometry background. Next, we provide
more information about the metrics that are used
to determine how hierarchical a dataset is. Af-
terwards, we give additional experimental details,
including the table of hyperparameters and further
details on tangent space optimization. Lastly, we
include an additional comparison against the Dihe-
dral model (Xu and Li, 2019).

A.1 Möbius addition

The Möbius addition operation (Ganea et al., 2018)
has the closed-form expression:

x⊕c y =
αxyx + βxyy

1 + 2cxTy + c2||x||2||y||2 ,

where αxy = 1 + 2cxTy + c||y||2,
and βxy = 1− c||x||2.

In contrast to Euclidean addition, it is neither com-
mutative nor associative. However, it provides
an analogue through the lens of parallel transport:
given two points x,y and a vector v in T c

x , there is
a unique vector in T c

y which creates the same angle
as v with the direction of the geodesic (shortest
path) connecting x to y. This map is the paral-
lel transport P c

x→y(·); Euclidean parallel transport
is the standard Euclidean addition. Analogously,
the Möbius addition satisfies (Ganea et al., 2018):
x⊕c y = expc

x(P c
0→x(logc0(y))).

A.2 Hierarchy estimates

We use two metrics to estimate how hierarchical a
relation is: the curvature estimate ξG and the Krack-
hardt hierarchy score KhsG. While the curvature
estimate captures global hierarchical behaviours
(how much the graph is tree-like when zooming-
out), the Krackhardt score captures a more local
behaviour (how many small loops the graph has).
See Figure 8 for examples.

Curvature estimate To estimate the curvature
of a relation r, we restrict to the undirected graph
Gr spanned by the edges labeled as r. Following
(Gu et al., 2019), let ξGr(a, b, c) be the curvature
estimate of a triangle in Gr with vertices {a, b, c},
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Figure 7: Histogram of embeddings norm learned with
fixed and trainable curvatures for the hypernym relation
in WN18RR.

which is given by:

ξGr(a, b, c) =
1

2dGr(a,m)

(
dGr(a,m)2

+ dGr(b, c)2/4

− (dGr(a, b)2 + dGr(a, c)2)/2
)
,

where m is the midpoint of the shortest path con-
necting b to c. This estimate is positive for triangles
in circles, negative for triangles in trees, and zero
for triangles in lines. Moreover, for a triangle in
a Riemannian manifold M , ξM (a, b, c) estimates
the sectional curvature of the plane on which the
triangle lies (see (Gu et al., 2019) for more de-
tails). Let mr be the total number of connected
components in Gr. We sample 1000 wi,r triangles
from each connected component ci,r of Gr where

wi,r =
N3

i,r∑mr
i=1 N

3
i,r

, and Ni,r is the number of nodes

in the component ci,r. ξGr is the mean of the es-
timated curvatures of the sampled triangles. For
the full graph, we take the weighted average of the
relation curvatures ξGr with respect to the weights∑mr

i=1 N
3
i,r∑

r

∑mr
i=1 N

3
i,r
.

Krackhardt hierarchy score For the directed
graph Gr spanned by the relation r, we let R be
the adjacency matrix (Ri,j = 1 if there is an edge
from node i to node j and 0 otherwise). Then:

KhsGr =

∑n
i,j=1Ri,j(1−Rj,i)∑n

i,j=1Ri,j
.

See (Krackhardt, 1994) for more details. We
note that for fully observed symmetric relations
(each edge is in a two-edge loop), KhsGr = 0
while for anti-symmetric relations (no small loops),
KhsGr = 1.
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ξG < 0, KhsG = 1 ξG < 0, KhsG = 0

ξG = 0, KhsG = 1 ξG = 0, KhsG = 0

ξG > 0, KhsG = 1 ξG > 0, KhsG = 0 ’

Figure 8: The curvature estimate ξG and the Krackhardt hierarchy score KhsG for several simple graphs. The
top-left graph is the most hierarchical, while the bottom-right graph is the least hierarchical.

WN18RR FB15k-237 YAGO3-10
Model MRR H@10 MRR H@10 MRR H@10
Dihedral .486 557 .300 .496 .388 .573
ATTE .490 .581 .351 .543 .575 .709

Table 6: Comparison of Dihedral and ATTE in high-
dimensions.

A.3 Experimental details

For all our Euclidean and hyperbolic models, we
conduct a hyperparameter search for the learning
rate, optimizer (Adam (Kingma and Ba, 2015) or
Adagrad (Duchi et al., 2011)), negative sample size
and batch size. We train each model for 500 epochs
and use early stopping after 100 epochs if the vali-
dation MRR stops increasing. We report the best
hyperparameters for each dataset in Table 7.

A.4 Tangent space optimization

Optimization in hyperbolic space normally requires
Riemannian Stochastic Gradient Descent (RSGD)

(Bonnabel, 2013), as was used in MuRP. RSGD
is challenging in practice. Instead, we use tangent
space optimization (Chami et al., 2019). We de-
fine all the ATTH parameters in the tangent space
at the origin (our parameter space), optimize em-
beddings using standard Euclidean techniques, and
use the exponential map to recover the hyperbolic
parameters.

Note that tangent space optimization is an exact
procedure, which does not incur losses in repre-
sentational power. This is the case in hyperbolic
space specifically because of a completeness prop-
erty: there is always a global bijection between the
tangent space and the manifold.

Concretely, ATTH optimizes the entity and rela-
tionship embeddings (eEv )v∈V and (rEr )r∈R, which
are mapped to the Poincaré ball with:

eHv = expcr
0 (eEv ) and rHr = expcr

0 (rEr ), (12)

The trainable model parameters are then
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Dataset embedding dimension model learning rate optimizer batch size negative samples

WN18RR

32

REFE 0.001 Adam 100 250
ROTE 0.001 Adam 100 250
ATTE 0.001 Adam 100 250
REFH 0.0005 Adam 250 250
ROTH 0.0005 Adam 500 50
ATTH 0.0005 Adam 500 50

500

REFE 0.1 Adagrad 500 50
ROTE 0.001 Adam 100 500
ATTE 0.001 Adam 1000 50
REFH 0.05 Adagrad 500 50
ROTH 0.001 Adam 1000 50
ATTH 0.001 Adam 1000 50

FB15k-237

32

REFE 0.075 Adagrad 250 250
ROTE 0.05 Adagrad 500 50
ATTE 0.05 Adagrad 500 50
REFH 0.05 Adagrad 500 250
ROTH 0.1 Adagrad 100 50
ATTH 0.05 Adagrad 500 100

500

REFE 0.05 Adagrad 500 50
ROTE 0.05 Adagrad 100 50
ATTE 0.05 Adagrad 500 50
REFH 0.05 Adagrad 500 50
ROTH 0.05 Adagrad 1000 50
ATTH 0.05 Adagrad 500 50

YAGO3-10

32

REFE 0.005 Adam 2000 NA
ROTE 0.005 Adam 2000 NA
ATTE 0.005 Adam 2000 NA
REFH 0.005 Adam 1000 NA
ROTH 0.001 Adam 1000 NA
ATTH 0.001 Adam 1000 NA

500

REFE 0.005 Adam 4000 NA
ROTE 0.005 Adam 4000 NA
ATTE 0.005 Adam 2000 NA
REFH 0.001 Adam 1000 NA
ROTH 0.0005 Adam 1000 NA
ATTH 0.0005 Adam 1000 NA

Table 7: Best hyperparameters in low- and high-dimensional settings. NA negative samples indicates that the full
cross-entropy loss is used, without negative sampling.

{(Θr,Φr, r
E
r ,ar, cr)r∈R, (e

E
v , bv)v∈V}, which are

all Euclidean parameters that can be learned using
standard Euclidean optimization techniques.

A.5 Comparison to Dihedral
We compare the performance of Dihedral (Xu and
Li, 2019) versus that of ATTE in Table 6. Both
methods combine rotations and reflections, but our
approach learns attention-based transformations,
while Dihedral learns a single parameter to deter-
mine which transformation to use. ATTE signifi-
cantly outperforms Dihedral on all datasets, sug-
gesting that using attention-based representations
is important in order to learn the right geometric
transformation for each relation.


