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Abstract

This paper is concerned with semantic pars-
ing for English as a second language (ESL).
Motivated by the theoretical emphasis on the
learning challenges that occur at the syntax-
semantics interface during second language
acquisition, we formulate the task based on
the divergence between literal and intended
meanings. We combine the complementary
strengths of English Resource Grammar, a
linguistically-precise hand-crafted deep gram-
mar, and TLE, an existing manually annotated
ESL UD-TreeBank with a novel reranking
model. Experiments demonstrate that in com-
parison to human annotations, our method can
obtain a very promising SemBanking qual-
ity. By means of the newly created corpus,
we evaluate state-of-the-art semantic parsing
as well as grammatical error correction mod-
els. The evaluation profiles the performance of
neural NLP techniques for handling ESL data
and suggests some research directions.

1 Introduction

There are more people around the world learning
English as a second language (ESL) than there
are native speakers of English with this gap con-
tinually and steadily expanding (Crystal, 2012).
Accordingly, an extremely large volume of non-
native English texts are generated every day. We
need an automatic machinery to annotate such
large-scale atypical data with in-depth linguistic
analysis. High-performance automatic annotation
of learner texts, from an engineering point of view,
enables it possible to derive high-quality informa-
tion by structuring the specific type of data, and
from a scientific point of view, facilitates quan-
titative studies for Second Language Acquisition
(SLA), which is complementary to hands-on ex-
periences in interpreting interlanguage phenom-
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ena (Gass, 2013). This direction has been re-
cently explored by the NLP community (Nagata
and Sakaguchi, 2016; Berzak et al., 2016a; Lin
et al., 2018).

Different from standard English, ESL may pre-
serve many features of learners’ first languages1.
The difference between learner texts and bench-
mark training data, e.g. Penn TreeBank (PTB;
Marcus et al., 1993), is more related to linguis-
tic competence, rather than performance (Chom-
sky, 2014). This makes processing ESL different
from almost all the existing discussions on domain
adaptation in NLP.

Despite the ubiquity and importance of interlan-
guages at both the scientific and engineering lev-
els, it is only partially understood how NLP mod-
els perform on them. In this paper, we present, to
the best of our knowledge, the first study on Se-
mantic Parsing for English as a Second Language.
Motivated by the Interface Hypothesis (Sorace,
2011) in SLA, we emphasize on the divergence
between literal and intended meanings. To obtain
reliable semantic analyses in order to represent the
two types of meanings, we propose to combine
English Resource Grammar (Flickinger, 2000),
which is a wide-coverage, linguistically-precise,
hand-crafted grammar and TLE, which is a man-
ually annotated syntactic treebank for ESL in the
Universal Dependency (UD; Berzak et al., 2016b)
framework. In particular, we introduce a rerank-
ing model which utilizes the partial constraints
provided by gold syntactic annotations to disam-
biguate among the grammar-licensed candidate
analyses. Experiments on DeepBank (Flickinger
et al., 2012) demonstrates the effectiveness of our
proposed model.

By means of the newly created corpus, we study
semantic parsing for ESL, taking Elementary De-

1Henceforth, the first and second language are referred to
as L1 and L2, respectively.
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pendency Structure (EDS; Oepen and Lønning,
2006) as the target representation. We probe the
semantic parsing of multiple state-of-the-art neu-
ral parsers for literal meaning and intended mean-
ing, and investigate how grammatical error correc-
tion (GEC) can contribute to the parsing. In addi-
tion, we give a detailed analysis of the effect from
grammatical errors. Results reveal three facts: 1)
semantic parsing is sensitive to non-canonical ex-
pressions, and the distribution as well as types
of grammatical errors have an effect on parsing
performance; 2) Factorization-based parser is the
most effective and robust parser to process learner
English; and 3) automatic GEC has a positive, but
limited influence on the parsing of intended mean-
ing.

2 Related Work

Early work regarding the collection of learner cor-
pora mainly concentrates on tagging alleged er-
rors (Rozovskaya and Roth, 2010; Nagata et al.,
2011). The past decade has seen a tendency to di-
rectly annotate the linguistic properties in learner
sentences (Dickinson and Ragheb, 2009; Dıaz-
Negrillo et al., 2010; Rastelli, 2013). The lack of
precisely annotated data has limited the systematic
analysis of interlanguages.

There are several attempts to set up annotation
schemes for different linguistic layers of learner
languages, such as POS tags and syntactic infor-
mation (Hirschmann et al., 2007; Dıaz-Negrillo
et al., 2010; Rosen et al., 2014; Nagata and Sak-
aguchi, 2016; Berzak et al., 2016b). But it is chal-
lenging to elucidate the exact definition of “syn-
tax” for learner languages. Ragheb and Dickin-
son (2012) defines multiple layers (morphologi-
cal dependencies, distributional dependencies, and
subcategorization) based on different evidence to
capture non-canonical properties. Similarly, moti-
vated by the Interface Hypothesis (Sorace, 2011),
we employ a principled method to create paral-
lel semantic representations for learner English
by discriminating between the literal and intended
meanings.

With regard to the semantic analysis for learner
languages, Lin et al. (2018) takes the first step in
this direction. Based on a parallel semantic role la-
beling (SRL) corpus, they prove the importance of
syntactic information to SRL for learner Chinese.
In this paper, we provide a much deeper semantic
analysis for learner English.

3 Literal versus Intended Meaning

There is a classic distinction between two aspects
of meaning: the literal meaning (conventional
meaning or sentence meaning) versus the intended
meaning (speaker meaning or interpretation). The
former puts an emphasis on the linguistic code fea-
tures appearing in the sentence, while the latter is
derived from the author’s intention. When we con-
sider an interlanguage, the divergence between lit-
eral and intended meanings is much larger due to
various cross-lingual influences. It is reasonable
to consider both aspects to develop a principled
method to process outputs from L2 learners.

3.1 SLA at the Syntax-Semantics Interface
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Figure 1: A plausible syntactic analysis of give a topic
and then discussion about it. The example is from the
TLE corpus. The corrected counterpart of this fragment
in TLE is Give a topic and then discuss it.

Contemporary research on SLA has extensively
argued and empirically supported the claim that
linguistic properties pertaining to the interface be-
tween syntax and other linguistic modules are vul-
nerable in L2 and integrating linguistic phenom-
ena relevant to such interfaces imposes much dif-
ficulty to L2 learners (Sorace, 2006; White, 2011).
According to this view, the interaction or mapping
between syntactic and semantic representations is
less likely to be acquired completely than struc-
tures within one single module, either syntactic or
semantic. With respect to outputs of L2 learners,
mismatches between syntactic structures and in-
tended meanings are frequently observable.

Figure 1 presents an example from the TLE cor-
pus. Although discussion is misused, the whole
fragment is grammatical and thus interpretable ac-
cording to syntactic analysis. However, the lit-
eral meaning along with a sound syntactic anal-
ysis is far from the intended meaning that a native
speaker can infer from intra- and inter-sentence
contexts. It is quite obvious that discussion should
be regarded as a verb coordinating with give.
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Figure 2: Semantic analysis of the fragment give a topic and then discussion about it, where the contrastive
parts are colored. The analysis is based on English Resource Semantics. Nodes represent concepts, while edges
represent semantic dependencies. Following morphosyntax, “discussion” acts as the conjunct of the previous noun
“topic”. However, according to discourse, it should be juxtaposed with the verb “give” because these are two
successive actions.

3.2 Importance of Parallel Representations

The application scenarios of both literal and in-
tended meanings are practiced in accordance with
their different emphases. For example, extracting
literal meanings according to the morphosyntactic
forms are more useful for text quality assessment
tasks in computer-assisted language learning, such
as content-based automatic essay scoring. On the
contrary, the intended meaning-centric representa-
tions help figure out logical relationships and may
benefit text mining applications like relation ex-
traction.

3.3 Building a Parallel L2-L1 SemBank

In order to comprehensively study the issue, we
consider both literal and intended meanings. To
conduct quantitative research, we create two ver-
sions of high-quality silver data and provide a
two-sided evaluation for the semantic parsing on
learner English.

3.3.1 Target Meaning Representation
English Resource Semantics (ERS; Flickinger
et al., 2016) is an important resource of se-
mantic representations produced by the English
Resource Grammar (ERG; Flickinger, 1999), a
broad-coverage, linguistically motivated precision
Head-Driven Phrase Structure Grammar (HPSG;
Pollard and Sag, 1994) of English (Flickinger,
2000, 2011). It provides rich semantic represen-
tations including the semantic roles and other de-
tailed information such as the scope of quantifiers
and scopal operators including negation, as well as
semantic representations of linguistically complex
phenomena such as time and date expressions,
conditionals, and comparatives (Flickinger et al.,

2014). ERS helps to reveal much deeper semantic
analysis than other shallow target structures such
as the predicate-argument relations in the semantic
role labeling (SRL) task. Moreover, it can be de-
rived into several different forms, like the logical-
form-based representation Minimal Recursion Se-
mantics (MRS) and the graph-shaped structure El-
ementary Dependency Structures (EDS). We re-
sort to this resource to build an informative analy-
sis for learner English and choose EDS as the tar-
get structure.

Figure 2 shows the two kinds of semantic anal-
ysis of our running example.

3.3.2 SemBanking with ERG

As there is no gold semantics-annotated corpus
for learner English and building such a corpus
from scratch is tedious and time-consuming, we
exploit ERG to establish a large-scale sembank-
ing with informative semantic representations. To
be specific, for each input sentence S, we gener-
ate K-best semantic graphs G1, G2, ..., GK with
an ERG-based processor, i.e. ACE2. The created
grammar-licensed analyses contain both a deriva-
tion tree recording the used grammar rules and lex-
ical entries, and the associated semantic represen-
tation constructed compositionally via this deriva-
tion (Bender et al., 2015). The elaborate grammar
rules enable sembanking reusable, automatically
derivable and task-independent, and it can bene-
fit many NLP systems by incorporating domain-
specific knowledge and reasoning.

2http://sweaglesw.org/linguistics/ace/

http://sweaglesw.org/linguistics/ace/
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3.3.3 Reranking ERG Analyses with Gold
UD

Previous work has proved that high-quality syntax
makes a large impact on semantic parsing tasks
such as SRL (Hermann and Blunsom, 2013; He
et al., 2017; Qian et al., 2017). The exploratory
work in Lin et al. (2018) draws the same conclu-
sion in an L2 situation. We assume that the incor-
poration of syntactic trees helps improve the qual-
ity of our evaluation data.

We conduct a reranking procedure on the K-
best candidates derived under the ERG framework
with the aid of gold Universal Dependencies (UD;
Berzak et al., 2016b) trees and select the graph
which best fits into the gold syntactic tree (repre-
sented as T ). Our reranking model can be formu-
lated into:

Ĝ = arg max
16i6K

SCORE(Gi, T )

where SCORE(Gi, T ) is a numerical measurement
of the matching between Gi and T . Here, we de-
fine it as follows:

SCORE(Gi, T ) = W TF(fGi , fT )

where W refers to the parameter matrix and F is
the function to calculate the coherency between
feature vectors fGi and fT , which can resort to
neural encoders or feature engineering. Here,
we use feature engineering which outperformed
Graph Neural Network (GNN; Scarselli et al.,
2008) in the pilot study to encode the discrete
properties in the graph and the UD tree. Dur-
ing the training process, there is a gold seman-
tic graph Gg for S. By going through all the K
graphs, we can pick out graph Gp with the high-
est score SCORE(Gp, T ). Our goal is to ensure
SCORE(Gg, T ) > SCORE(Gp, T ), which can be
achieved with the help of the averaged structured
perceptron learning algorithm.

3.3.4 Effectiveness of the Reranking Model
To evaluate the capability of our proposed rerank-
ing model, we randomly extract 10,000 and 2,476
sentences from DeepBank (Flickinger et al., 2012)
as the training and validation data respectively.
The gold UD analyses are derived from the orig-
inal PTB (Marcus et al., 1993) annotations. With
regard to evaluation metrics, we use SMATCH (Cai
and Knight, 2013) and Elementary Dependency
Matching (EDM; Dridan and Oepen, 2011). Re-
sults are shown in Table 1. The first three rows

demonstrates that the parsing performance has
been greatly improved after reranking, proving the
power of the proposed model. The larger K is
set to, the greater the improvement will be, since
the search space has been expanded. Results of
“Oracle” provide the upper bound. The high nu-
merical value demonstrates the potential of rerank-
ing method. The results also prove that syntactic
information does facilitate the semantic analysis,
which is in line with previous studies.

SMATCH EDM

Node Edge All All

Top-1 92.8 90.0 91.4 87.8

Rerank (50) 94.7 93.4 94.1 92.0
Rerank (500) 95.1 93.9 94.5 92.7

Oracle (50) 97.6 96.9 97.2 95.6
Oracle (500) 98.7 98.5 98.6 97.6

Inter-Annotator
Agreement

– – – 94-95

Table 1: Results of reranking. “Top-1” means the most
preferable graph generated by the ACE parser. “Rerank
(50)” and “Rerank (500)” means thatK is set to 50 and
500 during reranking respectively. “Oracle” means di-
rectly selecting the best-performing graph for each sen-
tence from the K-best list. The inter-annotator agree-
ment of EDM is reported in Bender et al. (2015).

3.3.5 The Data
The Treebank of Learner English (TLE; Berzak
et al., 2016a) is a collection of 5,124 ESL sen-
tences, manually annotated with POS tags and de-
pendency trees according to Universal Dependen-
cies (UD; Nivre et al., 2016) framework. Both
original sentences which contain grammatical er-
rors and corrected sentences which are revised by
native speakers are provided to constitute a par-
allel corpus. The corrected sentences are recon-
structed based on a target hypothesis. Follow-
ing the idea of parallel semantic representations,
we produce two versions of silver semantic an-
notation for learner English. The first version of
annotation is obtained by processing the original
sentences in TLE with the sembanking-reranking
pipeline. Henceforth, this will be called L-silver.
It concentrates on the morphosyntactic features
encoded in the sentences. Then we process the
corrected sentences in the same way and call the
produced semantic graphs I-silver, henceforth. In
this case, we give priority to the intended meaning.
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Node Edge All

86.27 86.68 86.48

Table 2: SMATCH scores between the parallel meaning
representations.

During the process of building the corpus, a part
of the sentences from TLE are excluded. With the
elaborate semantic representations, ERG fails to
analyse sentences which are too long or contain
particular unknown words/constructions within a
certain time limit. The coverage of ACE on origi-
nal sentences and corrected sentences from TLE
is 55.39% and 79.63%, respectively. In addi-
tion, a further reduction of coverage is caused by
the inconsistent tokenization between the ERG-
licensed analysis and the TLE annotation, such as
the different treatment of apostrophes. Ultimately,
52.50% original sentence and 73.54% corrected
sentences are processed, forming the final data.
This may introduce bias, and how to include the
rest part of sentences is left for future research.

3.4 A Quantitative Analysis of the Divergence
The parallel meaning representations focus on dif-
ferent linguistic layers. Previous studies on the rel-
evance of the two kinds of meanings are mostly
based on psycholinguistic methods. We propose
to measure the similarity in a quantitative manner
with a corpus-based approach. The literal and in-
tended meanings are represented as the semantic
graphs in L-silver and I-silver, respectively. Since
the sentences are parallel, we can compare the
graph structures directly. We use SMATCH (Cai
and Knight, 2013) as the evaluation metric which
provides the token-wise evaluation along with ef-
fective explorations of variable alignments. The
numerical results are displayed in Table 2. The
modest SMATCH scores indicate the existence of
great divergence between the literal and intended
meaning representations.

4 Two State-of-the-art Parsers

Existing work in data-driven semantic graph pars-
ing can be roughly divided into four types,
namely composition-, factorization-, transition-
and translation-based ones (Koller et al., 2019).
According to experimental results obtained on
benchmark datasets with various target struc-
tures including Abstract Meaning Representa-
tion(AMR; Langkilde and Knight, 1998; Ba-

narescu et al., 2013), Elementary Dependency
Structures (EDS; Oepen and Lønning, 2006), Se-
mantic Dependency Parsing (SDP) as well as Uni-
versal Conceptual Cognitive Annotatio (UCCA;
Abend and Rappoport, 2013), the composition-
and factorization-based approaches are the leading
approaches obtained by now (Lindemann et al.,
2019; Zhang et al., 2019). In this paper, we
use these two kinds of parsers (composition-
and factorization-based parsers) described in Chen
et al. (2019) as state-of-the-art representatives.

Following the principle of compositionality, a
semantic graph can be viewed as the result of
a derivation process, in which a set of lexical
and syntactico-semantic rules are iteratively ap-
plied and evaluated. The core engine of the
composition-based parser is a graph rewriting
system that explicitly explores the syntactico-
semantic recursive derivations that are governed
by a Synchronous Hyperedge Replacement Gram-
mar (SHRG; Chen et al., 2018b). The parser con-
structs DMRS graphs by explicitly modeling such
derivations. It utilizes a constituent parser to build
a syntactic derivation, and then selects semantic
HRG rules associated to syntactic CFG rules to gen-
erate a graph. When multiple rules are applica-
ble for a single phrase, a neural network is used
to rank them. We use the parser in Chen et al.
(2019) based on both the lexicalized grammar and
the constructional grammar (refer to Chen et al.
(2018b) for the distinction). Henceforth, they are
called lexicalized and constructional composition-
based parsers respectively.

Figure 3 shows an example of the SHRG-based
syntactico-semantic derivation from the construc-
tional composition-based parser. The derivation
can be viewed as a syntactic tree enriched with se-
mantic interpretation rules that are defined by an
HRG. Each phrase in the syntactic tree is assigned
with a sub-graph of the final semantic structure.
Moreover, some particular nodes in a sub-graph
are marked as communication channels to other
meaning parts in the same sentence. In HRG, these
nodes are summarized as a hyperedge. Two sub-
graphs are glued according to a construction rule
following the graph substitution principle of HRG.

The factorization-based parser explicitly mod-
els the target semantic structures by defining a
score function that is able to evaluate the goodness
of any candidate graph. It needs to know how to
find the highest-scoring graph from a large set of
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Figure 3: An SHRG-based syntactico-semantic deriva-
tion from the composition-based parser. Each phrase
in the syntactic tree (“and then” and “discussion about
it”) is assigned with a sub-graph of the final semantic
structure, as illustrated in the boxes. Some particular
nodes (filled nodes) in a sub-graph are marked as com-
munication channels to other meaning parts. Accord-
ing to the construction rule (shown in double-framed
box), we glue the two sub-parts via the filled nodes,
forming a larger graph with the syntactic label “NP”.
More details are illustrated in Chen et al. (2019)

possible candidates. The parser works with a two-
stage pipeline structure, for concept identification
and relation detection, as illustrated in Figure 4.
In the first phase, sequence labeling models are
used to predict nodes, and in the second phase, we
utilize the dependency model introduced by Dozat
and Manning (2018) to link nodes. The two mod-
els in both stages use a multi-layer BiLSTM to en-
code tokens. In the first stage, another softmax
layer is utilized to predict concept-related labels,
while in the second stage, the dependency model
is utilized to calculate a score for selecting token
pairs.

5 Parsing to Literal Meanings

5.1 Robustness of Parsing Models

We experiment with three different parsers in-
troduced in last section, i.e., lexicalized and
constructional composition-based parsers and the
factorization-based parser. We train these parsers
on DeepBank version 1.1, corresponding to ERG
1214, and use the standard data split. In order to
examine the robustness of parsing models, we test
on both L1 and L2 sentences.

Detailed results are shown in Table 3. The pars-
ing performances are depicted by SMATCH scores
with regard to nodes, edges and the overall view.

topic and then discussion

encoder encoder encoder encoder
r4 r6

_topic_n_of _and_c _then_a_1 _discussion_n_1
arg max

c4 c6
BIAFFINE

SCOREEDGE(_and_c→ _discussion_n_1)

Figure 4: The network architecture for the
factorization-based parser. Textual embeddings
(in red) are used to identify concepts and also to
determine dependency relations together with the
resulted conceptual embeddings (in yellow).

Comparing different models, we can see that the
factorization-based approach performs better on
all setups, which is consistent with previous stud-
ies (Koller et al., 2019). The gap between results
on DeepBank and the other two datasets demon-
strates the existence of cross-domain effect, which
has been observed in plenty of NLP tasks, in-
cluding but not limited to semantic parsing (Chen
et al., 2018a; Lindemann et al., 2019; Blitzer and
Pereira, 2007; Ben-David et al., 2010; Elsahar and
Gallé, 2019). Furthermore, it is clear that there is a
drop from L1 to L2 data. The gap is marked in the
last row, the average of which is about 4 points, in-
dicating the insufficiency of using standard models
to parse learner texts.

Still, the factorization-based model yields a lit-
tle bit more robust results on non-native data. We
hold that the poor performance of composition-
based model is caused by the explicit syntactico-
semantic derivation process. Since the inter-
face between syntax and semantics of learner lan-
guages is somewhat unclear, directly applying
rewriting rules extracted from L1 data may be
partly misleading.

5.2 Relatedness to Grammatical Errors

It is crucial to understand whether and to what
extent parsers are indeed robust to learner errors.
We re-analyse the results from two aspects. First,
we modify the original SMATCH evaluation met-
ric and enable it to be sensitive to distances from
errors. Then we make a distinction among typi-
cal error types proposed in CoNLL-2014 Shared
Task (Ng et al., 2014). Results show that stan-
dard parsers can not handle learner errors well
enough and their behaviors vary among different
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Data
LEX CXG FAC

Node Edge All Node Edge All Node Edge All

DeepBank 94.05 92.96 93.50 95.83 92.87 94.34 96.85 95.19 96.01

L1 88.41 86.44 87.41 90.32 86.04 88.14 92.28 89.12 90.91
L2 84.38 82.23 83.29 86.47 81.70 84.04 88.68 84.45 86.91
∆ 4.03 4.21 4.12 3.85 4.34 4.10 3.60 4.67 4.00

Table 3: SMATCH scores of semantic parsing on different test data. Henceforth, LEX, CXG and FAC refer to
lexicalized and constructional composition-based parsers and the factorization-based parser, respectively. ∆ refers
to the gap between L1 and L2.

Model Data Node Edge All

LEX
X 86.31 81.95 84.23
× 68.94 79.81 75.74

CXG
X 89.04 82.14 85.75
× 71.46 79.77 76.66

FAC
X 90.96 84.48 87.86
× 73.55 80.27 77.75

Table 4: X refers to error-ignored (σk = 0 when the
kth triple in Gg is involved with errors, σk = 1 other-
wise) SMATCH scores while × refers to error-oriented
(σk = 1 when the kth triple in Gg is involved with
errors, σk = 0 otherwise) SMATCH scores.

error types.

It should be noticed that only several points in
a sentence are occupied by errors while most of
the structure is still well-formed. The scores of
L2 in Table 3 may be not able to exactly reflect
the robustness of models. Therefore, we modify
the original SMATCH evaluation metric by paying
additional attention to erroneous points. The orig-
inal metric can be formulated into an Integer Lin-
ear Programming (ILP) problem. Suppose there
are gold and predicted graphs Gg (m variables)
andGp (n variables). Semantic relations in graphs
are represented as triples which can illustrate
both the concepts (represented as (variable,
concept, relation)) and edges (represented
as (variable1, variable2, relation)).
We define vij = 1 iff the ith variable in Gg is
mapped to the jth variable in Gp in the current
alignment, vij = 0 otherwise. We have tkl =
1 iff the kth triple (x, y, relation1) in Gg

and the lth triple (w, z, relation2) in Gp are
matched, which means vxw = 1, vyz = 1 and
relation1=relation2. In the original met-
ric, tkl takes the value of 1 or 0 and all triple pairs
are treated equally. In order to focus on the erro-

neous points, we put various weights on different
triple pairs depending on their distance from er-
rors. Then the optimization problem can be stated
as:

max
∑
kl

σktkl

s.t.
∑

j vij≤ 1, i = 1, 2, 3 . . . ,m∑
i vij≤ 1, j = 1, 2, 3 . . . , n

trxyrwz≤ vxw,
trxyrwz≤ vyz, rxyrwz ∈ R

Here, rxy means the triple describing the relation-
ship between x and y, and R means the set of
all triple pairs. σk refers to the weight of the kth
triple inGg. If we want to explore the performance
on erroneous points, triples related to these points
will be assigned a larger weight. If we want to find
out the performance on good part, we can just set
the weight of triples involved with errors to zero.

Table 4 compares the error-oriented and error-
ignored results. We can see that although the av-
erage gap in Table 3 is about 4 points, the ac-
tual performance pertaining to the ill-formed part
is much lower. Especially, the F-score of nodes
drops heavily. The gray line in Figure 6 illustrates
the tendency of scores changing with the distance
from abnormal points. It clearly shows that farther
nodes suffer less.

Moreover, we explore the relationship between
learner errors (LEs) and parsing errors (PEs). We
find that 21.40% PEs are caused by LEs and
66.80% LEs cause at least one PE. It indicates that
parsing models are really struggling with learner
errors.

Furthermore, we look into the produced graphs
with regard to different error types. We refer to
the list of error types introduced in the CoNLL-
2014 Shared Task (Ng et al., 2014). Detailed
results are illustrated in Figure 5. This dia-
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Figure 5: Overall SMATCH scores with regard to differ-
ent grammatical error types. Detailed descriptions of
errors are provided in Ng et al. (2014).

Model F0.5

Chollampatt and Ng (2018) 45.36
Zhao et al. (2019) 61.15

Table 5: Performances of the two GEC models on
CoNLL-2014 test set.

gram reflects a clear comparison among differ-
ent error types. The four best-performing types
are ArtOrDet, Nn, Pform and Wform, referring
to errors of article or determinier, noun number,
pronoun form and general word form, respec-
tively. We can see that most of them are related
to morphological variations and can be disam-
biguated at the word level. In contrast, WOadv and
WOinc, meaning incorrect adjective/adverb order
and other word order errors, are much more com-
plex. They are involved with reorganizations of
the sentence structure and hence more difficult to
handle. Factorization-based model is more robust
to these hard cases than composition-based mod-
els since it is grounded on graph structures and can
reduce the influence from broken sequential syn-
tax.

6 Parsing to Intended Meanings

Previous evaluation indicates the difficulty to
adopt a standard semantic parsing model to han-
dle competence errors. Motivated by this fact,
we are concerned with whether it is feasible to
automatically normalize the texts first. Specif-
ically, our strategy is correcting the grammati-
cal errors contained in the input sentences, and
then parsing the revised texts into semantic struc-

tures with standard models. The first step can re-
sort to Grammatical Error Correction (GEC), the
task of correcting different kinds of errors in text.
It has attracted a lot of attention and consider-
able effort has been made to promote the perfor-
mance on specific benchmark data. We utilize
two off-the-shelf GEC models. One is a mul-
tilayer convolutional encoder-decoder neural net-
work proposed in Chollampatt and Ng (2018). We
choose the basic model introduced in the paper.
The other model copies the unchanged words from
the source sentence to the target sentence using
a pretrained copy-augmented architecture with a
denoising auto-encoder (Zhao et al., 2019). It
achieves the state-of-the-art performance without
extra pseudo data. Performances of the two GEC
models on CoNLL-2014 test set are shown in Ta-
ble 5.

We train the factorization-based model on
DeepBank and examine the performance on L2
and L1 sentences as well as the revised sentences
by two GEC models. The produced graphs are
compared with I-silver which represents the in-
tended meaning. We notice that during the compu-
tation of SMATCH, some disagreements of nodes
result from the discrepancy of morphological vari-
ation or different collocations between the input
and the standard sentence. Hence the node score
may be underestimated. Therefore, we relax the
standards of matching nodes. We establish a para-
phrase table based on the statistical machine trans-
lation between a parallel learner corpus3. As long
as the labels of two aligned nodes have the same
stem or they form a paraphrase pair in our ta-
ble, then the two nodes can be considered “match-
ing”. We call the new evaluation metric as “node-
relaxed SMATCH”.

Table 6 summarizes the results. The gap be-
tween the first and the last rows demonstrates that
it may be difficult to automatically infer the in-
tended meaning based on the literal representa-
tion. GEC does help us to understand the learner
English, but it seems to be a small step on the
progress bar. Although the second GEC model
(Zhao et al., 2019) outperforms the first model
(Chollampatt and Ng, 2018) a lot on benchmark
data (Table 5), its superiority on semantic parsing
is not so obvious. There is still a long way to go
before automatically capturing the intended mean-

3https://sites.google.com/site/
naistlang8corpora/

https://sites.google.com/site/naistlang8corpora/
https://sites.google.com/site/naistlang8corpora/
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Test Data
Standard Error-oriented Node-relaxed

Node Edge All Node Edge All Node Edge All

L2 sentence 83.91 84.86 84.39 45.91 78.93 66.73 57.18 78.45 70.59
Chollampatt and Ng (2018) 84.98 85.13 85.06 53.06 80.06 70.08 62.05 79.26 72.90
Zhao et al. (2019) 86.10 85.85 85.98 58.73 80.56 72.49 65.39 80.09 74.66
L1 sentence 92.28 89.60 90.92 86.08 85.72 85.85 89.64 85.48 87.02

Table 6: Results of SMATCH scores compared to I-silver. Chollampatt and Ng (2018) and Zhao et al. (2019) mean
the revised sentences with GEC models introduced in the two studies. “Error-oriented” means only focusing on the
parts aligned to grammatical errors in I-silver. “Node-relaxed” is an error-oriented metric that relax the standards
of matching nodes.

ing like humans.

1 2 3 4-6 7-10 11-15 > 15

90

95

L-silver vs. I-silver
L2-predicted vs. I-silver
L2-predicted vs. L-silver

Figure 6: Overall SMATCH scores with regard to the
distance from errors. L-silver and I-silver mean the
silver standards of literal and intended meanings, re-
spectively. L2-predicted refers to the predicted seman-
tic graphs produced by neural parsers on L2 sentences.

In order to figure out to what extent grammat-
ical errors influence the good part and hence the
whole sentence structure, we draw curves con-
cerning distance from errors, which is displayed
in Figure 6. The red line compares the two kinds
of silver representations, which indicates the devi-
ation from the intended meaning due to ungram-
matical expressions. It appears as a smooth curve
which goes steadily up. The overall trend indicates
that the damage to farther parts from errors is less
extensive. We assume that the propagation process
is limited by the syntactic architecture. However,
the situation of automatically predicted graphs by
neural models is slightly different. It is depicted
by the blue line in Figure 6 and the gradient is
much smaller. We suggest it results from the great
power of neural models to encode contextual in-
formation. In the L2 circumstance, while such
characteristic enables the encoder to capture long-
distance dependencies, it also expands the scope
of errors’ influence.

7 Conclusion and Future Work

In this paper, we formulate the ESL semantic pars-
ing task based on the divergence on literal and in-
tended meanings. We establish parallel meaning
representations by combining the complementary
strengths of knowledge-intensive ERG-licensed
analysis and dependency tree annotations through
a new reranking model. For literal meaning, we
probe the semantic parsing of multiple state-of-
the-art neural parsers and give detailed analysis
of effects from grammatical errors. For intended
meaning, we investigate how grammatical errors
affect the understanding of sentences as well as
how grammatical error correction (GEC) can con-
tribute to the parsing. Results reveal three facts: 1)
semantic parsing is sensitive to non-canonical ex-
pressions, and the parsing performance varies with
regard to the distribution as well as types of gram-
matical errors; 2) Factorization-based parser is the
most promising parser to process learner English;
and 3) GEC has a positive, but limited influence
on the parsing of intended meaning.

This paper shows a pilot study on the semantic
parsing for learner language. Future research may
involve tailoring existing parsers to learner data,
combining literal and intended meanings in a uni-
fied framework, evaluating GEC models in terms
of speakers’ intention and parsing for other lan-
guages.
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