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Abstract

This paper focuses on generating multi-hop
reasoning questions from the raw text in a low
resource circumstance. Such questions have to
be syntactically valid and need to logically cor-
relate with the answers by deducing over mul-
tiple relations on several sentences in the text.
Specifically, we first build a multi-hop genera-
tion model and guide it to satisfy the logical ra-
tionality by the reasoning chain extracted from
a given text. Since the labeled data is limit-
ed and insufficient for training, we propose to
learn the model with the help of a large scale
of unlabeled data that is much easier to obtain.
Such data contains rich expressive forms of
the questions with structural patterns on syntax
and semantics. These patterns can be estimat-
ed by the neural hidden semi-Markov model
using latent variables. With latent patterns as a
prior, we can regularize the generation model
and produce the optimal results. Experimental
results on the HotpotQA data set demonstrate
the effectiveness of our model. Moreover, we
apply the generated results to the task of ma-
chine reading comprehension and achieve sig-
nificant performance improvements.

1 Introduction

Question generation (QG) is a hot research topic
that aims to create valid and fluent questions cor-
responding to the answers by fully understanding
the semantics on a given text. QG is widely used in
many practical scenarios: including providing prac-
tice exercises from course materials for education-
al purposes (Lindberg et al., 2013), initiating the
dialog system by asking questions (Mostafazadeh
et al., 2017), and reducing the labor cost of creating
large-scale labeled samples for the QA task (Duan
et al., 2017). The mainstream QG methods can be
summarized into the rule-based and neural-based
models. The first method often transforms the input
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text into an intermediate symbolic representation,
such as a parsing tree, and then convert the resulting
form into a question by well-designed templates
or general rules (Hussein et al., 2014). Since rules
and templates are hand-crafted, the scalability and
generalization of this method are limited. Respec-
tively, the neural model usually directly maps the
text to question based on neural network (Du and
Cardie, 2017), which is entirely data-driven with
far less labor. Such a model can be typically re-
garded as learning a one-to-one mapping between
the text and question. The mapping is mainly used
to generate simple questions with a single sentence.
However, due to the lack of fine-grained model-
ing on the evidential relations on the text, such a
method has minimal capability to form the multi-
hop questions that require sophisticated reasoning
skills. These questions have to be grammatically
valid. Besides, they need to logically correlate with
the answers by deducing over multiple entities and
relations in several sentences and paragraphs of the
given text. As shown in Fig.(1), the question asks
the director of a film, where the film was shot at the
Quality Cafe in Los Angeles and Todd Phillips di-
rected it. These two relations can form a reasoning
chain from question to answer by logically integrat-
ing the pieces of evidence “Los Angeles,” “Quality
Cafe,” and “Old School” as well as the pronoun “it”
distributed across S1 in paragraph 1 and S1, S2 in
paragraph 2. Without capturing such a chain, it is
difficult to precisely produce the multi-hop ques-
tion by using “Old School” as a bridging evidence
and marginal entity “Todd Phillips” as the answer.

For the task of multi-hop QG, a straightforward
solution is to extract a reasoning chain from the in-
put text. Under the guidance of the reasoning chain,
we learn a neural QG model to make the result sat-
isfy the logical correspondence with the answer.
However, the neural model is data-hungry, and the
scale of training data mostly limits its performance.
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Figure 1: Sample that requires reasoning skills.

Each training example is a triple combined with
the text, answer, and question. Since labeling such
a combination is labor-intensive, it is difficult to
ensure that we can always obtain sufficient train-
ing data in real-world applications. We thus for-
malize the problem as the low-resource generation
of multi-hop questions, which is less explored by
existing work. This task has substantial research
value since reasoning is crucial in quantifying the
high-level cognitive ability of machines, and low
resource is the key to promote the extensive appli-
cation. In order to address the problem, we propose
to utilize unlabeled data, which is usually abundan-
t and much easier to obtain. Although such data
does not combine the questions with the texts and
answers, the unlabeled questions contain plentiful
expressive forms with structural patterns on the
syntax and semantics. These patterns can be seen
as the “template” to produce the questions. Thus,
we can use the patterns as the prior to regularize the
QG model and obtain better results accordingly.

Motivated by the above observations, we pro-
pose a practical two-stage approach to learn a multi-
hop QG model from both a small-scale labeled
data and a large-size unlabeled corpus. In particu-
lar, we first exploit the neural hidden semi-Markov
model (Dai et al., 2016) to parameterize the so-
phisticated structural patterns on the questions by
latent variables. Without domain knowledge, the
variables can be estimated by maximizing the like-
lihood of the unlabeled data. We then heuristically
extract a reasoning chain from the given text and
build a holistic QG model to generate a multi-hop
question. The evidential relations in the reasoning
chain are leveraged to guide the QG model, so as to
let the generated result meet multi-hop logical cor-
respondence with the answer. Simultaneously, we
naturally incorporate the prior patterns into the QG

model. In this way, we can regularize the model
and inform it to express a question reasonably. That
can improve the syntactic and semantic correctness
of the result. With the parameterized patterns, the
whole model can be learned from the labeled and
unlabeled data in an end-to-end and explainable
manner. In order to better balance the supervision
of the labeled data and the usage of prior patterns,
we propose to optimize the model by reinforcement
learning with an augmented evaluated loss. Experi-
ments are conducted on the HotpotQA (Yang et al.,
2018) data set, which contains a large number of
reasoning samples with manual annotation. Eval-
uated results in terms of automatic metrics and
human judgment show the effectiveness of our ap-
proach. Moreover, we apply our generated results
to the task of machine reading comprehension. We
view the results as pseudo-labeled samples to en-
rich the training data for the task. That can alleviate
the labeled data shortage problem and boost the per-
formance accordingly. Extensive experiments are
performed to show the efficacy of our approach in
this application with the help of low-resource QG.

The main contributions of this paper include,

• We dedicate to the topic of low-resource gen-
eration of multi-hop questions from the text.

• We propose a practical approach to generate
multi-hop questions with a minimal amount
of labeled data. The logical rationality of the
results is guided by the reasoning chain ex-
tracted from the text. Besides, the results are
regularized to ensure the correctness of syn-
tax and semantics by using the prior patterns
estimated from a large-size of unlabeled data.

• We show the potential of our approach in a
real-world application on machine reading
comprehension by using the generated results.

The rest of this paper is organized as follows.
Section 2 elaborates on the proposed low-resource
QG framework. Section 3 presents experimental
results, while Section 4 shows the QG application
and demonstrates its usefulness. Section 5 reviews
related works and Section 6 concludes this paper.

2 Approach

In this section, we first define some notations and
then present the details of the proposed QG frame-
work, including the learning of prior patterns from
the unlabeled data, and the multi-hop QG network
guided by the reasoning chain and prior patterns.
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2.1 Notations and Problem Formulation

Let DL = {(Bi, Ai, Yi)}ni=1 denote a small set of
labeled data that consists of n examples on the
text B, answer A, and question Y . Besides, we
assume that there are a large number of unlabeled
data DU = {Qj}Nj=1 available, where Qj ∈ DU

shares the same characteristics with Yi ∈ DL and
N > n. Each text contains multiple paragraphs and
sentences, involving several logically correlated
entities. We aim to generate the new question Y ′

and answer A′ given the evaluated text B′ by a QG
model, where the answer A′ often is a salient entity
in the text B′. The question Y ′ is produced by find-
ing the best Ŷ to maximize the conditional proba-
bility in Ŷ = argmaxY ′

∏T
t=1 p(yt|B′, A′, Y ′<t),

where Y ′<t represents the outputted 1th to (t−1)th
terms, yt is the tth term. The question has to be syn-
tactically and semantically correct. Also, it needs
to correspond to the answer by logically deducing
over multiple evidential entities and relations scat-
tered across the text. Since the resource in DL may
not be enough to support accurately learning of the
p(·), we transfer the linguistic knowledge in DU

and combine it with DL to enhance the training.

2.2 Learning Patterns from Unlabeled Data

The expressive pattern on the question can be
viewed as a sequence of groups. Each group con-
tains a set of term segments that are semantically
and functionally similar. Such segmentation is not
explicitly given but can be inferred from the text’s
semantics. It is difficult to characterize this struc-
tural pattern by simple hand-crafted rules, while
we do not have extra labeled data to learn the pat-
tern by the methods like Variational Auto-Encoder
(VAE) (Kingma and Welling, 2014). In order to
tackle this problem, we propose to employ the neu-
ral hidden semi-Markov model. The model param-
eterizes the similar segments on the input questions
by probabilistic latent variables. Through unsuper-
vised learning, these variables can be trained on
the unlabeled data. That can well represent the
intricate structural patterns without domain knowl-
edge. Besides, the variables can be incorporated
into the generation model naturally, which makes
the results more interpretable and controllable.

Given a question Q with a sequence of terms
{qt}Tt=1, we model its segmentation by two vari-
ables, including a deterministic state variable zt ∈
{1, · · · ,K} that indicates the segment to which
the tth term belongs, and a length variable lt ∈

{1, · · · , L}, which specifies the length of the cur-
rent segment. We assume the question is generated
based on a joint distribution as Eq.(1) by multi-step
emissions, where i(·) is the index function; the in-
dex on tth term is i(t) =

∑t
j=1 lj , with i(0) = 0

and i(T ′) = T ; qi(t−1)+1:i(t) is the sequence of
terms (qi(t−1)+1, · · · , qi(t)). That is, we first pro-
duce a segment based on the latent state zt, and
then emits term with a length of lt on that segment.

T ′−1∏
t=0

p(zt+1, lt+1|zt, lt)
T ′∏
t=1

p(qi(t−1)+1:i(t)|zt, lt)

(1)
p(zt+1, lt+1|zt, lt) is the transition distribution,

where the (t+ 1)th latent state and length are con-
ditioned on their previous ones. Since the length
mainly depends on the segment, we can further fac-
torize the distribution as p(lt+1|zt+1)× p(zt+1|zt).
p(lt+1|zt+1) is the length distribution, and we fix
it to be uniform up to a maximum length L. In
this way, the model can be encouraged to bring
together the functionally similar emissions of dif-
ferent lengths. p(zt+1|zt) is the state distribution,
which can be viewed as a K × K matrix, where
each row sums to 1. We define this matrix to be
Eq.(2), where eo, ej , ek ∈ Rd are the embeddings
of the state o, j, k respectively, and bo,j , bo,k are the
scalar bias terms. Since the adjacent states play dif-
ferent syntactic or semantic roles in the expressive
patterns, we set bo,o as negative infinity to disable
self-transition. We apply a row-wise softmax to the
resulting matrix to obtain the desired probabilities.

p(zt+1 = j|zt = o) =
exp(eTj eo+bo,j)∑K
k=1 exp(e

T
keo+bo,k)

(2)

p(qi(t−1)+1:i(t)|zt, lt) is the term emission distri-
bution conditioned on a latent state and a length.
Based on the Markov process, the distribution
can be written as a product over the probabili-
ties of all the question terms, as Eq.(3). In or-
der to compute the term probability, we lever-
age a neural decoder like the Gated Recurrent
Unit (GRU) (Cho et al., 2014). We first formu-
late the hidden vector hjt for yielding jth term as
hjt = GRU(hj−1t , [ezt ; eqi(t−1)+j−1

]), where [·; ·]
is a concatenation operator, eqi(t−1)+j−1

and ezt
are the embedding of the term and correspond-
ing segment, respectively. By attending over the
given question using hjt , we can produce a con-
text vector vjt , as gzt � hjt , where � refers to
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the element-wise multiplication, gzt is a gate for
the latent state zt, and there are K gate vectors
as trainable parameters. We then pass the vector
vjt through a softmax layer to obtain the desired
distribution as p(qi(t−1)+j |qi(t−1)+j−1, zt, lt) =

softmax(Wqv
j
t + bq) , where Wq and bq are the

trainable parameters.

p(qi(t−1)+1:i(t)|zt, lt) = p(qi(t−1)+1|zt, lt)
×
∏lt
j=2 p(qi(t−1)+j |qi(t−1)+j−1, zt, lt)

(3)

Considering that the latent variables are unob-
served, we then learn the model by marginalizing
over these variables to maximize the log marginal-
likelihood of the observed question sequence Q,
i.e., max(logp(Q)). p(Q) can be formulated as
Eq.(4) by the backward algorithm (Murphy, 2002),
with the base cases βT (o) = 1,∀o ∈ {1, · · · ,K}.
The quantities in Eq.(4) are obtained from a dynam-
ic program, which is differentiable. Thus, we can
estimate the model’s parameters from the unlabeled
data DU by back-propagation.

βt(o) = p(qt+1:T |zt = o)

=
∑K

k=1 β
∗
t (k)p(zt+1 = k|zt = o)

β∗t (k) = p(qt+1:T |zt+1 = k)

=
∑L

j=1 [βt+j(k)p(lt+1 = j|zt+1 = k)

p(qt+1:t+j |zt+1 = k, lt+1 = j)]

p(Q) =
∑K

k=1 β
∗
0(k)p(z1 = k)

(4)

2.3 Multi-hop QG Net with Regularization
Afterward, we incorporate the learned patterns into
the generation model as the prior. Such prior can
be acted as a soft template to regularize the model.
That can ensure the correctness of the results in
syntax and semantics, especially when the labeled
data is insufficient to learn the correspondence be-
tween the text and question. Fig.(2) illustrates the
architecture of our model. We first estimate the pri-
or pattern by sampling a sequence of latent states
z with the length l. We then extract the reasoning
chain and other textual contents involved in asking
and solving a specific question from the given text.
Under the guidance of both the reasoning chain
and the prior patterns, we build a multi-hop QG
model on the extracted contents by the sequence-
to-sequence framework (Bahdanau et al., 2015).
The evidential relations in the chain are used to
enhance the logical rationality of the results. The
prior pattern helps to facilitate the performance in
low-resource conditions by specifying the segmen-
tation of the generated results.

Figure 2: Flow chart of the low-resource multi-hop QG
network.

2.3.1 Prior Patterns Estimation
Using the Viterbi algorithm (Zucchini et al., 2016),
we can obtain the typed segmentation of a giv-
en question. Such segmentation can be character-
ized by a sequence of latent states z. Each seg-
ment, like the phrase, is associated with a state,
reflecting that the state frequently produces that
segment. Based on the labeled data DL, we can
collect all sequences of latent states, which can be
seen as a pool of prior patterns. We sample one
from the pool uniformly. And then, we view it as
a question template with S distinct segments, as
{< zkt , l

k
t >}Sk=1, where zt is a state variable for

the tth term, lt is the length variable derived by
the probability p(lt|zt), zkt and lkt are obtained by
collapsing adjacent zt and lk with the same val-
ue. In order to easily incorporate into the gener-
ation model, we encode the template as a vector
vmk = gzt � hmk , where hmk is the hidden vector for
generating mth term, as GRU(hmk−1, [ezm ; eyt−1 ]),
m satisfies i(m−1) < t ≤ i(m), k = t− i(m−1).

2.3.2 Question-Related Content Extraction
Given a text, we use the method proposed by Yu
et al. (2020) to extract the question-related con-
tent. In order to make the paper self-contained, we
briefly describe the approach in this section. It first
extracted the entities from the text, and view them
as the potential answers and evidences. It then
links the entities to create a graph by three kind-



6733

s of relations, including dependency, coreference,
and synonym. Based on the graph, it heuristically
extracts a sub-graph as the reasoning chain. The
textual contents on the sub-graph are then gathered,
including the answer, reasoning type, evidential en-
tities, and sentences on the entities. The extraction
is based on three question types, consisting of the
Sequence, Intersection, and Comparison. These
types account for a large proportion of the multi-
hop questions on most typical data sets, for exam-
ple, 92% in HotpotQA data set (Min et al., 2019).

2.3.3 Question Generation with Guidance
We then develop a multi-hop QG model based on
the extracted contents. This model is guided by the
reasoning chain and prior pattern, so that the gener-
ated results are not only logical but also fluent. In
the pre-processing phase, we first mask the answer
from the input contents by a special token<UNK>,
to avoid the answer inclusion problem (Sun et al.,
2018). That is, the answer words may appear in the
question that would reduce the rationality.

Encoder: The reasoning chain is encoded via an
N head graph transformer (Vaswani et al., 2017),
so as to integrate all evidential relations fully. Each
node is represented by contextualizing on its neigh-
bors, as hgv = ev+ ‖Nn=1

∑
j∈Nv a

n(ev, ej)W
nej ,

where ‖ denotes the concatenation, ev is the embed-
ding of node’s entity, an(·, ·) is nth head attention
function, Nv is the set of neighbors. By aggrega-
tion with N -head attention, we can get a relation-
aware vector cg as Eq.(5), where Wn

g ,Wh,Wd are
trainable matrices, C is the set of nodes in the chain.

an(st, h
g
v) =

exp((Whh
g
v)

TWdst)∑
k∈Nv exp((Whh

g
k)

TWdst)

cg = st+ ‖Nn=1

∑
v∈C a

n(st, h
g
v)Wn

gh
g
v

(5)

Other textual inputs are encoded in two steps:
(1) each text term is embedded by looking up the
pre-trained vectors, such as BERT (Devlin et al.,
2019). (2) The resulting embeddings are fed in-
to a bi-directional GRU to incorporate a sequen-
tial context. In detail, the sentences are repre-
sented by concatenating the final hidden states of

GRU, as [
←−
hb1;
−→
hbJ ], where jth term is hbj = [

←−
hbj ;
−→
hbj ],←−

hbj = GRU(ebj ,
←−−
hbj+1),

−→
hbj = GRU(ebj ,

−−→
hbj−1); [·; ·]

denotes the concatenation of two vectors; ebj is the
augmented embedding of jth term; J is the size
of all terms. Similarly, the answer and evidence
entities are integrally encoded as ha = [

←−
ha1;
−→
haO].

Attention: For the textual inputs, we fully inte-
grate the encodings and their correlations by atten-
tion. First, we use self-attention (Wang et al., 2017)
to grasp the long-term dependency in the sentences,
as [ĥbj ]

J
j=1 = SelfAttn([hbj ]

J
j=1). Subsequently,

we exploit multi-perspective fusion (Song et al.,
2018) to grasp the answer-related context in the sen-
tences and strengthen their cross interactions. That
is, [hb

′
j ]
J
j=1 = MulPerFuse([ĥbj ]

J
j=1, [h

a
o]
O
o=1).

By aggregating the significant information over
all the terms, we can obtain a context vector ct
as Eq.(6), where αtj is the normalized attention
weight, atj denotes the alignment score, st refers
to the tth hidden state of the decoder, v, b,Ws,Wb

are trainable parameters.

atk = vTtanh(Wsst +Wbh
b′
k + b)

αtj = exp(atj)/
∑J

k=1 exp(atk)

ct =
∑J

j=1 αtjh
b′
j

(6)

Decoder: Based on the context vector ct, we
exploit another GRU as the decoder. Each question
term is yielded by the distribution in Eq.(7), where
ρ is a 1-dim embedding of the reasoning type, Wo

and bo are trainable parameters. We use a copy
mechanism (Gu et al., 2016) to tackle unknown
words problem, where pcopy(·) denotes the copy
distribution. In order to let the questions logically
correlate with answers, we guide the decoder by
the vector cg, which encodes the reasoning chain.
Accordingly, we regularize the model to adaptively
fit the prior pattern represented by the vector vmk .
That can improve the generated quality when the
labeled data is insufficient.

pvoc(yt) = Softmax(Wo[st; ct; cg; ρ] + bo)

pcopy =
∑J

j=1 αtj × 1{y == wj}
pg = Sigmoid(ct, st, yt−1)
st = GRU(st−1, v

m
k )

p(yt) = pg · pvoc(yt) + (1− pg) · pcopy(yt)
(7)

2.3.4 Learning with Limited Labeled Data
A straightforward solution to train the above QG
model is the supervised learning. It minimizes the
cross-entropy loss at each generated term by refer-
ring to the ground-truth in the labeled data DL, as
Lsl = − 1

n

∑
i∈DL

∑Ti
t=1 log p(yit|Yi;<t, Ai, Bi).

However, since DL only contains a few samples,
we would not have enough supervision from DL

to get the best results. While we leverage the un-
labeled data DU to facilitate the training, it is dif-
ficult to subtly balance the supervised signal from
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DL and the prior pattern learned from DU . In
order to address the problem, we resort to rein-
forcement learning. It can globally measure the
overall quality of the results by minimizing the loss
Lrl = −EY s∼πθ [r(Y s)], where Y s is a sampled
result, Y ∗ is the ground-truth, θ is the parameter-
s of the QG model, and π is the generation pol-
icy of the model. r(·) is a function to evaluate
the generated quality. It is the weighted sum of
three rewards, including (a) Fluency: we calculate
the negative perplexity (Zhang and Lapata, 2017)
of Y s by a BERT-based language model pLM ,
that is, −2−

1
T

∑T
t=1 log2pLM (yt|Y s<t); (b) Answer-

ability: we use a metric QBLEU4(Y
s, Y ∗) (Ne-

ma and Khapra, 2018) to measure the matching
degree of Y s and Y ∗ by weighting on several
answer-related factors, including question type,
content words, function words, and named en-
tities; (c) Semantics: we employ word mover-
s distance (WMD) (Gong et al., 2019) to mea-
sure the predicted result Y s, which has different
expressive forms but same semantics with gold
Y ∗, as −WMD(Y s, Y ∗)/Length(Y ∗), where
Length(·) is the length function used as the nor-
malization factor. By considering the metrics are
non-differentiable, we exploit the policy gradient
method (Li et al., 2017) for optimization. In or-
der to enhance readability, we train the model by a
mixed loss, as L = γLrl + (1− γ)Lsl, where γ is
a trade-off factor.

3 Evaluations

We extensively evaluate the effectiveness of our
approach, including the comparisons with state-of-
the-art and the application on a task of MRC-QA.

3.1 Data and Experimental Settings

The evaluations were performed on three typical
data sets, including HotpotQA (Yang et al., 2018),
ComplexWebQuestions (Talmor and Berant, 2018),
and DROP (Dua et al., 2019). These data sets
were collected by crowd-sourcing, consisting of
97k, 35k, and 97k examples, respectively. The
HotpotQA data set contained a large proportion of
labeled examples. Each comprised of the question,
answer, and text with several sentences. Therefore,
the HotpotQA data set was suitable to evaluate
the multi-hop QG task. The other two data sets
contained abundant reasoning questions, but they
are not associated with the text and answer. We
thus viewed them as the unlabeled data. In order

to simulate the low-resource setting, we randomly
sampled 10% of the HotpotQA train set to learn
the models, and evaluated them on the test set with
a size of 7k. We verified the generated quality for
each evaluated method by comparing the match-
ing degree between the result and gold-standard.
We adopted three standard evaluation metrics in
the QG task, including BLEU-4 (Papineni et al.,
2002), METEOR (Banerjee and Lavie, 2005), and
ROUGE-L (Lin, 2004). Furthermore, we carried
out human evaluations to analyze the generated re-
sults. To avoid biases, we randomly sampled 100
cases from the test set and generated questions for
each test case by all the evaluated methods. We
then invited eight students to give the binary rating
on each question independently. The rating was
in terms of three metrics, including valid syntax,
relevance to input textual sentences, and logical
rationality to the answer. We averaged the cumu-
lative scores of the 100 binary judgments as the
performances corresponding to the evaluated meth-
ods. The resultant scores were between 0∼100,
where 0 is the worst, and 100 is the best. We used
Randolph’s free-marginal kappa (Randolph, 2005)
to measure the agreements among the raters.

Model configurations were set as follows. We
leveraged 768-dimension pre-trained vectors from
the uncased BERT to embed words. The number of
states K and emissions L in the semi-Markov mod-
el was set to 50, 4, respectively. The size of hidden
units in both encoder and decoder was 300. The
recurrent weights were initialized by a uniform dis-
tribution between−0.01 and 0.01 and updated with
stochastic gradient descent. We used Adam (King-
ma and Ba, 2015) as the optimizer with a learning
rate of 10−3. The trade-off parameter γ was set to
0.4. For pattern learning, we parsed every question
by the Stanford CoreNLP toolkit (Manning et al.,
2014). We then learn better segmentation by forc-
ing the model not to break syntactic elements like
the VP and NP. To reduce the bias, we carried out
five runs and reported the average performance.

3.2 Comparisons on QG State-of-the-Arts

We compared our approach against five typical and
open-source methods. These methods were based
on the sequence-to-sequence framework with atten-
tion. According to the different techniques used,
we summarized them as follows. (a) the basic mod-
el with the copy mechanism, i.e., NQG++ (Zhou
et al., 2017); (b) ASs2s (Kim et al., 2019), which
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encoded the answer separately to form answer-
focused questions; (c) CorefNQG (Du and Cardie,
2018) that incorporated linguistic features to repre-
sent the inputs better; (d) MaxPointer (Zhao et al.,
2018) using gated self-attention to form questions
for long text inputs; (e) MPQG+R (Song et al.,
2018) that captured a broader context in the text to
produce the context-dependent results. In order to
understand the effect of unlabeled data, we exam-
ined two variants of the proposed model. That is,
Ours-Pattn which was trained without unlabeled
data, and Ours-50% that used 50% unlabeled data
for training. Moreover, we performed empirical ab-
lation studies to gain better insight into the relative
contributions of various components in our model,
including Ours-Chain that discarded the guidance
of the reasoning chain vector and Ours-Reinf that
replaced the reinforcement learning with a simple
supervised learning.

Table 1: Comparisons of our approach against base-
lines. Statistically significant with t-test, p-value<0.01.

Methods BLEU-4 METEOR ROUGE-L

NQG++ 14.55 15.01 31.85
ASs2s 16.89 17.04 34.92
CorefNQG 16.16 16.53 34.30
MaxPointer 17.08 17.34 35.38
MPQG+R 14.90 15.46 32.39

Ours 19.07 19.16 39.41
Ours-50% 18.33 18.36 37.85
Ours-Pattn 17.10 17.35 35.40
Ours-Chain 18.11 18.18 37.37
Ours-Reinf 18.22 18.39 37.48

As reported in Tab.(1), our approach achieved
the best performance. We significantly outper-
formed the best baseline (i.e., MaxPointer) by
over 11.6%, 10.5%, 11.4% in terms of BLEU-4,
METEOR, and ROUGE-L, respectively. From the
comparisons among Ours-Pattn, Ours-50%, and
Ours, we found that the performance improves
with more unlabeled data. Although we lack an
appropriate comparative model based on the unla-
beled data, these results can still indicate the effec-
tiveness of our model. With only limited labeled
data, our model can effectively leverage unlabeled
data to guide the generation. Besides, the ablation
on all evaluated components led to a significant
performance drop. We may infer that the reasoning
chain is crucial for multi-hop QG on the guidance
of logical correlations. Also, the reinforcement
learning can globally optimize the model by bal-
ancing the prior patterns and labeled supervision.

3.3 Human Evaluations and Analysis

Tab.(2) illustrated the results of human evaluation.
The average kappa were all above 0.6, which indi-
cated substantial agreement among the raters. Con-
sistent with quantitatively analyzed results in Sec-
tion 3.2, our model significantly outperformed all
baselines in terms of three metrics, where the im-
provement on the rationality metric was the largest.
That showed the satisfied quality of our generated
results, especially in terms of multi-hop ability.

Table 2: Human evaluations and kappa agreement. Ra-
tion. is short for the rationality metric. Statistically
significant with t-test, p-value<0.01.

Methods Syntax Relevance Ration. Kappa

NQG++ 54.3 44.8 50.3 0.61
ASs2s 61.3 50.8 55.8 0.62
CorefNQG 59.0 49.4 54.8 0.64
MaxPointer 61.8 51.8 56.5 0.63
MPQG+R 55.5 47.5 51.3 0.64
Ours 68.3 57.3 62.3 0.65

3.4 Evaluations on Value of Unlabeled Data

We investigated the value of unlabeled data for the
overall performance, especially when the labeled
data was inadequate. In particular, we randomly
sampled {10%, 40%, 70%, 100%} of the labeled
data, and split the unlabeled data into ten subsets.
For each scale on the labeled data, we incremental-
ly added by one subset of unlabeled data to learn
the QG model. We used the same training protocol
and reported the overall performance on the test set.
As shown in Fig.(3), even a small amount of unla-
beled data can play a decisive role in improving the
performance in terms of three metrics. The ratio
of improvement was higher when the scale of the
labeled data was small. The results further verified
the usefulness of unlabeled data on learning the
QG model with a low labeled resource.

3.5 Evaluations on the Mixed Loss Objective

In order to examine the gains of our training ap-
proach with the mixed loss objective, we tuned the
trade-off parameter (i.e., γ) from [0, 1] with 0.1 as
an interval. The performance change curve was
displayed in Fig.(4). The best performance was
obtained at γ = 0.4. The performance dropped
dramatically when γ was close to 0 or 1. We would
infer that both objectives could help to measure the
quality of the outputted results better, and thus train
the model efficiently.
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Figure 3: Evaluations on effectiveness of unlabeled data under different scales of labeled data.

Figure 4: Evaluations on mixed objective trade-off.

4 Application on the Task of MRC-QA

The task of machine reading comprehension (MRC-
QA) aims to answer given questions by understand-
ing the semantics of the text. The mainstream meth-
ods are based on the neural network. These meth-
ods often need a lot of labeled data for training,
but the data is expensive to obtain. Thus, we are
inspired to apply our generated results to enrich
the training set for the task of MRC-QA. Fig.(5)
demonstrates the architecture of this application.
Given a case from a small-size labeled set, we first
extracted the contents correlated to a specific ques-
tion from the case’s text, including the reasoning
chain, reasoning type, answer, evidential entities,
and sentences on the entities. We then learned our
QG model based on the contents and generated
questions as pseudo data to augment the labeled
set. For each evaluated case, we could yield approx-
imately 5∼8 pseudo samples consisted of the text,
question, and answer. Later, we trained an MRC-
QA model on the augmented labeled set and report-
ed the performance on the test set. By referring
to the leaderboard on the HotpotQA website, we

Figure 5: Apply multi-hop QG to support MRC-QA.

chose an open-source model for MRC-QA, named
Dynamically Fused Graph Network (DFGN) (Qiu
et al., 2019), which achieved the state-of-the-art at
the paper submission time. Considering that the
size of the training set impacted the model’s per-
formance, we ran the entire pipeline with different
proportions of the labeled data, so as to verify the
proposed model thoroughly. Two evaluation met-
rics were employed, including exact match (EM)
and F1. We examined the tasks of answer span
extraction, supporting sentence prediction, and the
joint task in the distractor setting.

Table 3: Comparison of our QG+QA model against the
QA model under different proportions of labeled data.

Labeled Answer span Support pred. Joint

Data# EM F1 EM F1 EM F1

QG + QA(i.e., the DFGN model)

10% .501 .633 .469 .764 .277 .509
20% .551 .672 .500 .801 .317 .574
30% .567 .697 .520 .815 .339 .600
40% .569 .704 .521 .829 .340 .615
50% .571 .713 .531 .833 .344 .619
60% .586 .717 .533 .834 .346 .624
70% .593 .729 .535 .839 .353 .626
80% .606 .731 .540 .845 .356 .630
90% .610 .741 .550 .853 .359 .632

100% .614 .746 .558 .858 .360 .635

QA(i.e., the DFGN model)

100% .563 .697 .515 .816 .336 .598
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Tab.(3) showed that our QG+QA model trained
on 30% labeled data obtained competitive perfor-
mance against the QA model learned on the 100%
labeled data. When using more labeled data, the
performance advantages of our QG+QA model con-
tinued to grow. Such results showed that our QG
model could enlarge the coverage and diversity of
the MRC-QA training set given limited labeled da-
ta. That could help to learn the state-of-the-art.
Moreover, we conducted case studies to under-
stand the generating behavior vividly. As exhibited
in Tab.(4), our QG model could generate massive
questions on multi-hop reasoning. Contrastively,
the gold standard often contained one sample since
it was labor-intensive to enumerate all the cases.

Table 4: Case studies on our multi-hop QG model.

Passage: ... (S1) ’The Hard Easy’ is the episode written
by Thomas Herpich. (S2) He was born in October, 1979
in Torrington, Connecticut, American, along with his twin
brother Peter who was a painter and artist. (S3) Thomas
is best known for being a storyboard artist on the animated
television series ’Adventure Time’. ...

Results of Ours Method
Question: When was the birth time for the writer of the
episode ’The Hard Easy’?
Answer: October, 1979
Question: Where is the birthplace for the writer of the
episode ’The Hard Easy’?
Answer: Torrington, Connecticut
Question: What nationality was the writer of the episode

’The Hard Easy’?
Answer: American
Question: Who is the twin brother for the writer of the
episode ’The Hard Easy’?
Answer: Peter
Question: What is the occupation for the twin brother of
the episode writer of ’The Hard Easy’?
Answer: painter and artist

Gold Standard
Question: Who is the brother for the writer of the episode

’The Hard Easy’?
Answer: Peter

5 Related Works

Existing models for the QG task include rule-based
and neural-based methods. Since the rules are hand-
crafted, the first method is of low scalability (Chal-
i and Hasan, 2015). The researcher turns to the
neural model. It can directly map the inputs into
questions by using an attention-based sequence-to-
sequence framework, which is entirely data-driven
with far less labor. Various techniques have been
applied to this framework, including answer sepa-
rately encoding, using linguistic features, capturing
border context, reinforcement learning, and em-

phasizing on question-worthy contents (Pan et al.,
2019). These methods are mainly used to gener-
ate simple questions with a single sentence (Yu
et al., 2019). They are challenging to generate the
reasoning questions accurately due to the lack of
fine-grained modeling on the evidential relations
in the text. In order to address the problem, Yu
et al. (2020) proposed to incorporate a reasoning
chain into the sequential framework, so as to guide
the generation finely. All the methods are built of
the assumption that sufficient labeled data is avail-
able. However, labeled data is quite scarce in many
real-world applications (Yang et al., 2019). The
low-resource problem has been studied in the tasks
such as machine translation (Gu et al., 2018), pos
tagging (Kann et al., 2018), word embedding (Jiang
et al., 2018), text generation (Wiseman et al., 2018),
and dialogue systems (Mi et al., 2019). To the best
of our knowledge, the low-resource multi-hop QG
is untouched by existing work. We thus focus on
this topic and propose a method to fulfill the gap.

6 Conclusions and Future Works

We have proposed an approach to generate the ques-
tions required multi-hop reasoning in low-resource
conditions. We first built a multi-hop QG model
and guided it to satisfy the logical rationality by the
reasoning chain extracted from a given text. In or-
der to tackle the labeled data shortage problem, we
learned the structural patterns from the unlabeled
data by the hidden semi-Markov model. With the
patterns as a prior, we transferred this fundamental
knowledge into the generation model to produce
the optimal results. Experimental results on the
HotpotQA data set demonstrated the effectiveness
of our approach. Moreover, we explored the gener-
ated results to facilitate the real-world application
of machine reading comprehension. We will inves-
tigate the robustness and scalability of the model.
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