
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 6672–6681
July 5 - 10, 2020. c©2020 Association for Computational Linguistics

6672

Modeling Morphological Typology for Unsupervised Learning of
Language Morphology

Hongzhi Xu1,3, Jordan Kodner2, Mitch Marcus1, Charles Yang2

1CIS Department, University of Pennsylvania, Philadelphia, USA
2Linguistics Department, University of Pennsylvania, Philadelphia, USA

3ICSA Institute, Shanghai International Studies University, Shanghai, China
hongz.xu@gmail.com, jkodner@sas.upenn.edu
mitch@cis.upenn.edu, charles@ling.upenn.edu

Abstract
This paper describes a language-independent
model for fully unsupervised morphological
analysis that exploits a universal framework
leveraging morphological typology. By model-
ing morphological processes including suffixa-
tion, prefixation, infixation, and full and partial
reduplication with constrained stem change
rules, our system effectively constrains the
search space and offers a wide coverage in
terms of morphological typology. The system
is tested on nine typologically and genetically
diverse languages, and shows superior perfor-
mance over leading systems. We also investi-
gate the effect of an oracle that provides only a
handful of bits per language to signal morpho-
logical type.

1 Introduction

Morphological analysis aims to identify languages’
word-internal structures. Early approaches to the
computational analysis of morphology modeled the
structure of each language with hand-built rules,
(e.g. Sproat, 1992). Such systems require a signif-
icant amount of work from domain experts, and
while they tend to be very accurate, they also
suffer from low coverage. Supervised and semi-
supervised machine learning approaches require
expert input and will suffer from out-of-vocabulary
problems. This paper focuses primarily on fully
unsupervised morphological learning, which offers
the most flexibility and can be deployed for new
languages with no data annotation.

Concatenation-based morphological learning
systems aim to identify morphemes or morpheme
boundaries within words (Virpioja et al., 2013;
Goldwater and Johnson, 2004; Creutz and Lagus,
2005, 2007; Lignos, 2010; Poon et al., 2009; Sny-
der and Barzilay, 2008). The Morpho-Challenge
tasks1 provide a set of morphologically annotated

1http://morpho.aalto.fi/events/morphochallenge/

data for testing concatenation. However, systems
designed directly for identifying morpheme bound-
aries are limited in that non-linear structures such
as infixation cannot be well captured.

Another approach exploits morphological rela-
tions between word pairs. Related words form mor-
phological chains through processes of derivation.
There are many such processes including affixation
at the edges or middle of a word, reduplication,
stem transformations, and so on. Of these, only
edge-affixation is available to concatenation-based
models, so leveraging derivation directly allows for
wider cross-linguistic coverage (Schone and Juraf-
sky, 2001; Narasimhan et al., 2015; Soricut and
Och, 2015; Luo et al., 2017; Xu et al., 2018).

A more holistic line of work builds learning on
the concept of morphological paradigms (Parkes
et al., 1998; Goldsmith, 2001; Chan, 2006; Xu
et al., 2018). Paradigms can be defined as sets
of morphological processes applicable to homoge-
neous groups of words. For example, the paradigm
(NULL, -er, -est, -ly) in English can be applied to ad-
jectives (e.g., high, higher, highest, highly), while
(NULL, -ing, -ed, -s, -er) is defined over verbs (e.g,
walk, walking, walked, walks, walker). Paradigms
have several merits. First, they provide a principled
strategy for tackling the data sparsity problem. In
morphologically rich languages, a single word can
derive hundreds of forms most of which will be
unattested in real data. This can be addressed by
taking paradigms into account because if a word
appears in part of the paradigm, it likely can appear
in the rest too. The recent SIGMORPHON shared
tasks in paradigm filling are along this line (Cot-
terell et al., 2016, 2017, 2018). Second, paradigms
can be used to identify spurious morphological
analyses. For example, the words within, without,
wither might be analyzed as applying suffixes -in,
-out, -er to the word with, however, the paradigm
(-in, -out, -er) is not reliable since it only applies to
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one single word, i.e. with.
One thread common in previous work is the lack

of consideration for characteristics of language-
specific morphological typology. In this paper, we
propose a new framework that incorporates typo-
logical awareness by explicitly modeling different
morphological patterns including suffixation, pre-
fixation, infixation, and reduplication. These pat-
terns have covered most common morphological
processes of the languages in the world, with the ex-
ception of templatic morphology which is not rep-
resented in the LDC-provided test sets. By build-
ing such universal linguistic knowledge, the model
will benefit from both constraining the search space
(without generating a large amount of spurious anal-
yses) and providing a wider coverage especially for
the non-linear morphological structures.

2 Related Work

The Morpho-Challenge tasks held between 2005
and 2010 motivated a large amount of work on
unsupervised morphology learning including the
Morfessor family of models. The Morfessor base-
line system (Creutz and Lagus, 2002; Virpioja et al.,
2013), an MDL model, is one of the most popular
unsupervised systems for automatic morphologi-
cal segmentation. Creutz and Lagus (2005, 2007)
extend the model with the maximum a posteriori
(MAP) on both observed data and the model. These
systems only require word lists as input, which is an
advantage for low-resource languages where there
is no large corpus for training complex models.

Various work has explored the idea of paradigms.
Parkes et al. (1998) try to learn inflectional
paradigms on English verbs, Goldsmith (2001,
2006) exploits the MDL principle to learn
paradigms (referred to as signatures) with a greedy
search strategy, and Dreyer and Eisner (2011)
adopt a semi-supervised log-linear model to iden-
tify paradigms, which requires a number of seed
paradigms for training. However, in morpho-
logically rich languages such as Turkish where
a single paradigm can be extremely large, this
method requires considerable human annotation
effort. Ahlberg et al. (2014) use a semi-supervised
approach to learn abstract paradigms from a given
inflection table. However, the task is different from
what we discuss here, which discovers inflection
tables as an intermediate step. Xu et al. (2018)
create paradigms from the results of a probabilistic
model and use the reliable paradigms to prune unre-

liable ones and achieve promising results. Xu et al.
(2018)’s model only deals with suffixation. The
framework that we develop in this paper is most
directly inspired by Xu et al. (2018).

Schone and Jurafsky (2001) use semantic infor-
mation to identify real morphological pairs from
a set of orthographically similar word pairs. Sim-
ilarly, Soricut and Och (2015) use orthographic
information to generate candidate morphological
rules, e.g., prefix : $ : in, and then use word
embeddings to evaluate the qualities of the rules.
Narasimhan et al. (2015) create morphological
chains, e.g., (play, playful, playfully), using both
orthographic information and distributional seman-
tics by maximizing the likelihood through a log-
linear model. One drawback of using distributional
information is that it requires large text corpora
to train reliable semantic vectors. This is a major
hurdle for applying such a system to low-resource
languages. Based on the output of Narasimhan et al.
(2015)’s model, Luo et al. (2017) adopt integer lin-
ear programming (ILP) to find globally optimal
paradigms, which they call morphological forests,
and achieve improved performance.

3 Morphological Typology

This section surveys the morphological phenomena
frequently observed among the world’s languages
which our system is able to account for.

3.1 Prefixation, Suffixation, and Infixation

Affixation is the appending of a bound morpheme
or affix onto either end of a word and is the most
common kind of morphological operation (Dryer,
2013). Affixes postpended to a word are called
suffixes such as -ed, -ing, -ness, or -est in English,
while prefixes are prepended such as pre- or un-,
and infixes find their way into the middle of a root.
Infixes are rarer cross-linguistically, but they do
surface around the world, notably in languages like
Tagalog (Malayo-Polynesian), dulot ∼ d-in-ulot or
graduate ∼ gr-um-aduate.

Many languages stack or nest affixes. English
derivational morphology does this occasionally as
in anti-dis-establish-ment-ari-an-ism or in Shona
(S Bantu) inflectional morphology, for example, ha-
mu-cha-mbo-nyatso-ndi-rov-es-i=wo ‘You will not
cause me to be beaten’ (Mugari, 2013). A given
affix may never appear on the edge of a word since
it can be obligatorily followed or preceded by more
affixes. This can be seen in Bantu verbs which nec-
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essarily end with a so-called final vowel morpheme
(here, -a). Most other suffixes have to appear be-
fore the final vowel, so they are never themselves
suffixes in the string sense. For example, given
the Shona ku-pig-a ‘to strike,’ one could form ku-
pig-an-a ‘to strike one another’ or ku-pig-w-a ‘to
be stricken’ but not *ku-pig-w or *ku-pig-an. We
will refer to the disconnect between morphological
suffixation and string suffixation as the final vowel
problem.

3.2 Reduplication and Partial Reduplication
Reduplication, the doubling of all or a part of a
word, is productive in many languages, especially
outside modern Europe (Rubino, 2013). Full redu-
plication can indicate plural number, repeated ac-
tions, or progressive aspect in Austronesian lan-
guages such as Indonesian and Tagalog. In In-
donesian, sometimes a whole word including its
affixes is reduplicated (bangun-an-bangun-an),
while other times it is only the root (deg-deg-an
or ber-bondong-bondong). Partial reduplication is
exemplified in Pangasinan, an Austronesian rela-
tive of Tagalog, which has more productive partial
reduplication for plurals. It can surface on the left
(plato ∼ pa-pláto), or it may be infixed (amigo ∼
ami-mí-go) (Rubino, 2001).

3.3 Stem Changes
Some morphology is expressed through stem
changes rather than string concatenation. English
often expresses past tense, past participles, and plu-
rals with changes to stem vowels, sometimes in
conjunction with affixation (sing ∼ sang ∼ sung,
freeze ∼ froze ∼ froz-en, and goose ∼ geese).
Consonants can alternate as well, for example in
Finnish luku ∼ luvu-t and etsi-nt-ä ∼ etsi-nn-ät.
Some changes are morphophonological because
they are related to the phonology of the language
and thus are somewhat predictable. For example,
the Latin root scrib becomes scrip-t-us in the past
participle because /b/ is devoiced before /t/. These
contrast with alternations like goose∼ geese which
are arbitrary – there is no moose ∼ *meese.

Vowel harmony is a kind of pervasive global
morphophonological pattern which forces vowels
in a word to share certain features. In the simplest
case, this often results in affix allomorphy where
each affix has alternate forms that agree with the
features in the root or the root must agree with the
affixes. Finnish presents a classic example of front-
back vowel harmony: a word may contain front

vowels (ä, ö, ÿ) or back vowels (a, o, u) but not
both. Suffixes have front and back allomorphs in
order to agree with the stem. For example, contrast
the front-containing suffixes after front-containing
root liity-nt-öjä with the same suffixes after a back-
containing root liiku-nt-oja.

4 Modeling Morphological Processes

In this section, we describe our framework for mod-
eling language morphologies, including prefixation,
suffixation, infixation, full and partial reduplication.
We also model stem changes that typically occur at
word boundaries except for vowel changes.

4.1 Morphology as Lexical Pairs

Many theories of morphology such as paradigm-
based morphology, e.g. Paradigm Function Mor-
phology (Stump, 2001), cast morphology as a rela-
tion between word pairs. We adopt this perspective
as the basis of our framework, except that we do not
differentiate derivational morphology from inflec-
tion. In detail, the framework assumes morphology
to be an operation that is applied to a word (root) to
form another word and effects a change in meaning
along some dimension, e.g., adding information
such as case, number, gender, tense, or aspect. We
denote such a morphological process with a func-
tion f . The function takes a root word r as input
and forms a new word w, i.e. f(r) = w. Thus
the task of morphology learning can be defined
as searching for a function f and another word r,
given a word w, such that f(r) = w.

4.2 Constraining the Search Space with
Morphological Typology

Here, we describe how we incorporate prefixation,
suffixation, infixation, and full and partial redu-
plication to constrain the morphological function
space. This improves over naive methods focusing
on edit distance, which can be used to evaluate how
good a morphological function is locally. Glob-
ally, a morphological function can be evaluated by
observing its overall frequency, namely its corpus
productivity in a language. Such a simple system
would tend to hallucinate many spurious yet fre-
quent morphological functions, which may not be
possible morphologically from a richer linguistic
perspective.

Morphological patterns allow us to represent the
derivation of complex words from root words. A
prefixation pattern can be defined as <prefix>_x,
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where <prefix> is a specific prefix in a language,
and x stands for the root. For example, the pattern
<un->_x describes how the word unfold can be
derived from fold with a prefix. A suffixation pat-
tern can be defined as x_<suffix> and an infixation
pattern can be defined similarly as bx_<infix>_ex,
where bx and ex are the beginning and ending part
of the root word x and x = bx + ex.

Reduplication functions can be defined in the
same way. A full reduplication pattern is defined
as x_x. A partial reduplication can be defined as
bx_x (bx 6= x) with the partial copy of x on the
left or x_ex (ex 6= x) with the partial copy on the
right. Table 1 shows all the morphological patterns
associated with examples from different languages.

Morphological Type Eg. Func Eg. words
Prefixation <di->_x di-bangun2

Infixation bx_<-in->_ex d-in-ulot4

Suffixation x_<-ε> kyerε-ε1

Full reduplication x_x kyerε-kyerε1

Partial reduplication (L) bx_x ka-kain4

Partial reduplication (R) x_ex
Final Vowel / Theme V x-v<a> pig-a3

Table 1: Morphological operations with example pat-
terns and words in 1 Akan, 2 Indonesian, 3 Swahili, and
4 Tagalog. No right partial reduplication is present in
our test set.

4.3 Morphophonological Rules

Here, we define the stem change rules that are
motivated by morphophonological observations
on languages which we denote with the function
g. We extend the capabilities of previous sys-
tems (Narasimhan et al., 2015; Xu et al., 2018)
and model six transformation rules as follows:
Insertion (INS) of a letter at the end of the root.
E.g. the Spanish word quiera can be analyzed as
(quer, -a, INS-i).
Deletion (DEL) of the end letter of the root. E.g.
using can be analyzed as (use, -ing, DEL-e).
Gemination (GEM) of the end letter of the root.
E.g. stopped can be analyzed as (stop, -ed, GEM-
p).
Degemination (DEG) of the end letter of the root
if it is in a reduplication form. E.g. the Finnish
word katot can be analyzed as (katto, -t, DEG-t).
Substitution (SUB) of the end letter of the root
with another. E.g. the word carries can be analyzed
as (carry, -es, SUB-y-i).
VowelChange (VOW) of the right or left most
vowel of the root with another. For example, the

word drunken can be analyzed as (drink, -en, VOW-
i-u). This feature requires the system to be aware
of a global vowel inventory.

4.4 Generating Candidate Morphological
Functions

A morphological function is defined as
two parts: the morphological pattern,
and the corresponding stem changes,
f = [<stem_change>,<morph_pat>], where
<stem_change> is first applied to the root, with
the output fed into the <morph_pat> to generate
the derived word. A detailed definition can be
denoted as f(r) = [g(x),<prefix>_x](r), where r
is the root word which can apply this rule to derive
another word, and g is a stem change function.

For example, a prefixation function f(r) =
[$(x),<un->_x](r) (where $(x) means no stem
change applies) can be applied to the verb fold
to generate the verb unfold. Similarly, a suffix-
ation function f(r) = [SUB-y-i(x), x_<-ed>](r)
can be applied to the verb carry to generate the
verb carri-ed. We can define an infixation func-
tion f(r) = [($(bx), $(ex)), bx_<-um->_ex](r);
when applied to the word kakain, it can generate the
verb k-um-akain. A full reduplication function can
be defined as f(r) = [$(x), $(x)), x_x](r); when
applied to the word ‘kyerε’, it can generate the
verb kyerε-kyerε. A partial reduplication function
f(r) = [($(bx), $(x)), bx_x](r), when applied to
the word kain, can generate the verb ka-kain.

The central phase of learning involves generat-
ing potential morphological functions. During this
phase, no stem changes are allowed in order to limit
spurious functions. Learning is done by comparing
each word pair and postulating a function f that can
explain the pair, where the function f is constrained
through morphological typology as described in
Section 3. For example, given the word pair (fold,
unfold), we can postulate a prefixation function
f(r) = [$(x),<un->_x](r); given word pair (kain,
kakain), we can postulate a left partial reduplica-
tion function f(r) = [($(bx), $(x)), bx_x](r).

For affixation, including prefixation, infixation,
and suffixation, a set of candidate affixes is needed
before generating morphological functions. This
can be done by comparing all possible word pairs,
a similar method used by previous studies (e.g.
Narasimhan et al., 2015; Xu et al., 2018). For
prefixes, if w = s+ w′, where w and w′ are both
attested words in the word list, then s is a can-
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didate prefix. We use the cardinality of the set
{(w,w′) : w = s + w′} to evaluate how good
the candidate prefix s is. Similarly, for suffixes, if
w = w′+s, then s is a candidate suffix. For infixes,
if w = bw′+s+ew′, where w and w′ = bw′+ew′

are both attested words in the word list, then s is
a candidate infix. Finally, only the top N most
frequent candidates for each affix type are selected.

4.5 Searching for Candidate Analyses for
Individual Words

After generating all morphological functions re-
flecting each morphological type, searching for can-
didate analyses for individual words is conceptually
straightforward. For a given word w, we find all
possible morphological functions {f : f = [g,m]}
associated with a root word r, such that w = f(r).
For example, the word reread can be analyzed as
<re->_X, bx_<-re->_ex, and bx_x.

This is somewhat complicated by the need to
find possible morphophonological (stem change)
rules on the root words. The basic idea is that when
checking a possible prefixation pattern, for example
w = s+ w′, rather than assuming w′ is an attested
word, we assume that if there is an attested word
w′′ and a potential stem change rule g, such that
w′ = g(w′′), then <s>_x is a potential prefixation
pattern for w. We can easily create an index based
on the attested words to accelerate the searching
process. Searching for suffixation and infixation
can be done is a similar way.

For reduplication, we use a similar strategy. If
w = bw′ + w′, i.e. a word w can be decomposed
into another word w′ plus a string prefix of w′ on
the left, then we postulate a partial reduplication
pattern for word w, i.e. bx_x. If w = w′ + ew′,
then x_ex can be generated. For example, given
that the word reread = re + read and read is itself
a word, we can hypothesize that the word is bx_x.
For full reduplication, if a word w = w′ + w′,
where w′ is another word, then a morphological
pattern x_x can be generated for w.

For more complicated cases, we extend the
search for reduplication of individual words with
possible stem change rules. For partial redupli-
cation, if a word w = s + w′, and there is a
stem change rule g, such that s = g(bw′), then
we can also postulate a partial reduplication pat-
tern for w, with a stem change rule on bw′. Sim-
ilarly, if a word w = s + s′, and there is a stem
change function g and an attested word w′ such

that s′ = g(w′) and s = bw′, then we can also
postulate a partial reduplication pattern for w with
a stem change rule on w′. For full reduplication,
if a word w = s + s′, there are (up to) two stem
change functions g and g′, and a word w′, such that
s = g(w′) and s′ = g′(w′), then we can postulate
a full reduplication pattern for w.

4.5.1 Further Decreasing the Search Space

A large number of spurious candidate analyses will
be generated once we allow stem change rules.
However, some candidate analyses can be ruled out
given other candidates. For example, the word ‘say-
ing’ can be analyzed as (say, $, x_<-ing>), but also
as (says, DEL-<s>, x_<-ing>), but the latter one is
unnecessary given the former one and a heuristic
that says that no stem changes are to be preferred
to stem changes. So, to further decrease the search
space, we employ a set of heuristics to eliminate
some of the candidate analyses before the next step.
They follow a principle of parsimony, namely once
a simpler analysis is generated, the more compli-
cated ones that are related will be excluded.2

5 Disambiguation with a Probabilistic
Model

After generating all candidate analyses for a given
word, we evaluate how good each candidate is
so we can choose the best one as the final anal-
ysis. We compute the conditional probability of
a candidate analysis [g,m](r) given a word w =
[g,m](r)), namely P (r, g,m|w). P (r, g,m|w) =
0 if [g,m](r) 6= w. Otherwise, we use the follow-
ing formula to calculate this probability.

P (r, g,m|w) = P (r, g,m)∑
(r′,g′,m′)=w P (r′, g′,m′)

(1)

To compute the probability of a candidate analysis
(w = [g,m](r)), P (r, g,m), we assume that r, g
and m are independent to each other. So,

P (r, g,m)=P (r)× P (g)× P (m) (2)

The probabilities in this model can be estimated
using EM initialized by counting all the candidate
analyses of all words in the word list and assuming
that each candidate has the same probability.

2The details will be given in a separate document with the
code that will be made publicly available before the confer-
ence.



6677

5.1 Solving Oversegmentations with
Paradigms

We extend Xu et al. (2018)’s work and use statis-
tically reliable paradigms for filtering unreliable
ones. In detail, a paradigm is defined by Xu et al.
(2018) upon a set of suffixes. Here, we extend this
definition to a mixture of different types of mor-
phological processes, i.e. M = {m}, that can be
applied to the same set of roots R = {r} to be in
a paradigm. Formally, a paradigm is defined as
p = R ×M . Finally, the paradigms with at least
2× 2 sizes are selected as reliable ones, namely at
least two morphological patterns supported by at
least two roots. Similar to Xu et al. (2018), stem
changes are not part of the paradigm since they are
generally independent processes.

After finding possible paradigms, we use the
same method for pruning unreliable paradigms.
Given an unreliable paradigm p = R × M , the
intersection of the morphological pattern set M
and the set Mi of each reliable paradigm pi is com-
puted, i.e. M ′

i = M ∩Mi, and the one with the
best score, e.g. M ′

k will be chosen as the pruned
result, i.e. p′ = R ×M ′

k. Finally, the score of an
intersection M ′

i is the sum of the frequencies of all
the morphological patterns in the intersection, as
shown in equation 3.

score(M)=
∑

m∈M freq(m) (3)

5.2 Generating Morphological Derivations
After the one-step roots of all the words are found,
morphological derivations (e.g., sterile, sterilize,
sterilizing) are automatically generated iteratively
by our system as well as final segmentations (e.g.,
steril-iz-ing). As described in the next section, be-
cause evaluation will be based on morpheme bound-
aries identification, generating such a segmentation
is necessary.

6 Experiments

6.1 Settings
We compare our model with Morfessor (Virpioja
et al., 2013), the most popular baseline, Morpho-
Chain (MC) (Narasimhan et al., 2015) and its im-
proved version, Morph-Forest (MF) (Luo et al.,
2017), and ParaMA (PMA) (Xu et al., 2018).
We evaluate the models with segmentation points
(boundaries of morphemes), the same metric used
by Narasimhan et al. (2015) and Xu et al. (2018).
We run our model in two different settings. In

Lang Train Test Corpus Morphology
Aka 74K 2K 3M pref, suf, red
Hin 487K 2K 28M pref, suf, red
Hun 4,390K 2K 574M pref, suf
Ind 525K 2K 19M pref, suf, inf, red
Rus 1,485K 2K 1,068M pref, suf
Spa 564K 2K 24M pref, suf
Swa 224K 2K 4M pref, suf, red, fv
Tag 13K 2K 5M pref, suf, inf, lred, red

Tam 2,363K 2K 47M pref, suf, red

Table 2: Number of word types for training and testing,
corpus size for training word vectors (only for Morpho-
Chain and Morph-Forest systems), and the morpholog-
ical features (pref: prefixation; suf: suffixation; inf: in-
fixation; red: full reduplication; lred: left reduplication;
fv: final vowel) for each language.

the primary experiment, we run it as a fully unsu-
pervised model (FU), assuming all possible typo-
logical features. In a secondary experiment, each
language’s morphological typology is provided by
an oracle so that the model can only search relevant
patterns per language (U+T). A vowel inventory is
also provided so that our system can discover the
vowel change rules described in Section 4.3. MC
and MF are run in two different configurations, one
with semantic vectors (+v) and the other without
vectors (more comparable to Morfessor, ParaMA,
and our system).

We conduct the experiments with a data set con-
taining 9 languages from diverse language fami-
lies (Mott et al., 2020). The details of the data
sets including the typological features for each lan-
guage and the size of corpus that is used for training
word vectors are shown in Table 2. The word lists
used for training are extracted from the language
pack created under the DARPA LORELEI (LOw
REsource Languages and Emergent Incidents) pro-
gram. The gold standard data, soon to be released
by LDC, is annotated only with morpheme segmen-
tations, and no data annotation was used in training.
The languages with non-Latin scripts were roman-
ized with the tools provided in the package.

6.2 Experimental Results and Analyses
Results are presented in Figure 1. The details are
shown in Table 3 and Table 4. Both our unsuper-
vised model (FU) and model with given typology
(U+T) achieve higher average F1 than previous
work by a large margin, the highest on five of nine
languages, and competitive results overall on the
other four. Of the two systems, the typology fea-
ture oracle provided only slightly better average
performance than fully unsupervised. As expected,
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Figure 1: Comparison of different systems in F1 scores on the nine languages and their average. FU and U+T are
our systems. FU is fully unsupervised, while U+T is unsupervised except given six flags for language typology.

Morf MC MF MC+v MF+v PMA U+T FU
Aka 0.633 0.650 0.646 0.498 0.530 0.530 0.680 0.679
Hin 0.258 0.359 0.346 0.494 0.505 0.586 0.432 0.398
Hun 0.407 0.532 0.533 0.622 0.619 0.532 0.554 0.551
Ind 0.532 0.499 0.497 0.561 0.622 0.469 0.686 0.682
Rus 0.347 0.492 0.493 0.427 0.450 0.458 0.493 0.490
Spa 0.250 0.498 0.502 0.051 0.034 0.405 0.473 0.472
Swa 0.432 0.430 0.409 0.202 0.189 0.343 0.512 0.533
Tag 0.525 0.484 0.470 0.430 0.439 0.411 0.587 0.566
Tam 0.237 0.293 0.291 0.341 0.336 0.396 0.446 0.426
Avg 0.402 0.471 0.465 0.403 0.414 0.459 0.541 0.533

Table 3: Experimental results in F1 measures on the
nine languages including our unsupervised (FU) and or-
acle (U+T) system. The best score for each language is
highlighted, considering each of our systems separately
against previous work.

Morf MC MF MC+v MF+v PMA U+T FU
P 0.618 0.387 0.391 0.504 0.523 0.514 0.525 0.495
R 0.317 0.647 0.623 0.370 0.383 0.428 0.576 0.593
F1 0.402 0.471 0.465 0.403 0.414 0.459 0.541 0.533

Table 4: Average performance of the systems in preci-
sion, recall and F1 measures. Best result in bold, con-
sidering all systems together.

given the very low-resource setting, the vector con-
figuration harms the performance of both MC and
MF in languages such as Akan, Spanish, Swahili
and Tagalog. Even though Russian has a larger cor-
pus, the vectors still harm performance, which we
believe is due to its complicated morphology that
demands many examples to train reliable vectors.

While having separate patterns for each mor-
phology type seems to improve numbers, oracle
information improves results only slightly, mostly
on Hindi, Tagalog, and Tamil. Interestingly, the
performance on Swahili has been noticeably de-
creased. Based on detailed observation, this is due
to our infixation search providing an unexpected
benefit for Swahili, a language with no linguistic
infixation, but the final vowel pattern, by allowing
us to capture string-internal linguistic suffixes as

Aka Hin Hun Ind Rus Spa Swa Tag Tam Avg

U+T 0.68 0.432 0.554 0.686 0.493 0.473 0.512 0.587 0.446 0.541

Pref+Suf 0.683 0.411 0.554 0.67 0.493 0.473 0.512 0.522 0.445 0.529

0.3

0.4

0.5

0.6

0.7

0.8 U+T

Pref+Suf

Figure 2: The performance of our model with oracle
typological features (U+T) and with only prefixation
and suffixation (Pref+Suf).

in the passive suffix -w- extracted from the verb
kunyang’anywa here as bx_<w>_ex. In all, the
performance of our model in either mode is better
than the other systems we tested.

To test the contribution of morphological pat-
terns other than prefixation and suffixation, we per-
form an ablation study, running the system with
only prefixation and suffixation enabled. The re-
sults are shown in Figure 2. First, most perfor-
mance for most languages is due to prefixation and
suffixation since these are predominant for most
languages. However, performance decreases mea-
surably for Tagalog, Indonesian and Hindi due to
the presence of more complex morphological pat-
terns. This shows that modeling morphological
features other than prefixation and suffixation has
important benefits on languages with complicated
morphology.

6.3 Discussion

Our system, in both its configurations, achieves the
highest average performance among those tested. It
has other advantages as well. Firstly, although our
model is evaluated in terms of morpheme bound-
aries, it produces much richer structures than that.
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It determines how a complex word is derived from
another one through a particular morphological pro-
cess such as prefixation, suffixation, infixation or
full or partial reduplication. In comparison, other
systems including Morpho-Chain, Morph-Forest,
and ParaMA only deal with prefixes and suffixes.
Our experiments as shown in Figure 2 indicate that
modeling morphological patterns/processes other
than prefixation and suffixation are useful.

Systems that directly find morpheme boundaries
such as Morfessor are not aware of the particular
morphological processes that a word’s derivation
goes through. So for infixed words, for example,
even if the morpheme boundaries are correctly iden-
tified by such systems, they will incorrectly char-
acterize the word as containing three morphemes
rather than two. Such analyses are incorrect even
though they are not penalized under a boundary-
based evaluation metric.

By modeling different types of morphological
structures, our system can be used to study the pro-
ductivity of each morphological process and thus
can be used for a quantitative analysis for theo-
retical morphological studies in linguistics. Fig-
ure 3 shows the number of instances of each type
of morphological process generated by our fully
unsupervised model. Suffixation and prefixation
are the most common processes. Most of our test
languages exhibit more suffixation than prefixation,
but Swahili has more prefixation than suffixation,
as expected for a Bantu language.

Figure 3 also shows that reduplication is rarer
than other affixation. However, our model does dis-
cover full and left-partial reduplication successfully
in languages that exhibit it. For example, about 1%
of Akan words and fewer than 1% of Indonesian,
Swahili and Tagalog words were analyzed with full
or partial reduplication.

Infixation is challenging to correctly identify be-
cause infixes can appear in almost any position
inside a word, and therefore generate a large search
space. Our unsupervised system uses infixation to
represent both true morphological infixation as in
Tagalog as well as word-internal agglutinative suf-
fixation as in Swahili, Hindi, and Tamil. This hurts
the performance for Hindi and Tamil, but provides
a benefit for Swahili as discussed above.

Finally, our system is fast, typically completing
in several minutes, similar to ParaMA. Other sys-
tems including Morfessor, MC and MF typically
require several hours, or even days on longer word

0
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aka hin hun ind rus spa swa tag tam
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0.002
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Figure 3: Normalized distribution of morphological
patterns discovered by our unsupervised model for each
language (top) and zoomed in on less frequent pat-
terns (bottom). SUF: suffix, PREF: prefix, INF: infix,
RED: full reduplication, LRED: left partial reduplica-
tion, RRED: right partial reduplication.

lists such as for Hungarian and Russian.

7 Conclusion and Future Work

In this paper, we develop a model for morpho-
logical analysis that exploits typological features
to achieve the best performance on a wide range
of languages. The tool is publicly available here:
https://github.com/xuhongzhi/ParaMA2. This un-
supervised model can be quickly and easily ex-
tended to novel languages without data annota-
tion or expert input. Combined with the ability
to process infixation and reduplication, our system
improves access for geographically diverse low-
resource languages. Although the evaluation is
based on segmentation points, our model outputs
much richer structure. It can also tell us the pro-
ductivity of each morphological process and thus
can obtain much deeper knowledge in terms of
morphological structures of languages.

Our next step will be to attempt to automate the
determination of language typology, yielding some-
what better performance with a system requiring
no human intervention per language at all. Fu-
ture work will aim to extend the current model
to capture particularly challenging morphological
patterns such as templatic non-concatenative mor-
phology and polysynthetic composition.

https://github.com/xuhongzhi/ParaMA2
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