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Abstract

Polysynthetic languages have exceptionally
large and sparse vocabularies, thanks to the
number of morpheme slots and combinations
in a word. This complexity, together with
a general scarcity of written data, poses
a challenge to the development of natural
language technologies. To address this
challenge, we offer linguistically-informed
approaches for bootstrapping a neural
morphological analyzer, and demonstrate its
application to Kunwinjku, a polysynthetic
Australian language. We generate data from
a finite state transducer to train an encoder-
decoder model. We improve the model by
“hallucinating” missing linguistic structure
into the training data, and by resampling
from a Zipf distribution to simulate a more
natural distribution of morphemes. The
best model accounts for all instances of
reduplication in the test set and achieves an
accuracy of 94.7% overall, a 10 percentage
point improvement over the FST baseline.
This process demonstrates the feasibility of
bootstrapping a neural morph analyzer from
minimal resources.

1 Introduction

Polysynthesis represents the high point of morpho-
logical complexity. For example, in Kunwinjku, a
language of northern Australia (ISO gup), the word
ngarriwokyibidbidbuni contains six morphs:

(1) ngarri-
1pl.excl-

wok-
word-

yi-
COM-

bid-
REDUP-

bidbu-
go.up-

ni
PI

‘We were talking as we climbed up’

Example (1) illustrates common features
of polysynthesis: fusion, incorporation, and
reduplication. Fusion combines multiple
grammatical functions into a single morph, leading
to large morph classes, and challenging the
item-and-arrangement leanings of finite state

morphology. Incorporation presents a modelling
challenge because rule-based methods are unable
to enumerate an open class, and machine learning
methods need to learn how to recognize the
boundary between contiguous large or open morph
classes. Reduplication is also a challenge because
it copies and prepends a portion of the verb
root to itself, requiring a nonlinear or multi-step
process. Tackling these phenomena using finite
state transducers (FSTs) involves a combination
of technical devices whose details depend on
subtleties of the morphological analysis (cf. Arppe
et al., 2017). There remains a need for more
investigation of polysynthetic languages to deepen
our understanding of the interplay between the
options on the computational side, and the most
parsimonious treatment on the linguistic side.

Morphological complexity leads to data spar-
sity, as the combinatorial possibilities multiply
with each morpheme slot: most morphologically
complex words will be rare. Furthermore, many
morphologically complex languages are also endan-
gered, making it difficult to collect large corpora.
Thus, polysynthetic languages challenge existing
ways of building tools and applications for the
communities that speak these languages.

In this work we investigate Kunwinjku, spoken
by about 2,000 people in West Arnhem in the far
north of Australia. Members of the community
have expressed interest in using technology to sup-
port language learning and literacy development.
Thus, we face the challenge of developing useful
language technologies on top of robust models,
with few resources and in a short space of time.
We envisage morphologically-aware technologies
including dictionary interfaces, spell checkers, text
autocompletion, and tools for language learning (cf.
Littell et al., 2018).

This paper is organized as follows. We begin by
reviewing previous work in finite state morphology,
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low resource morph analysis, neural approaches
to morph analysis, and data augmentation for mor-
phological reinflection (Sec. 2). Next, we describe
our existing finite state model for Kunwinjku verbs
(Sec. 3). In Section 4 we present a neural approach
which addresses gaps in the previous model, includ-
ing the ability to analyze reduplication and to
exploit distributional information. Next we dis-
cuss our evaluation metrics and our handling of
syncretism and ambiguity (Sec. 5). Finally, the
results are presented in Section 6, including a dis-
cussion of how well the neural models address the
shortcomings of the FST model.

Our contributions include: (a) a robust morpho-
logical analyzer for verbs in a polysynthetic lan-
guage; (b) a method for augmenting the training
data with complex, missing structure; and (c) a
technique for scoring the likelihood of generated
training examples.

2 Background and Related Work

Finite state transducers (FSTs) are a popular choice
for modelling the morphology of polysynthetic
languages. Several toolkits exist, including XFST,
Foma, and HFST (Beesley and Karttunen, 2003;
Hulden, 2009; Lindén et al., 2013). Each one is an
optimized implementation of the finite state calcu-
lus (Kaplan and Kay, 1994), providing additional
support for morphosyntactic and morphophono-
logical processes. Most recent work on computa-
tional modelling of morphologically rich languages
is built on the foundation of these tools (Arppe
et al., 2017; Littell, 2018; Andriyanets and Tyers,
2018; Chen and Schwartz, 2018; Cardenas and
Zeman, 2018). As a case in point, we applied Foma
in the analysis of the morphology of Kunwinjku
verbs, but ran into difficulties accounting for out-
of-vocabulary (OOV) items in open morph classes.
We also stopped short of addressing complex fea-
tures like reduplication and verbal compounding,
for technical reasons related to the expressiveness
of FSTs (cf. Lane and Bird, 2019).

Recently, neural models have gained popularity
for morphological processing because they address
some of the weakness of FSTs: subword model-
ing shows an ability to remain robust in the face
of out-of-vocabulary items, and recurrent neural
architectures with attention have shown a capacity
to learn representations of context which allow the
model to incorporate the notion of long-distance
dependencies (Bahdanau et al., 2014).

Neural morphological analyzers can be devel-
oped from training data generated by an FST.
These analyzers are more robust, handling vari-
ation, out-of-vocabulary morphs, and unseen tag
combinations (Micher, 2017; Moeller et al., 2018;
Schwartz et al., 2019). They provide 100% cov-
erage, always providing a “best guess” analysis
for any surface form. Of course, FSTs can be
modified to accommodate exceptions and OOV
morphs, but this requires explicit modelling and
usually does not achieve the robustness of neural
analyzers (Schwartz et al., 2019).

Anastasopoulos and Neubig (2019) found that
they could augment their training set by hallucinat-
ing new stems, increasing accuracy on their test
set by 10 percent. This method involved substitut-
ing random characters from the target language’s
alphabet into the region identified by alignment as
the probable root. For the sake of cross-lingual
generalizability, their method does not consider
language-specific structure.

The task of morphological analysis, mapping an
inflected form to its root and grammatical specifi-
cations, is similar to the task of machine transliter-
ation, mapping a sequence of words or characters
from source to target language without reordering.
For example in Kunwinjku, consider the segmenta-
tion and gloss of the verb karridjalbebbehni:

(2) karri-
12a-

djal-
just-

bebbeh-
DISTR-

ni
sit.NP

‘Let’s just sit down separately’ [E.497]

Since the process of segmenting and glossing
the verb does not contain any reorderings, the
mapping of surface to glossed forms can be viewed
as transliteration.

3 A Finite State Model of Kunwinjku

Finite state transducers have long been viewed as
an ideal framework to model morphology (Beesley
and Karttunen, 2003). They are still a popular
choice for low-resource polysynthetic languages
(cf. Chen and Schwartz, 2018; Lachler et al., 2018).
Here we summarize some features of Kunwinjku
and describe the finite state implementation.

3.1 Features of Kunwinjku

Kunwinjku is a polysynthetic agglutinating lan-
guage, with verbs having up to 15 affix slots
(Fig. 1). Morphs combine in a way that is “almost
lego-like” (Evans, 2003; Baker and Harvey, 2003).
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−12 −11 −10 (−9) (−8) (−7) (−6) (−5) (−4) (−3) (−2) (−1) 0 +1 +2
Tense Subject Object Directional Aspect Misc1 Benefactive Misc2 GIN BPIN NumeroSpatial Comitative Verb root RR TAM

Figure 1: Verbal affix positions in Kunwinjku. Regions where indices share a cell ([−12,−10], [+1,+2]) indicate
potentially fused segments. Slot indices in parentheses indicate optionality. Adapted from (Evans, 2003, Fig 8.1).

We implement morphotactics and mor-
phophonology as separate stages, following usual
practice (Fig. 2). However, this is not conducive
to modelling noun incorporation, valence-altering
morphology, fusion, or reduplication, all typical
phenomena in polysynthetic languages.

Kunwinjku has two kinds of noun incorporation.
General incorporable nouns (GIN) are a closed
class, manifesting a variety of grammatical roles
(3). Body part incorporable nouns (BPIN) are an
open class, restricting the scope of the action (4).

(3) nga-
1m-

kak-
night-

keleminj
fear.P

‘I was afraid at night’

(4) nga-
1m-

bid-
hand-

keleminj
fear.P

‘I was afraid for my hand’ [E.458]

The open class BPIN occupy slot −3 and will be
adjacent to the verb root whenever slots−2 and−1
are empty, as is common. With adjacent open class
slots, Kunwinjku opens up the possibility of there
being contiguous OOV morphs. In Kunwinjku
there is no template to help distinguish members
of these adjacent classes, thus creating a novel
challenge for predicting morph boundaries.

While transitivity of the verb is lexically defined,
there are three morph classes which signal valency
change: the benefactive (BEN), comitative (COM),
and reflexive (RR). More details about the respec-
tive function of these morphs is given in Lane and
Bird (2019), but here it suffices to say their pres-
ence in a verb makes resolving valency impossible
without wider sentential context. This impacts the
FST modelling, as we are unable to restrict possi-
ble illegal analyses on this basis, which results in
overgeneration.

Morphological fusion can lead to a proliferation
of morphs and analyses. In Kunwinjku, there are
no fewer than 157 possibilities for the first slot
of the verb, fusing person and number (for both
subject and object) along with tense. We find that
this fusion affects decisions around tokenization
of the data in preparation for training the seq2seq
model (Sec. 4.2).

morphotactic
transducer

morphophonological
transducers

karribimbom

karriˆbimˆbuˆ~om

[V][1pl.incl.3sg.PST][GIN.bim]bu[PP]Analyzed form:

Intermediate form:

Surface form:

Figure 2: The high-level structure of the Kunwinjku
finite state transducer. Analyzed forms are mapped to
surface forms (and vice versa) through the composition
of morphotactic and morphophonological transducers.

Most of the world’s languages employ redupli-
cation productively for diverse purposes (Rubino,
2005). It is a common feature of polysynthetic
languages in particular. While modelling reduplica-
tion using FSTs is possible, the general consensus
is that modelling partially reduplicative processes
explode the state space of the model, and are bur-
densome to develop (Culy, 1985; Roark et al., 2007;
Dras et al., 2012). For these reasons, the Kunwin-
jku FST model does not include an implementation
of the language’s complex reduplication system.

In Kunwinjku, there are three types of verbal
reduplication: iterative, inceptive, and extended.
Each type of reduplication has 1–3 (CV) templates
which can be applied to the verb root to express the
semantics associated with each type. In Section 4.4
we discuss an approach to ensure that the neural
model handles Kunwinjku’s complex reduplication
system.

3.2 Evaluating the FST

We establish a baseline by scoring the FST on a set
of n = 304 inflected verbs. The data was collected
from the Kunwinjku Bible (which targets a modern
vernacular), a language primer (Etherington and
Etherington, 1998), and a website (Bininj Kunwok
Language Project, 2019). The data was glossed in
consultation with language experts.

We define coverage as number of analysed forms,
and accuracy as the number of correctly analyzed
forms, both as a fraction of n. We define precision
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Accuracy Coverage Precision

FST 84.4 88.5 95.4

Figure 3: All-or-nothing accuracy and coverage of
the Kunwinjku FST Analyzer on the test set of 304
inflected verbs.

Error Class % of Error

Reduplication 28.9
TAM Inflection 28.5
OOV root 26.3
OOV inc. nominals 13.2
Alternation 2.2

Figure 4: Error analysis of Lane and Bird (2019)’s FST
model of Kunwinjku verbs shows 5 classes of error and
the percent of the total error attributed to each class.

as the number of correctly analysed forms as a
fraction of the number of analysed forms. We
distinguish accuracy and precision because the
ability of a model to withhold prediction in case of
uncertainty is useful in certain application contexts.

The results of the evaluation show that while
the FST is fairly high-precision, its accuracy is
limited by the imperfect coverage of verb stems in
the lexicon (Fig. 3).

The FST relies on a lexicon to provide analyses
for inflected forms, and when it comes across OOV
morphs, or verb stems modified by processes like
reduplication, it fails to return an analysis. We sort
the coverage issues into classes, and remark that the
largest source of error comes from reduplication,
followed by variation in tense/aspect/mood (TAM)
inflection, OOV stems, OOV incorporated nomi-
nals, and exceptions to the d-flapping alternation
rule (Fig. 4). We address each of these problems in
the following sections.

4 Methods

In this section we discuss the approach which
leverages an incomplete FST to produce a more
robust neural morphological analyzer for Kunwin-
jku. Those steps include generating training pairs
from an FST, tokenizing the data, resampling from
the dataset to simulate distributional signal, hal-
lucinating missing structures into the dataset, and
training a neural encoder-decoder model on the
resampled data.

4.1 Data generation from an FST

Given our low resource setting, training a neural
encoder-decoder model like those used in neural
machine translation (NMT) is not possible without
augmenting what resources we do have. Follow-
ing the established template of recent work on
neural morphological analysis for low resource
polysynthetic languages (Micher, 2017; Moeller
et al., 2018; Schwartz et al., 2019) we use the FST
model to generate morphotactically valid pairs of
surface and analyzed verbs.

For the purpose of training the base neural model,
we adapted the Foma tool to randomly generate
3,000,000 surface/analysis pairs from the FST (see
Fig. 6 for an example of a tokenized pair). An
automatic process removed duplicates, leaving us
with 2,666,243 unique pairs which we partitioned
into an .8/.1/.1 train/dev/test split.

In Schwartz et al. (2019)’s work on modelling
complex nouns in Yupik, they generate a training
set which exhaustively pairs every Yupik noun
root with every inflectional suffix, regardless of the
resulting semantic fidelity. In our case, it was not
feasible to exhaustively generate the training data,
as it would have led to 4.9×1012 instances (Fig. 5).
In effect, the training set represents .00004% of the
space over which we seek to generalize.

4.2 Tokenization

To prepare the data for training a seq2seq model,
we first collect the glossed inflected verb forms, per-
form tokenization, and organize them into source-
target pairs.

We chose a tokenization scheme which treats
graphemes as atomic units. Morph labels are also
treated mostly as atomic units, with the exception
being for fused labels which we break into their
individual linguistic components (Fig. 6). For
example the pronominal morph in Kunwinjku can
simultaneously express both subject and object,
as well as tense. Consider the pronominal prefix
kabenbene- which we gloss as 3sg.3ua.nonpast and
tokenize as [ 3sg . 3ua . nonpast ]. Choosing to break
up labels in the fused morphological slots prevents
an unnecessary proliferation of entries in the target
vocabulary, as individual units like 3sg, 3ua, and
past can be shared by multiple pronominals. Our
choice to tokenize the source forms and verb root
strings at the grapheme level reflects our desire
to loosen the model’s vocabulary such that it is
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TSO DIR ASP MSC1 BEN MSC2 GIN BPIN COM root RR TAM Total

157 x 3 x 2 x 24 x 2 x 4 x 78 x 32 x 2 x 541 x 2 x 5 = 4.9x1012

Figure 5: An estimate for all morphotactically valid sequences covered by the Kunwinjku FST

equipped to handle variation at the orthographic
level, and possible OOV stems.

4.3 Simulating distributional information
Generating from an FST at random fails to cap-
ture valuable information about the distribution
of morphs. For example in Kunwinjku, body part
incorporable nouns (BPIN) can occur adjacent to the
verb root. Both categories are open class, meaning
that there is a high likelihood in the low-resource
setting that either or both are out-of-vocabulary.
How then does the analyzer decide where to place
the boundary? Perhaps the entire sequence is a
single out-of-vocabulary root. Our intuition is
that knowing the likelihood of co-occurrence for
two analysis tags can provide signal to help dis-
ambiguate. Some morph sequences are inevitably
more frequent than others, and we would like to
represent that information in the training set.

To this end, we propose a method for simulating
distributional information in the training set. First,
we want to score any analyzed form, giving higher
scores to forms that contain more likely sequences.
We define M as the sequence of morph tags which
make up an analysis, where mi is the morph tag at
index i. The scoring function is defined as follows:

(5) score(M) = 1
n

n∑
i
logP (mi,mi+1)

The joint probability of adjacent tags is esti-
mated from a corpus of unannotated text, here,
selected books from the Kunwinjku Bible. Every-
thing the existing FST can analyse as a verb is
considered to be a verb, and is used to calculate the
joint probability table.

The training set is tagged with the FST1, and
ranked according to the scoring function. We split
the sorted data into buckets defined by their mor-
photactic likelihood, and then sample from them
according to a Zipf distribution. The effect is
that more probable sequences are more likely to
occur in the training data than less likely examples,
thus approximating the distribution of morphotac-
tic structure we would expect to see in a natural
corpus.

1By using an FST with imperfect recall we are not captur-
ing true distributional information; it is simply a heuristic.

4.4 Hallucinating reduplicative structure

One shortcoming of the Kunwinjku FST model
is that it does not account for reduplicative struc-
ture, due to the complexity of modelling recur-
sive structure in the linear context of finite state
machines (Culy, 1985; Roark et al., 2007). As
noted previously, reduplication is responsible for
28.9% of the FST’s coverage error when evaluated
on the test set of inflected verbs. If reduplication
is not modeled by the FST, then reduplication will
also not be represented in the training set gener-
ated by that FST. We posit that if data hallucina-
tion has been shown to improve performance in
the language-agnostic setting (Anastasopoulos and
Neubig, 2019; Silfverberg et al., 2017), than it is
likely that linguistically-informed hallucination can
provide a similar reinforcement in Kunwinjku. In
line with this, we developed an extension to the data
generation process which hallucinates reduplicative
structure into a subset of the training data.

Kunwinjku has three main types of partial ver-
bal reduplication signaling iterative, inceptive, and
extended meaning. Moreover, each type of redu-
plication can have more than one CV template,
depending on which paradigm the verb belongs to.
Figure 7 documents the three types of reduplication,
and serves as the template for the reduplicative
structure hallucinator.

First, the hallucinator module samples n% of the
FST-generated pairs and strips away the affixes to
isolate the root. For each root, one of the three redu-
plication types (iterative, inceptive, or extended)
is selected at random, and the root is matched
against the available CV templates. The longest
pattern which matches the root is selected, and
the pattern-matching portion of the root is copied
and prepended to the root. Both the surface and
analyzed form are updated to reflect the change,
and the new training pairs are appended to the
original list of FST-generated pairs.

4.5 Training

We trained an encoder-decoder model on the
dataset of 2,114,710 surface/analyzed form
pairs (the Base model). We then hallucinate
reduplication into 8% of the Base data, and
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b i k a n j ng u n e ng −> [ 3 sg . 3Hsg . PST ] [ BPIN ] ng u [ PP ]

Figure 6: An example of a tokenized source/target training pair, where we treat source graphemes, target labels,
fused target label components, and verb root graphemes as atomic units.

Type Pattern(s) Unreduplicated Verb Reduplicated Verb Semantic Effect on Verb (V)

Iterative
CVC dadjke = cut dadj-dadjke = cut to pieces

Doing V over and over againCV(C)CV(h) bongu = drink bongu-bongu = keep drinking
CVnV(h) re = go rengeh-re = go repeatedly

Inceptive CV(n)(h)
yame = spear (sth) yah-yame = try (and fail) to spear (sth) Failed attempt to do V
durnde = return durnh-durnde = start returning Starting to do V

Extended
CVC(C) ‖ men djordmen = grow djordoh-djordmen = grow all over the place

Doing V all over the place
CVC(C) ‖ me wirrkme = scratch wirri-wirrkme = scratch all over

Figure 7: Reduplication in Kunwinjku has three forms, and each form has its own CV templates defining how
much of the verb is captured and copied. In the case where we’ve used the form X ‖ Y, we mean that pattern X
is the reduplicated segment if found in the context of Y. Figure adapted from (Evans, 2003).

combine that hallucinated data to the base training
data set (the Base+halluc[...] models).

The model setup is similar to the one described
in (Schwartz et al., 2019). We use MarianNMT: a
fast, open-source toolkit which implements neural
models for machine translation (Junczys-Dowmunt
et al., 2018). We used a shallow attentional encoder-
decoder model (Bahdanau et al., 2014) using the
parameters described in (Sennrich et al., 2016): the
encoder and decoder each have 1 hidden layer of
size 1024. We use cross-validation as the validation
metric, set dropout to .2 on all RNN inputs, and
enable early stopping to avoid overfitting. We
use the same setup and parameters for all NMT
models mentioned in this paper. A full accounting
of the MarianNMT settings used can be seen in the
Appendix.

5 Evaluation of the Neural Models

We begin by reporting the performance of the neu-
ral models in terms of coverage, accuracy, and pre-
cision, so that they can be compared with the eval-
uation of the FST model, described in Section 3.2.
Additionally, we measure the performance of the
neural models in terms of precision (P), recall (R),
and F1 on the morph level: For each morph tag in
the gold target test set, we calculate P, R, and F1,
and then calculate the macro-average P, R, and F1
across all tags in the test set (Fig. 9). This method
is more granular than all-or-nothing accuracy over
the entire translated sequence, and allows us to get
a better picture of how the models are doing on the
basis of individual tags.

We observed an issue with syncretic ambiguity
which complicates the evaluation process (also

noted by Schwartz et al. 2019; Moeller et al. 2018).
For example, the pronominal prefix kabindi- can
be glossed: [3ua.3ua.nonpast], or [3pl.3ua.nonpast],
or [3ua.3pl.nonpast], or [3pl.3pl.nonpast]. Here, the
pronominal expresses both the subject and object,
and is not explicit whether that subject or object
is the 3rd person dual or plural, in any of four
possible combinations. The disambiguation cannot
be resolved at the level of the isolated verb.

Our initial experiment with the base data set
achieved 100% coverage and 68.3% accuracy on
the test set. When confronted by the same problem,
Moeller et al. (2018) decided to collapse ambigu-
ous tags into an underspecified meta-tag. For exam-
ple, for the Kunwinjku data, we might collapse
the four tags above into [3pl.3pl.nonpast]. However,
doing so results in a potential loss of information.
Given the wider sentential context, the pronominal
could be possibly be disambiguated, so long as
the distinction is preserved and all equally-valid
analyses are returned.

Further, as Schwartz et al. (2019) point out, in
the Yupik language it is possible for this ambiguity
to exist across other categories which are not easily
collapsed. In Kunwinjku, an example of this would
be the pronominals [1sg.2.past] and [3sg.past] which
differ in terms of number and valency, and yet
share the same null surface form. Their differences
are such that they can not be easily collapsed into
a single meta-tag. Therefore we do not penalize
the model for producing any variation of equally
valid analyses given the surface form, and for each
model we adjust the evaluation for syncretism in a
post-processing step.
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6 Results and Discussion

All of the neural models outperform the FST in
terms of accuracy and coverage (Fig. 8). However,
the FST is more precise, and this may be useful
in certain application contexts. The best model
is Base+halluc+resample, which improves on the
FST by 10.3 percentage points. On the morph-
level, we see that the neural models containing the
hallucinated reduplication data outperform the base
neural model (Fig. 9).

Acc Cov Precision
FST 84.4 88.5 95.4
Base 89.1 100 89.1
Base+halluc 93.7 100 93.7
Base+halluc+resample 94.7 100 94.7

Figure 8: All-or-nothing accuracy and coverage of the
three morphological analyzer models

Precision Recall F1
Base 88.8 89.9 89.0
Base+halluc 91.6 92.6 91.8
Base+halluc+resample 93.7 93.6 93.4

Figure 9: Morph-level performance of shallow neural
sequence models. Macro P/R/F1 across all morph tags.

We posited that the difficulties encountered by
the FST model—namely reduplication, out-of-
vocabulary items, and spelling variation—could
be at least partially addressed by training a
neural model on character and tag sequences, and
hallucinating instances of reduplication into the
training set. For the most part, this held true, as
we see gains across all error classes (cf. Sec. 3.2).
Here we report performance with respect to the
three largest error classes: reduplication, OOV
verbs, and OOV nouns.

6.1 Reduplication

As expected, neither the FST nor the Base neural
model succeeds in recognizing reduplication. It
would be impossible, as the REDUP tag does not
appear in either of their vocabularies.

The Base+halluc model’s performance gain over
the Base model can be accounted for entirely by the
fact that it achieved 100% recall of reduplicative
structure. Precision, on the other hand was 57.9%.
Looking at the errors, we find that the imprecise
predictions were all applied to instances about
which the system was already wrong in previous

Unseen Verbs Base+halluc+resample X/7
wobekkang [GIN]bekka 7

ngakohbanjminj [GIN][REDUP]me 7

ngarrukkendi dukkendi X
kamenyime [GIN]yime 7

yimalngdarrkiddi darrke[PERSIST] 7

ngamdolkkang [DIR][GIN]ka 7

dolkkang [GIN]ka 7

karrukmirri dukmirri X
ngurrimirndemornnamerren mornname X

Unseen GIN/BPIN/ASP Base+halluc+resample X/7
kannjilngmarnbom [GIN] 7

yibenkangemarnbom [REDUP] 7

kankangemurrngrayekwong [GIN] 7

kankangemurrngrayekwong [BPIN] X
kankangemurrngrayekwong [REDUP] 7

kankangemarnbom [REDUP] 7

ngarribangmemarnbuyi [BPIN] 7

yimalngdarrkiddi [GIN][REDUP] 7

Figure 10: Column 1 shows the list of verbs and nouns
(in bold) which are are unseen in the FST lexicon. Col-
umn 2 is the Base neural model’s prediction covering
the character sequence corresponding to the unseen
item. Column 3 indicates whether the neural model’s
analysis of the morph is correct.

models, meaning that the impact of reduplicative
hallucination between models was only positive. In
the Base+halluc+resample model, recall of redu-
plicative structure was also 100%, and precision
increased slightly to 58.8%.

6.2 Discovering New Lexical Items

The neural models correctly identify some unseen
verb stems, but still show room for improvement.
We observe a tendency across all neural models to
predict verb stems which have been seen in training,
and which are also a substring of the observed
unknown root. For example, the training set does
not contain any verbs with the root dolkka, but it
shows up 3 times in the test set. The analyses of
all dolkka-rooted verbs were the same in both the
Base+halluc and Base+halluc+resample models:
they propose ka, a known root from the training
set, and presume dolk- to be an incorporable noun2.
Figure 10 shows a sample of OOV verb stems and
nouns from the test set. In the unseen verbs table,
this behavior of preferring previously observed
verb stems is the cause of error in every case.

Further difficulty comes in distinguishing
between general (GIN) and body-part (BPIN)
incorporated noun classes. The low rate of success
in positing unknown incorporated nouns is, in

2Possibly by virtue of its orthographic proximity to bolk-,
a common general incorporable noun which means “land.”
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large part, attributed to the fact that the large GIN
and open BPIN classes often occur adjacent to
each other and to the root. The neural model has
difficulty making useful predictions when multiple
morphs in this region are previously unobserved.

Overall, the Base+halluc+resample model cor-
rectly posited 33% of unseen stems, and 12.5% of
unseen nouns from the FST error analyses.

6.3 Impact of distributional information

This technique to approximate distributional infor-
mation led to a small improvement in overall accu-
racy, and in tag-level P/R/F1. We had expected that
this information might help the neural models learn
something about the relative frequencies of GINs or
BPINs, which could help make decisions about how
to draw the boundary between unseen stems and
unseen incorporated nominals. Instead, we saw
distributive information helped to disambiguate
the boundaries between morph classes with fewer
members.

One representative example is the case of yiki-
mang, whose root is kimang. Before resample, the
neural models interpret the yi- as the comitative
prefix yi-, and injects a spurious COM tag into the
analysis. After resample, it correctly omits the
COM tag, interpreting yi- as the 2nd person singu-
lar pronominal. In the unfiltered FST-generated
training data, COM occurs in 53% of instances. In
the resampled data, it occurs in 22% of instances.
When all morph labels are equally likely to occur,
the model is just as likely to predict any morph label
compatible with the character sequence. Resam-
pling the training data according to a more realistic
distribution leads to stronger morph transition pri-
ors, which tip the scale in favor of the analysis with
a more likely tag sequence.

7 Conclusion

We have shown that complex features of polysyn-
thetic morphology, such as reduplication and dis-
tributional morphotactic information, can be sim-
ulated in the dataset and used to train a robust
neural morphological analyzer for a polysynthetic
language. In particular, we showed that a robust
neural model can be bootstrapped in a relatively
short space of time from an incomplete FST.

This work represents a successful first iteration
of a process whereby the morphological model can
be continually improved. Indeed, the concept of

bootstrapping a model implies an iterative develop-
ment story where much of the scaffolding used in
early efforts will eventually fall away. For example,
once the bootstrapped model has been used to tag
verbs containing reduplication, we can confirm the
model’s high-confidence predictions and retrain.
In this second iteration, we may find that we no
longer need to hallucinate reduplication because
it is sufficiently represented in the new training
set. Similarly, once we have applied the complete
neural model to a corpus of natural text, we will no
longer need to approximate distributional informa-
tion. For researchers developing robust morpholog-
ical analyzers for low resource, morphologically
complex languages, this work represents a template
of model development which is well-suited for the
context.

Producing a viable morphological analyzer is
the first step towards building improved dictionary
search interfaces, spell-checking tools, and
computer-assisted language learning applications
for communities who speak low-resource
languages. The pattern of training robust systems
on data that has been augmented by the knowledge
captured in symbolic systems could be applied to
areas outside of morphological analysis, and is a
promising avenue of future exploration.
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Appendix

We provide the MarianNMT configuration settings
used for all neural models in this work.

--type amun
--dim-vocabs 600 500
--mini-batch-fit -w 3500
--layer-normalization
--dropout-rnn 0.2
--dropout-src 0.1
--dropout-trg 0.1
--early-stopping 5
--valid-freq 10000
--save-freq 10000
--disp-freq 1000
--valid-metrics cross-entropy
--overwrite
--keep-best
--seed 1111
--exponential-smoothing
--normalize=1
--beam-size=12
--quiet-translation
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