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Abstract

Neural architecture search (NAS) has ad-
vanced significantly in recent years but most
NAS systems restrict search to learning archi-
tectures of a recurrent or convolutional cell. In
this paper, we extend the search space of NAS.
In particular, we present a general approach
to learn both intra-cell and inter-cell architec-
tures (call it ESS). For a better search result,
we design a joint learning method to perform
intra-cell and inter-cell NAS simultaneously.
We implement our model in a differentiable
architecture search system. For recurrent neu-
ral language modeling, it outperforms a strong
baseline significantly on the PTB and Wiki-
Text data, with a new state-of-the-art on PTB.
Moreover, the learned architectures show good
transferability to other systems. E.g., they im-
prove state-of-the-art systems on the CoNLL
and WNUT named entity recognition (NER)
tasks and CoNLL chunking task, indicating a
promising line of research on large-scale pre-
learned architectures.

1 Introduction

Neural models have shown remarkable perfor-
mance improvements in a wide range of natural
language processing (NLP) tasks. Systems of this
kind can broadly be characterized as following a
neural network design: we model the problem via
a pre-defined neural architecture, and the resulting
network is treated as a black-box family of func-
tions for which we find parameters that can general-
ize well on test data. This paradigm leads to many
successful NLP systems based on well-designed
architectures. The earliest of these makes use of re-
current neural networks (RNNs) for representation
learning (Bahdanau et al., 2015; Wu et al., 2016),
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whereas recent systems have successfully incorpo-
rated fully attentive models into language genera-
tion and understanding (Vaswani et al., 2017).

In designing such models, careful engineering
of the architecture plays a key role for the state-of-
the-art though it is in general extremely difficult
to find a good network structure. The next obvi-
ous step is toward automatic architecture design.
A popular method to do this is neural architecture
search (NAS). In NAS, the common practice is that
we first define a search space of neural networks,
and then find the most promising candidate in the
space by some criteria. Previous efforts to make
NAS more accurate have focused on improving
search and network evaluation algorithms. But the
search space is still restricted to a particular scope
of neural networks. For example, most NAS meth-
ods are applied to learn the topology in a recurrent
or convolutional cell, but the connections between
cells are still made in a heuristic manner as usual
(Zoph and Le, 2017; Elsken et al., 2019).

Note that the organization of these sub-networks
remains important as to the nature of architecture
design. For example, the first-order connectivity
of cells is essential to capture the recurrent dynam-
ics in RNNs. More recently, it has been found
that additional connections of RNN cells improve
LSTM models by accessing longer history on lan-
guage modeling tasks (Melis et al., 2019). Similar
results appear in Transformer systems. Dense con-
nections of distant layers help in learning a deep
Transformer encoder for machine translation (Shen
et al., 2018). A natural question that arises is: can
we learn the connectivity of sub-networks for better
architecture design?

In this paper, we address this issue by enlarging
the scope of NAS and learning connections among
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Figure 1: Examples of intra and inter-cell architectures.

sub-networks that are designed in either a hand-
crafted or automatic way (Figure 1). We call this
the Extended Search Space method for NAS (or
ESS for short). Here, we choose differentiable ar-
chitecture search as the basis of this work because
it is efficient and gradient-friendly. We present a
general model of differentiable architecture search
to handle arbitrary search space of NAS, which
offers a unified framework of describing intra-cell
NAS and inter-cell NAS. Also, we develop a joint
approach to learning both high-level and low-level
connections simultaneously. This enables the inter-
action between intra-cell NAS and inter-cell NAS,
and thus the ability of learning the full architecture
of a neural network.

Our ESS method is simple for implementation.
We experiment with it in an RNN-based system for
language modeling. On the PTB and WikiText data,
it outperforms a strong baseline significantly by 4.5
and 2.4 perplexity scores. Moreover, we test the
transferability of the learned architecture on other
tasks. Again, it shows promising improvements on
both NER and chunking benchmarks, and yields
new state-of-the-art results on NER tasks. This
indicates a promising line of research on large-
scale pre-learned architectures. More interestingly,
it is observed that the inter-cell NAS is helpful
in modeling rare words. For example, it yields a
bigger improvement on the rare entity recognition
task (WNUT) than that on the standard NER task
(CoNLL).

2 Related work

NAS is a promising method toward AutoML (Hut-
ter et al., 2018), and has been recently applied
to NLP tasks (So et al., 2019; Jiang et al., 2019;
Li and Talwalkar, 2019). Several research teams
have investigated search strategies for NAS. The
very early approaches adopted evolutionary algo-
rithms to model the problem (Angeline et al., 1994;
Stanley and Miikkulainen, 2002), while Bayesian
and reinforcement learning methods made big pro-
gresses in computer vision and NLP later (Bergstra
et al., 2013; Baker et al., 2017; Zoph and Le, 2017).
More recently, gradient-based methods were suc-
cessfully applied to language modeling and image
classification based on RNNs and CNNs (Liu et al.,
2019a). In particular, differentiable architecture
search has been of great interest to the commu-
nity because of its efficiency and compatibility to
off-the-shelf tools of gradient-based optimization.

Despite of great success, previous studies re-
stricted themselves to a small search space of neu-
ral networks. For example, most NAS systems
were designed to find an architecture of recurrent
or convolutional cell, but the remaining parts of the
network are handcrafted (Zhong et al., 2018; Brock
et al., 2018; Elsken et al., 2019). For a larger search
space, Zoph et al. (2018) optimized the normal cell
(i.e., the cell that preserves the dimensionality of
the input) and reduction cell (i.e., the cell that re-
duces the spatial dimension) simultaneously and
explored a larger region of the space than the single-
cell search. But it is still rare to see studies on the
issue of search space though it is an important fac-
tor to NAS. On the other hand, it has been proven
that the additional connections between cells help
in RNN or Transformer-based models (He et al.,
2016; Huang et al., 2017; Wang et al., 2018, 2019).
These results motivate us to take a step toward the
automatic design of inter-cell connections and thus
search in a larger space of neural architectures.

3 Inter-Cell and Intra-Cell NAS

In this work we use RNNs for description. We
choose RNNs because of their effectiveness at pre-
serving past inputs for sequential data processing
tasks. Note that although we will restrict ourselves
to RNNs for our experiments, the method and dis-
cussion here can be applied to other types of mod-
els.
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3.1 Problem Statement
For a sequence of input vectors {x1, ..., xT }, an
RNN makes a cell on top of every input vector.
The RNN cell receives information from previous
cells and input vectors. The output at time step t is
defined to be:

ht = π(ĥt−1, x̂t) (1)

where π(·) is the function of the cell. ĥt−1 is the
representation vector of previous cells, and x̂t is
the representation vector of the inputs up to time
step t. More formally, we define ĥt−1 and x̂t as
functions of cell states and model inputs, like this

ĥt−1 = f(h[0,t−1];x[1,t−1]) (2)

x̂t = g(x[1,t];h[0,t−1]) (3)

where h[0,t−1] = {h0, ..., ht−1} and x[1,t−1] =
{x1, ..., xt−1}. f(·) models the way that we pass
information from previous cells to the next. Like-
wise, g(·) models the case of input vectors. These
functions offer a general method to model connec-
tions between cells. For example, one can obtain a
vanilla recurrent model by setting ĥt−1 = ht−1 and
x̂t = xt, while more intra-cell connections can be
considered if sophisticated functions are adopted
for f(·) and g(·).

While previous work focuses on searching for
the desirable architecture design of π(·), we take
f(·) and g(·) into account and describe a more
general case here. We separate two sub-problems
out from NAS for conceptually cleaner description:

• Intra-Cell NAS. It learns the architecture of
a cell (i.e., π(·)).

• Inter-Cell NAS. It learns the way of connect-
ing the current cell with previous cells and
input vectors (i.e., f(·) and g(·)).

In the following, we describe the design and
implementation of our inter-cell and intra-cell NAS
methods.

3.2 Differentiable Architecture Search
For search algorithms, we follow the method of
differentiable architecture search (DARTS). It is
gradient-based and runs orders of magnitude faster
than earlier methods (Zoph et al., 2018; Real et al.,
2019). DARTS represents networks as a directed
acyclic graph (DAG) and search for the appropri-
ate architecture on it. For a DAG, the edge oi,j(·)

F (α, β)

...

...
α

Sα

...

...
β

Sβ

Figure 2: Formalizing intra and inter-cell NAS as learn-
ing function F (·).

between node pair (i, j) performs an operation to
transform the input (i.e., tail) to the output (i.e.,
head). Like Liu et al. (2019a)’s method and oth-
ers, we choose operations from a list of activation
functions, e.g., sigmoid, identity and etc1. A node
represents the intermediate states of the networks.
For node i, it weights vectors from all predecessor
nodes (j < i) and simply sums over them. Let si
be the state of node i. We define si to be:

si =
∑
j<i

∑
k

θi,jk · o
i,j
k (sj ·Wj) (4)

where Wj is the parameter matrix of the linear
transformation, and θi,jk is the weight indicating the
importance of oi,jk (·). Here the subscript k means
the operation index. θi,jk is obtained by softmax
normalization over edges between nodes i and j:
θi,jk = exp(wi,jk )/

∑
k′ exp(wi,jk′ ). In this way, the

induction of discrete networks is reduced to learn-
ing continuous variables {θi,jk } at the end of the
search process. This enables the use of efficient
gradient descent methods. Such a model encodes
an exponentially large number of networks in a
graph, and the optimal architecture is generated by
selecting the edges with the largest weights.

The common approach to DARTS constraints the
output of the generated network to be the last node
that averages the outputs of all preceding nodes.
Let sn be the last node of the network. We have

sn =
1

n− 1

n−1∑
i=1

si (5)

Given the input vectors, the network found by
DARTS generates the result at the final node sn.

1We also consider a special activation function “drop” that
unlinks two nodes.
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Figure 3: An example of intra-cell and inter-cell NAS in RNN models.

Here we present a method to fit this model into intra
and inter-cell NAS. We re-formalize the function
for which we find good architectures as F (α;β).
α and β are two groups of the input vectors. We
create DAGs on them individually. This gives us
two DAGs with sα and sβ as the last nodes. Then,
we make the final output by a Hadamard product
of sα and sβ , like this,

F (α;β) = sα � sβ (6)

See Figure 2 for the network of an example
F (α;β). This method transforms the NAS prob-
lem into two learning tasks. The design of two
separate networks allows the model to group re-
lated inputs together, rather than putting everything
into a “magic” system of NAS. For example, for
the inter-cell function f(·), it is natural to learn the
pre-cell connection from h[0,t−1], and learn the im-
pact of the model inputs from x[1,t−1]. It is worth
noting that the Hadamard product of sα and sβ is
doing something very similar to the gating mecha-
nism which has been widely used in NLP (Dauphin
et al., 2017; Bradbury et al., 2017; Gehring et al.,
2017). For example, one can learn sβ as a gate and
control how much sα is used for final output. Table
1 gives the design of α and β for the functions used
in this work.

Another note on F (α;β). The grouping reduces
a big problem into two cheap tasks. It is particularly
important for building affordable NAS systems be-
cause computational cost increases exponentially
as more input nodes are involved. Our method in-
stead has a linear time complexity if we adopt a
reasonable constraint on group size, leading to a

Function α β

π(·) {ĥt−1, x̂t} 1
f(·) h[0,t−1] x[1,t−1]
g(·) x[1,t] h[0,t−1]

Table 1: α and β for different functions

possibility of exploring a much larger space during
the architecture search process.

3.3 The Intra-Cell Search Space

The search of intra-cell architectures is trivial.
Since β = 1 and sβ = 1 (see Table 1), we are
basically performing NAS on a single group of
input vectors ĥt−1 and x̂t. We follow Liu et al.
(2019a)’s work and force the input of networks to
be a single layer network of ĥt−1 and x̂t. This can
be described as

e1 = tanh(ĥt−1 ·W (h) + x̂t ·W (x)) (7)

where W (h) and W (x) are parameters of the trans-
formation, and tanh is the non-linear transforma-
tion. e1 is the input node of the graph. See Figure
3 for intra-cell NAS of an RNN models.

3.4 The Inter-Cell Search Space

To learn ĥt−1 and x̂t, we can run the DARTS sys-
tem as described above. However, Eqs. (2-3) de-
fine a model with a varying number of parameters
for different time steps, in which our architecture
search method is not straightforwardly applicable.
Apart from this, a long sequence of RNN cells
makes the search intractable.
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Function JOINTLEARN (rounds, w, W )
1: for i in range(1, rounds) do
2: while intra-cell model not converged do
3: Update intra-cell w(intra) and W
4: while inter-cell model not converged do
5: Update inter-cell w(inter) and W
6: Derive architecture based on w
7: return architecture

Figure 4: Joint search of intra-cell and inter-cell archi-
tectures. w = edge weights, and W = model parame-
ters.

For a simplified model, we re-define f(·) and
g(·) as:

f(h[0,t−1];x[1,t−1]) = f ′(ht−1;x[t−m,t−1]) (8)

g(x[1,t];h[0,t−1]) = g′(xt;h[t−m,t−1]) (9)

where m is a hyper-parameter that determines how
much history is considered. Eq. (8) indicates a
model that learns a network on x[t−m,t−1] (i.e.,
β = x[t−m,t−1]). Then, the output of the learned
network (i.e., sβ) is used as a gate to control the
information that we pass from the previous cell to
the current cell (i.e., α = {ht−1}). Likewise, Eq.
(9) defines a gate on h[t−m,t−1] and controls the
information flow from xt to the current cell.

Learning f ′(·) and g′(·) fits our method well due
to the fixed number of input vectors. Note that f ′(·)
hasm input vectors x[t−m,t−1] for learning the gate
network. Unlike what we do in intra-cell NAS, we
do not concatenate them into a single input vector.
Instead, we create a node for every input vector,
that is, the input vector ei = xt−i links with node
si. We restrict si to only receive inputs from ei for
better processing of each input. This can be seen
as a pruned network for the model described in Eq.
(4). See Figure 3 for an illustration of inter-cell
NAS.

4 Joint Learning for Architecture Search

Our model is flexible. For architecture search, we
can run intra-cell NAS, or inter-cell NAS, or both
of them as needed. However, we found that sim-
ply joining intra-cell and inter-cell architectures
might not be desirable because both methods were
restricted to a particular region of the search space,
and the simple combination of them could not guar-
antee the global optimum.

This necessitates the inclusion of interactions be-
tween intra-cell and inter-cell architectures into the
search process. Generally, the optimal inter-cell
architecture depends on the intra-cell architecture
used in search, and vice versa. A simple method
that considers this issue is to learn two models in
a joint manner. Here, we design a joint search
method to make use of the interaction between
intra-cell NAS and inter-cell NAS. Figure 4 shows
the algorithm. It runs for a number of rounds. In
each round, we first learn an optimal intra-cell ar-
chitecture by fixing the inter-cell architecture, and
then learn a new inter-cell architecture by fixing
the optimal intra-cell architecture that we find just
now.

Obviously, a single run of intra-cell (or inter-cell)
NAS is a special case of our joint search method.
For example, one can turn off the inter-cell NAS
part (lines 4-5 in Figure 4) and learn intra-cell archi-
tectures solely. In a sense, the joint NAS method
extends the search space of individual intra-cell
(or inter-cell) NAS. Both intra-cell and inter-cell
NAS shift to a new region of the parameter space
in a new round. This implicitly explores a larger
number of underlying models. As shown in our ex-
periments, joint NAS learns intra-cell architectures
unlike those of the individual intra-cell NAS, which
leads to better performance in language modeling
and other tasks.

5 Experiments

We experimented with our ESS method on Penn
Treebank and WikiText language modeling tasks
and applied the learned architecture to NER and
chunking tasks to test its transferability.

5.1 Experimental Setup

For language modeling task, the monolingual and
evaluation data came from two sources.

• Penn Treebank (PTB). We followed the stan-
dard preprocessed version of PTB (Mikolov
et al., 2010). It consisted of 929k training
words, 73k validation words and 82k test
words. The vocabulary size was set to 10k.

• WikiText-103 (WT-103). We also used
WikiText-103 (Merity et al., 2017) data to
search for a more universal architecture for
NLP tasks. This dataset contained a larger
training set of 103 million words and 0.2 mil-
lion words in the validation and test sets.
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Dataset Method
Search Space

Params
Perplexity Search Cost

intra-cell inter-cell valid test (GPU days)

PTB

AWD-LSTM (Merity et al., 2018c) - - 24M 61.2 58.8 -
Transformer-XL (Dai et al., 2019) - - 24M 56.7 54.5 -

Mogrifier LSTM (Melis et al., 2019) - - 23M 51.4 50.1 -
ENAS (Pham et al., 2018) 3 - 24M 60.8 58.6 0.50

RS (Li and Talwalkar, 2019) 3 - 23M 57.8 55.5 2
DARTS† 3 - 23M 55.2 53.0 0.25

ESS - 3 23M 54.1 52.3 0.5
ESS 3 3 23M 47.9 45.6 0.5

WT-103

QRNN (Merity et al., 2018a) - - 151M 32.0 33.0 -
Hebbian + Cache (Rae et al., 2018) - - - 29.9 29.7 -
Transformer-XL (Dai et al., 2019) - - 151M 23.1 24.0 -

DARTS† 3 - 151M 31.4 31.6 1
ESS 3 3 156M 28.8 29.2 1.5

Table 2: Comparison of language modeling methods on PTB and WikiText-103 tasks (lower perplexity is better).
†Obtained by training the corresponding architecture using our setup.

NER and chunking tasks were also used to test
the transferability of the pre-learned architecture.
We transferred the intra and inter-cell networks
learned on WikiText-103 to the CoNLL-2003 (En-
glish), the WNUT-2017 NER tasks and the CoNLL-
2000 tasks. The CoNLL-2003 task focused on the
newswire text, while the WNUT-2017 contained a
wider range of English text which is more difficult
to model.

Our ESS method consisted of two components,
including recurrent neural architecture search and
architecture evaluation. During the search process,
we ran our ESS method to search for the intra-cell
and inter-cell architectures jointly. In the second
stage, the learned architecture was trained and eval-
uated on the test dataset.

For architecture search on language modeling
tasks, we applied 5 activation functions as the can-
didate operations, including drop, identity, sigmoid,
tanh and relu. On the PTB modeling task, 8 nodes
were equipped in the recurrent cell. For the inter-
cell architecture, it received 3 input vectors from
the previous cells and consisted of the same number
of the intermediate nodes. By default, we trained
our ESS models for 50 rounds. We set batch = 256
and used 300 hidden units for the intra-cell model.
The learning rate was set as 3× 10−3 for the intra-
cell architecture and 1 × 10−3 for the inter-cell
architecture. The BPTT (Werbos, 1990) length was
35. For the search process on WikiText-103, we
developed a more complex model to encode the
representation. There were 12 nodes in each cell

and 5 nodes in the inter-cell networks. The batch
size was 128 and the number of hidden units was
300 which was the same with that on the PTB task.
We set the intra-cell and inter-cell learning rate to
1 × 10−3 and 1 × 10−4. A larger window size
(= 70) for BPTT was applied for the WikiText-
103. All experiments were run on a single NVIDIA
1080Ti.

After the search process, we trained the learned
architectures on the same data. To make it compa-
rable with previous work, we copied the setup in
Merity et al. (2018b). For PTB, the size of hidden
layers was set as 850 and the training epoch was
3,000. While for the WikiText-103, we enlarged
the number of hidden units to 2,500 and trained the
model for 30 epochs. Additionally, we transferred
the learned architecture to NER and chunking tasks
with the setting in Akbik et al. (2019). We only
modified the batch size to 24 and hidden size to
512.

5.2 Results

5.2.1 Language Modeling tasks

Here we report the perplexity scores, number of pa-
rameters and search cost on the PTB and WikiText-
103 datasets (Table 2). First of all, the joint ESS
method improves the performance on language
modeling tasks significantly. Moreover, it does
not introduce many parameters. Our ESS method
achieves state-of-the-art result on the PTB task.
It outperforms the manually designed Mogrifier-
LSTM by 4.5 perplexity scores on the test set. On
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Figure 5: Perplexity on the validation data (PTB) vs.
number of nodes in intra and inter-cell.

the WikiText task, it still yields a +2.4 perplexity
scores improvement over the strong NAS baseline
(DARTS) method. These results indicate that ESS
is robust and can learn better architectures by en-
larging the scope of search space.

Also, we find that searching for the appropri-
ate connections among cells plays a more impor-
tant role in improving the model performance. We
observe that the intra-cell NAS (DARTS) system
underperforms the inter-cell counterpart with the
same number of parameters. It is because the well-
designed intra-cell architectures (e.g., Mogrifier-
LSTM) are actually competitive with the NAS
structures. However, the fragile connections among
different cells greatly restrict the representation
space. The additional inter-cell connections are
able to encode much richer context.

Nevertheless, our ESS method does not defeat
the manual designed Transformer-XL model on the
WikiText-103 dataset, even though ESS works bet-
ter than other RNN-based NAS methods. This is
partially due to the better ability of Transformer-XL
to capture the language representation. Note that
RNNs are not good at modeling the long-distance
dependence even if more history states are consid-
ered. It is a good try to apply ESS to Transformer
but this is out of the scope of this work.

5.2.2 Sensitivity Analysis
To modulate the complexity of the intra and inter-
cell, we study the system behaviors under different
numbers of intermediate nodes (Figure 5). Fix-
ing the number of model parameters, we compare
these systems under different numbers of the intra
and inter-cell nodes. Due to the limited space, we
show the result on the PTB in the following sen-
sitivity analysis. We observe that an appropriate
choice of node number (8 nodes for intra-cell and
3 nodes for inter-cell) brings a consistent improve-
ment. More interestingly, we find that too many
nodes for inter-cell architecture do not improve the
model representation ability. This is reasonable
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Figure 6: Perplexity on the validation data (PTB)
and Mean Absolute Deviation (MAD) between edge
weights and uniform distribution vs. number of train-
ing steps.

Word Count ∆loss Word Count ∆loss
mcmoran 11 -0.74 the 59421 -0.009
cie. 9 -0.66 <unk > 53299 -0.004
mall 13 -0.65 <eos > 49199 -0.010
missile 23 -0.55 N 37607 -0.008
siemens 12 -0.51 of 28427 -0.008
baldwin 9 -0.51 to 27430 -0.004
nfl 21 -0.49 a 24755 -0.013
prime-time 17 -0.47 in 21032 -0.015

Table 3: Difference in word loss (normalized by word
counts) on validation data when searching intra and
inter-cell jointly. The left column contains the words
with eight best improvements (larger absolute value of
∆loss) and right column presents the most frequent
words in the validation data.

because more inter-cell nodes refer to considering
more history in our system. But for language mod-
eling, the current state is more likely to be relevant
to most recent words. Too many inputs to the gate
networks raise difficulties in modeling.

We observe that our ESS method leads to a
model that is easier to train. The left part in Figure
6 plots the validation perplexity at different training
steps. The loss curve of joint ESS significantly goes
down as the training proceeds. More interestingly,
our joint learning method makes the model achieve
a lower perplexity than the intra-cell NAS system.
This indicates better networks can be obtained in
the search process. Additionally, the convergence
can be observed from the right part in Figure 6.
Here we apply Mean Absolute Deviation (MAD)
to define the distance between edge weights and
initial uniform distribution. It is obvious that both
the intra and inter-cell architectures change little at
the final searching steps.

In order to figure out the advantage of inter-cell
connections, we detail the model contribution on
each word on the validation data. Specifically, we
compute the difference in word loss function (i.e.,
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Figure 7: Comparison of intra-cell architectures found by using and not using additional inter-cell connections

Models F1
LSTM-CRF (Lample et al., 2016) 90.94
LSTM-CRF + ELMo (Peters et al., 2018) 92.22
LSTM-CRF + Flair (Akbik et al., 2019) 93.18
GCDT + BERTLARGE (Liu et al., 2019b) 93.47
CNN Large + ELMo (Baevski et al., 2019) 93.50
DARTS + Flair (Jiang et al., 2019) 93.13
I-DARTS + Flair (Jiang et al., 2019) 93.47
ESS 91.78
ESS + Flair 93.62

Table 4: F1 scores on CoNLL-2003 NER task. Bi-
LSTM

log perplexity) between methods with and without
inter-cell NAS. The words with eight best improve-
ments are shown in the left column of Table 3. We
observe that the rare words in the training set ob-
tain more significant improvements. In contrast,
the most frequent words lead to very modest de-
crease in loss (right column of Table 3). This is
because the connections between multiple cells en-
able learning rare word representations from more
histories. While for common words, they can ob-
tain this information from rich contexts. More in-
puts from previous cells do not bring much useful
information.

Additionally, we visualize the learned intra-
cell architecture in Figure 7(a). The networks
are jointly learned with the inter-cell architecture.
Compared with the results of intra-cell NAS (Fig-
ure 7(b)), the learned network is more shallow.
The inter-cell architectures have deeper networks.
This in turn reduces the need for intra-cell capacity.
Thus a very deep intra-cell architecture might not
be necessary if we learn the whole model jointly.

5.2.3 Transferring to Other Tasks

After architecture search, we test the transferability
of the learned architecture. In order to apply the
model to other tasks, we directly use the architec-
ture searched on WikiText-103 and train the param-

Models F1
Cross-BiLSTM-CNN (Aguilar et al., 2018) 45.55
Flair (Akbik et al., 2019) 50.20
DARTS + Flair† 50.34
ESS 48.85
ESS + Flair 52.18

Table 5: F1 scores on WNUT-2017 NER task.
†Obtained by training the corresponding architecture
using our setup.

Models F1
NCRF++ (Yang and Zhang, 2018) 95.06
BiLSTM-CRF + IntNet (Xin et al., 2018) 95.29
Flair (Akbik et al., 2019) 96.72
GCDT + BERTLARGE (Liu et al., 2019b) 97.30
DARTS + Flair† 96.59
ESS 95.51
ESS + Flair 97.22

Table 6: F1 scores on CoNLL-2000 chunking task.
†Obtained by training the corresponding architecture
using our setup.

eters with the in-domain data. In our experiments,
we adapt the model to CoNLL-2003, WNUT-2017
NER tasks and CoNLL-2000 chunking task.

For the two NER tasks, it achieves new state-
of-the-art F1 scores (Table 4 and Table 5). ELMo,
Flair and BERTLARGE refer to the pre-trained lan-
guage models. We apply these word embeddings
to the learned architecture during model training
process. For the chunking task, the learned archi-
tecture also shows greater performance than other
NAS methods (Table 6). Moreover, we find that our
pre-learned neural networks yield bigger improve-
ments on the WNUT-2017 task. The difference of
the two NER tasks lies in that the WNUT-2017 task
is a long-tail emerging entities recognition task. It
focuses on identifying unusual, previously-unseen
entities in the context of emerging discussions. As
we discuss in the previous part of the section, the
additional inter-cell NAS is good at learning the
representations of rare words. Therefore, it makes
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sense to have a bigger improvement on WNUT-
2017.

6 Conclusions

We have proposed the Extended Search Space
(ESS) method of NAS. It learns intra-cell and
inter-cell architectures simultaneously. Moreover,
we present a general model of differentiable ar-
chitecture search to handle the arbitrary search
space. Meanwhile, the high-level and low-level
sub-networks can be learned in a joint fashion. Ex-
periments on two language modeling tasks show
that ESS yields improvements of 4.5 and 2.4 per-
plexity scores over a strong RNN-based baseline.
More interestingly, it is observed that transferring
the pre-learned architectures to other tasks also ob-
tains a promising performance improvement.
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