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Abstract

Neural-based context-aware models for slot
tagging have achieved state-of-the-art perfor-
mance. However, the presence of OOV(out-
of-vocab) words significantly degrades the per-
formance of neural-based models, especially
in a few-shot scenario. In this paper, we pro-
pose a novel knowledge-enhanced slot tagging
model to integrate contextual representation
of input text and the large-scale lexical back-
ground knowledge. Besides, we use multi-
level graph attention to explicitly model lexi-
cal relations. The experiments show that our
proposed knowledge integration mechanism
achieves consistent improvements across set-
tings with different sizes of training data on
two public benchmark datasets.

1 Introduction

Slot tagging is a critical component of spoken lan-
guage understanding(SLU) in dialogue systems. It
aims at parsing semantic concepts from user utter-
ances. For instance, given the utterance ”I’d also
like to have lunch during my flight” from the ATIS
dataset, a slot tagging model might identify lunch
as a meal description type. Given sufficient train-
ing data, recent neural-based models (Mesnil et al.,
2014; Liu and Lane, 2015, 2016; Goo et al., 2018;
Haihong et al., 2019; He et al., 2020) have achieved
remarkably good results.

However, these works often suffer from poor
slot tagging accuracy when rare words or OOV(
out-of-vocab) words exist. (Ray et al., 2018) has
verified the presence of OOV words further de-
grades the performance of neural-based models,
especially in a few-shot scenario where training
data can not provide adequate contextual seman-
tics. Previous context-aware models merely focus
on how to capture deep contextual semantics to aid
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Figure 1: An example of slot tagging in the few-shot
scenario where scat singing is unseen in the training
set. The prior context-aware model fails to recognize
its correct type because of low-coverage contextual in-
formation. After integrating background knowledge
from WordNet, it succeeds to reason the correct type
via lexical relations.

in recognizing slot entities, while neglecting ontol-
ogy behind the words or large-scale background
knowledge. Explicit lexical relations are vital to
recognizing unseen words when there is not ad-
equate training data, that is, few-shot scenarios.
Fig 1 gives a motivating example of slot tagging
to explain the phenomenon. This example sug-
gests slot tagging requires not only understanding
the complex linguistic context constraints but also
reasoning explicit lexical relations via large-scale
background knowledge graphs.

Previous state-of-the-art context-aware models
(Goo et al., 2018; Haihong et al., 2019) only learn
contextual information based on a multi-layer BiL-
STM encoder and self-attention layer. (Dugas and
Nichols, 2016; Williams, 2019; Shah et al., 2019)
use handcrafted lexicons (also known as gazettes
or dictionaries), which are typically collections of
phrases semantically related, to improve slot tag-
ging. One major limitation is that lexicons col-
lected by domain experts are relatively small on
the scale and fail to model complicated relations



620

between words, such as relation hierarchy.
In this paper, we propose a novel knowledge-

enhanced method for slot tagging by integrating
contextual representation of input text and the large-
scale lexical background knowledge, enabling the
model to reason explicit lexical relations. We aim
to leverage both linguistic regularities covered by
deep LMs and high-quality knowledge derived
from curated KBs. Consequently, our model could
infer rare and unseen words in the test dataset by in-
corporating contextual semantics learned from the
training dataset and lexical relations from ontology.
As depicted in Fig 2, given an input sequence, we
first retrieve potentially relevant KB entities and
encode them into distributed representations that
describe global graph-structured information. Then
we employ a BERT (Devlin et al., 2019) encoder
layer to capture context-aware representations of
the sequence and attend to the KB embeddings
using multi-level graph attention. Finally, we inte-
grate BERT embeddings and the desired KB em-
beddings to predict the slot type. Our main con-
tributions are three-fold: (1) We investigate and
demonstrate the feasibility of applying lexical on-
tology to facilitate recognizing OOV words in the
few-shot scenario. To the best of our knowledge,
this is the first to consider the large-scale back-
ground knowledge for enhancing context-aware
slot tagging models. (2) We propose a knowledge
integration mechanism and use multi-level graph
attention to model explicit lexical relations. (3)
Plenty of experiments on two benchmark datasets
show that our proposed method achieves consis-
tently better performance than various state-of-the-
art context-aware methods.

2 Our Approach

In this work, we consider the slot tagging task in
the few-shot scenario, especially for OOV tokens.
Given a sequence with n tokens X = {xi}ni=1,
our goal is to predict a corresponding tagging se-
quence Y = {yi}ni=1. This section first explains
our BERT-based model and then introduces the pro-
posed knowledge integration mechanism for induc-
ing background commonsense. The overall model
architecture is illustrated in Fig 2.

2.1 BERT-Based Model for Slot Tagging

The model architecture of BERT is a multi-layer
bidirectional Transformer encoder. The input rep-
resentation is a concatenation of WordPiece em-
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Figure 2: The overall architecture of the proposed slot
tagging model.

beddings (Wu et al., 2016), positional embeddings,
and the segment embeddings.

Inspired by previous RNN-based works (Mes-
nil et al., 2014; Liu and Lane, 2016), we extend
BERT to a slot tagging model. We first feed the in-
put sequence X = {xi}ni=1 to a pre-trained BERT
encoding layer and then get final hidden states
H = (h1, ..., hn). To make this procedure com-
patible with the original BERT tokenization, we
feed each input word into a WordPiece tokenizer
and use the hidden state corresponding to the first
sub-word as input to the softmax classifier.

yi = softmax (Whi + b) , i ∈ 1 . . . n (1)

where hi ∈ Rd1 is the hidden state corresponding
to the first sub-word of the i-th input word xi and
yi is the slot label.

2.2 Knowledge Integration Mechanism
The knowledge integration mechanism aims at en-
hancing the deep contextual representation of in-
put text via leveraging the large-scale lexical back-
ground knowledge, Wordnet (Miller, 1995), to
recognize unseen tokens in the training set. Es-
sentially, it applies multi-level graph attention to
KB embeddings with the BERT representations
from the previous layer to enhance the contex-
tual BERT embeddings with human-curated back-
ground knowledge.

We first introduce the KB embedding and re-
trieval process. In this paper, we use the lexical
KB, WordNet, stored as (subject, relation, object)
triples, where each triple indicates a specific rela-
tion between word synsets, e.g., (state, hypernym-
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of, california). Each synset expresses a distinct
concept, organized by a human-curated tree hierar-
chy.

KB Embeddings We represent KB concepts
as continuous vectors in this paper. The goal is
that the KB tuples (s, r, o) can be measured in the
dense vector space based on the embeddings. We
adopt the BILINEAR model (Yang et al., 2014)
which measures the relevance via a bilinear func-
tion: f(s, r,o) = sTMro, where s,o ∈ Rd2 are
the vector embeddings for s, o respectively and and
Mr is a relation-specific embedding matrix. Then
we train the embeddings using the max-margin
ranking objective:∑
q=(s,r,o)∈T

∑
q′=(s,r,o′)∈T ′

max
{
0, 1− Sq + Sq′

}
(2)

where T denotes the set of triples in the KB and T ′
denotes the negative triples that are not observed in
the KB. Finally we can acquire vector representa-
tions for concepts of the KB. Because we mainly
focus on the slot tagging task, and the datasets are
relatively small for joint learning KB embeddings.
Furthermore, the KB contains many triplets not
present in the ATIS and Snips dataset. Therefore
we pre-train the KB vectors and keep them fixed
while training the whole model to reduce the com-
plexity.

KB Concepts Retrieval We need to retrieve all
the concepts or synsets relevant to the input word xi
from the KB. Different from (Yang and Mitchell,
2017; Yang et al., 2019), for a word xi, we first
return its synsets as the first-level candidate set
C1(xi) of KB concepts. Then we construct the
second-level candidate set C2(xi) by retrieving all
the direct hyponyms of each synset in C1(xi), as
shown in the right part of Fig 2.

Multi-Level Graph Attention After obtaining
the two-level concept candidate sets, we apply the
BERT embedding hi of input token xi to attend-
ing over the multi-level memory. The first-level
attention, α, is calculated by a bilinear operation
between hi and each synset cj in the first level set
C1(xi):

αij ∝ exp(cTj W1hi) (3)

Then we add an additional sentinel vector c (Yang
and Mitchell, 2017) and accumulate all the embed-
dings as follows:

s1i =
∑
j

αijcj + γic (4)

ATIS Snips
Vocabulary Size 722 11,241
Percentage of OOV words 0.77% 5.95%
Number of Slots 120 72
Training Set Size 4,478 13,084
Development Set Size 500 700
Testing Set Size 893 700

Table 1: Statistics of ATIS and Snips datasets.

where γi is similar to αij and
∑

j αij + γi = 1.
Here s1i is regarded as a one-hop knowledge state
vector for it only represents its directly linked
synsets. Therefore, we perform the second-level
graph attention to encode the hyponyms of its di-
rect synsets to enrich the information of original
synsets. Intuitively the second-level attention over
the hyponyms can be viewed as a relational reason-
ing process. Because once a synset belongs to an
entity type, its hyponyms always conform to the
same type. Likewise, the second-level attention
over C2(xi) is calculated:

βijk ∝ exp(cTjkW2hi) (5)

where cj is the j-th synset linked to token xi and
cjk the k-th hyponym of cj . So we can obtain the
multi-hop knowledge state vector s2i :

s2i =
∑
j

∑
k

αijβijkcjk (6)

Then we concat multi-level knowledge-aware vec-
tor s1i , s

2
i , and original BERT representation hi,

and output fi = [s1i , s
2
i ,hi].

We also add a BiLSTM matching layer which
takes as input the knowledge-enriched representa-
tions fi. Then we forward the hidden states to a
CRF layer and predict the final results. The train-
ing objective is the sum of log-likelihood of all the
words.

3 Experiments

3.1 Setup
Datasets To evaluate our approach, we conduct ex-
periments on two public benchmark datasets, ATIS
(Tür et al., 2010) and Snips (Coucke et al., 2018).
ATIS contains 4,478 utterances in the training set
and 893 utterances in the test set, while Snips con-
tains 13,084 and 700 utterances, respectively. The
percentage of OOV words between the training
and test datasets is 0.77%(ATIS) and 5.95%(Snips).
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Model ATIS Snips
1% 2% 5% 10% 50% 100% 1% 2% 5% 10% 50% 100%

Attention-Based 3.59 22.91 48.16 63.33 88.51 94.21 20.94 30.58 43.74 50.92 78.46 87.80
Slot-Gated Full 4.91 20.08 53.01 77.07 94.19 94.80 18.24 25.03 51.91 64.51 84.45 88.88
Slot-Gated Intent 3.45 18.81 55.64 79.59 94.53 95.20 22.88 30.71 57.94 69.43 83.80 88.30
SF-ID Network 6.18 18.89 63.96 83.35 94.34 95.80 19.25 31.50 55.87 69.65 86.01 92.23

RNN 5.86 21.27 62.53 80.59 94.42 95.17 19.92 25.91 56.30 65.88 88.65 89.30
RNN+KB 6.75 23.35 63.55 81.40 95.04 95.63 23.64 28.92 58.88 68.22 90.40 90.81
BERT 73.67 80.84 88.09 91.06 95.08 95.98 69.49 76.87 86.34 90.01 94.26 95.17
BERT+KB 74.71 81.70 88.81 91.55 95.39 96.25 71.50 78.65 87.84 91.24 95.43 95.89

Table 2: Slot tagging performance on ATIS and Snips datasets. % represents how much training data we randomly
choose from the original training set. We report the F1 scores on the same test sets.

Samples in Snips are from different topics, such
as getting weather and booking a restaurant, result-
ing in a larger vocabulary. By contrast, samples in
ATIS are all about flight information with similar
vocabularies across them. Therefore, Snips is much
more complicated, mainly due to data diversity and
the large vocabulary. The full statistics are shown
in the Table 1.

To simulate the few-shot scenarios, we down-
sample the original training sets of ATIS and Snips
to different extents while keeping valid and test
sets fixed. We aim to evaluate the effectiveness of
integrating external KB under the settings of varied
sizes of training data available.

Evaluation We evaluate the performance of slot
tagging using the F1 score metric. In the exper-
iments, we use the English uncased BERT-base
model, which has 12 layers, 768 hidden states, and
12 heads. The hidden size for the BiLSTM layer is
set to 128. Adam (Kingma and Ba, 2014) is used
for optimization with an initial learning rate of 1e-5.
The dropout probability is 0.1, and the batch size
is 64. We finetune all hyperparameters on the valid
set.

3.2 Baselines

Attention-Based (Liu and Lane, 2016) uses an RNN
layer and a self-attention layer to encode the input
text. Slot-Gated (Goo et al., 2018), which has two
variants, Full Atten and Intent Atten, applies the
information of intent detection task to enhance slot
tagging. SF-ID Network (Haihong et al., 2019) de-
signs a multiple iteration mechanism to construct
bi-directional interrelated connections between slot
tagging and intent detection. Most of the previ-
ous methods consider improving the performance
of slot tagging by joint learning with intent detec-
tion. However, the effectiveness of background
knowledge for slot tagging is still unexplored. Con-

sequently, our proposed approach intends to inte-
grate the large-scale lexical background knowledge,
WordNet, to enhance the deep contextual represen-
tation of input text. We hope to further improve the
performance of slot tagging, especially in the few-
shot scenario where there is no plenty of training
data available. 1

3.3 Overall Results

We display the experiment results in Table 2, where
we choose two model architectures RNN and BERT
as the encoding layer. Table 2 shows that our pro-
posed knowledge integration mechanism signifi-
cantly outperforms the baselines for both datasets,
demonstrating that explicitly integrating the large-
scale background knowledge and contextual repre-
sentation can benefit slot tagging effectively. More-
over, the improvement of 0.72% over strong base-
line BERT on Snips is considerably higher than
0.27% on ATIS. Considering the distinct complex-
ity of the two datasets, the probable reason is that
a simpler slot tagging task, such as ATIS, does not
require much background knowledge to achieve
good results. Because the vocabulary of ATIS
is extremely smaller than that of Snips, therefore
the context-aware models are capable of providing
enough cues for recognizing rare or OOV words.
Hence, our method makes a notable difference in a
scenario where samples are linguistically diverse,
and large vocab exists. The results also demon-
strate that incorporating external knowledge will
not bring in much noise since we use a knowledge
sentinel for the better tradeoff between the impact
of background knowledge and information from
the context.

On the other hand, the main results of the
1We do not choose (Williams, 2019) as a baseline since it

only performs experiments on private industrial datasets and
does not open source. We can hardly figure out the details of
manually collecting lexicons from the dataset.
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Figure 3: Relative F1 improvement over BERT base-
line under the different sizes of training data.

RNN-based models are 95.17(+0.46) on ATIS and
89.30(+1.51) on Snips, where the scores in the
brackets are the absolute improvements arisen
by KB. Compared to the BERT-based models,
95.98(+0.27) on ATIS and 95.17(+0.72) on Snips,
the RNN-based model achieves more significant
improvements in BERT-based models. We believe
BERT can effectively transfer prior linguistic con-
text constraints, so that background knowledge
benefits RNN-based models more. BERT does
improve the model’s ability to solve the OOV prob-
lem since it has learned linguistic knowledge from
the large corpus. However, our method focuses
more on the effect of using human-curated struc-
tured background knowledge and further enhances
BERT in a distinct way.

4 Qualitative Analysis

4.1 Effect of Training Data Size

Fig 3 shows the relative improvement percentages
on ATIS and Snips using different sizes of train-
ing data. Results substantiate knowledge integra-
tion better facilitates few-shot slot tagging. This is
because traditional context-aware models can not
learn enough contextual semantics well while only
given several samples. Explicit lexical relations
become essentially necessary when there is not ad-
equate training data, especially for rare words or
OOV words. Background KB enables the model to
reason explicit lexical relations and helps recognize
rare and unseen words. Meanwhile, incorporating
background knowledge can also enhance the orig-
inal representation of BERT, which can provide
direct lexical relations.

Model ATIS Snips

Full Model 91.55 91.24
- w/o knowledge integration 91.20 90.22
- w/o the second-level graph attention 91.46 90.87
- w/o matching layer 91.42 91.05
- w/o CRF 91.38 90.96

Table 3: Ablation analysis under the 10% training data
setting.

4.2 Ablation Study

To study the effect of each component of our
method, we conduct ablation analysis under the
10% training data setting (Table 3). We can see
that knowledge integration is crucial to the im-
provements. Besides, the first-level graph attention
acquires better performance gain than the second-
level attention. We assume that directly linked
synsets are more significant than the hyponyms.
The matching layer and CRF also play a role. The
reason why the RNN matching layer matters is
partly to build explicit interactions between knowl-
edge vectors and context vectors.

5 Conclusion

We present a novel knowledge integration mech-
anism of incorporating background KB and deep
contextual representations to facilitate the few-shot
slot tagging task. Experiments confirm the ef-
fectiveness of modeling explicit lexical relations,
which has not yet been explored by previous works.
Moreover, we find that our method delivers more
benefits to data scarcity scenarios. We hope to
provide new guidance for the future slot tagging
work.
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