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Abstract

Continual relation learning aims to continually
train a model on new data to learn incessantly
emerging novel relations while avoiding catas-
trophically forgetting old relations. Some pio-
neering work has proved that storing a hand-
ful of historical relation examples in episodic
memory and replaying them in subsequent
training is an effective solution for such a chal-
lenging problem. However, these memory-
based methods usually suffer from overfitting
the few memorized examples of old relations,
which may gradually cause inevitable confu-
sion among existing relations. Inspired by the
mechanism in human long-term memory for-
mation, we introduce episodic memory acti-
vation and reconsolidation (EMAR) to contin-
ual relation learning. Every time neural mod-
els are activated to learn both new and memo-
rized data, EMAR utilizes relation prototypes
for memory reconsolidation exercise to keep a
stable understanding of old relations. The ex-
perimental results show that EMAR could get
rid of catastrophically forgetting old relations
and outperform the state-of-the-art continual
learning models. The code and datasets are re-
leased on https://github.com/thunlp/

ContinualRE.

1 Introduction

Relation extraction aims at detecting relations be-
tween entities from text, e.g., extracting the rela-
tion “the president of ” from the given sentence
“Newton served as the president of the Royal So-
ciety”, which could serve as external resource
for various downstream applications (Dong et al.,
2015; Xiong et al., 2017; Schlichtkrull et al.,

∗ indicates equal contribution
† Corresponding author

2018). The conventional RE methods (Riedel
et al., 2013; Zeng et al., 2014; Lin et al., 2016)
mostly focus on recognizing relations for a fixed
pre-defined relation set, and cannot handle rapidly
emerging novel relations in the real world.

Some researchers therefore explore to detect
and learn incessantly emerging relations in an
open scenario. As shown in Figure 1, their ef-
forts can be formulated into a two-step pipeline:
(1) Open Relation Learning extracts phrases and
arguments to construct patterns of specific rela-
tions, and then discovers unseen relation types by
clustering patterns, and finally expands sufficient
examples of new relation types from large-scale
textual corpora; (2) Continual Relation Learn-
ing continually uses those expanded examples of
new relations to train an effective classifier. The
classifier is trained on a sequence of tasks for han-
dling both existing and novel relations, where each
task has its own relation set. Although continual
relation learning is vital for learning emerging re-
lations, there are rare explorations for this field.

A straightforward solution is to store all histor-
ical data and re-train models every time new rela-
tions and examples come in. Nevertheless, it is
computationally expensive since relations are in
sustainable growth. Moreover, the huge example
number of each relation makes frequently mixing
new and old examples become infeasible in the
real world. Therefore, storing all data is not prac-
tical in continual relation learning. In view of this,
the recent preliminary work (Wang et al., 2019)
indicates that the main challenge of continual re-
lation learning is the catastrophic forgetting prob-
lem, i.e., it is hard to learn new relations and mean-
while avoid forgetting old relations, considering
memorizing all the data is almost impossible.

https://github.com/thunlp/ContinualRE
https://github.com/thunlp/ContinualRE
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Figure 1: The whole pipeline to detect and learn new relations in an open scenario.

Recent work (Shin et al., 2017; Kemker and
Kanan, 2018; Chaudhry et al., 2019) has shown
that the memory-based approaches, maintaining
episodic memory to save a few training exam-
ples in old tasks and re-training memorized ex-
amples during training new tasks, are one of the
most effective solutions to the catastrophic for-
getting problem, especially for continual learning
in NLP scenarios (Wang et al., 2019; d’Autume
et al., 2019). However, existing memory-based
models still suffer from an overfitting problem:
when adapting them for continual relation learn-
ing, they may frequently change feature distribu-
tion of old relations, gradually overfit a few ex-
amples in memory, and finally become confused
among old relations after long-term training.

In fact, these memory-based methods are sim-
ilar to long-term memory model of mammalian
memory in neuroscience (McClelland et al., 1995;
Bontempi et al., 1999). Although researchers in
neuroscience are not clear about secrets inside the
human brain, they reach a consensus that the for-
mation of long-term memory relies on continually
replaying and consolidating information (Tononi
and Cirelli, 2006; Boyce et al., 2016; Yang et al.,
2014), corresponding to the episodic memory and
memory replay in continual learning models. Yet
later work (Nader et al., 2000; Lee et al., 2004;
Alberini, 2005) in neuroscience indicates that re-
activation of consolidated memory triggers a re-
consolidation stage to continually maintain mem-
ory, and memory is easy to be changed or erased
in this stage. To apply some reconsolidation exer-
cises can help memory go through this stage and
keep long-term memory stable. Intuitively, the ex-

isting memory-based models seem like continual
memory activation without reconsolidation exer-
cises, and thus become sensitive and volatile.

Inspired by the reconsolidation mechanism in
human long-term memory formation, we intro-
duce episodic memory activation and reconsoli-
dation (EMAR) to continual relation learning in
this paper. More specifically, when training mod-
els on new relations and their examples, we first
adopt memory replay to activate neural models on
examples of both new relations and memory, and
then utilize a special reconsolidation module to
let models avoid excessively changing and eras-
ing feature distribution of old relations. As the
core of relation learning is to grasp relation proto-
types rather than rote memorization of relation ex-
amples, our reconsolidation module requires mod-
els to be able to distinguish old relation proto-
types after each time memory is replayed and acti-
vated. As compared with pioneering explorations
to improve episodic memory replay (Chaudhry
et al., 2019; Wang et al., 2019), with toughly keep-
ing feature distribution of old relations invariant,
EMAR is more flexible in feature spaces and pow-
erful in remembering relation prototypes.

We conduct sufficient experiments on several
RE datasets, and the results show that EMAR
effectively alleviates the catastrophic forgetting
problem and significantly outperforms the state-
of-the-art continual learning models. Further ex-
periments and analyses indicate the reasons for the
effectiveness of EMAR, proving that it can uti-
lize a few examples in old tasks to reconsolidate
old relation prototypes and keep better distinction
among old relations after long-term training.
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2 Related Work

The conventional RE work, including both su-
pervised RE models (Zelenko et al., 2003; Zhou
et al., 2005; Gormley et al., 2015; Socher et al.,
2012; Liu et al., 2013; Zeng et al., 2014; Nguyen
and Grishman, 2015; dos Santos et al., 2015; Xu
et al., 2015; Liu et al., 2015; Miwa and Bansal,
2016) and distantly supervised models (Bunescu
and Mooney, 2007; Mintz et al., 2009; Riedel
et al., 2010; Hoffmann et al., 2011; Zeng et al.,
2015; Lin et al., 2016; Han et al., 2018a; Bal-
dini Soares et al., 2019), focuses on extracting pre-
defined relations from text. Yet in the real world,
new relations are rapidly emerging, and it is im-
possible to train models with a fixed dataset once
to cover all relations. Hence, some researchers
pay their attention to relation learning in various
open scenarios, in order to detect and learn rela-
tions without pre-defined relation sets. As we in-
troduced before, learning incessantly emerging re-
lations consists of two important steps: open rela-
tion learning and continual relation learning.

There have been many efforts for open rela-
tion learning, including pattern extraction (Banko
et al., 2007; Fader et al., 2011; Mausam et al.,
2012; Del Corro and Gemulla, 2013; Angeli et al.,
2015; Petroni et al., 2015; Stanovsky and Da-
gan, 2016; Mausam, 2016; Cui et al., 2018), re-
lation discovery (Yao et al., 2011; Marcheggiani
and Titov, 2016), relation clustering (Shinyama
and Sekine, 2006; Elsahar et al., 2017; Wu et al.,
2019), and data collection (Riloff et al., 1999; Et-
zioni et al., 2005; Pantel and Pennacchiotti, 2006;
Rozenfeld and Feldman, 2008; Nakashole et al.,
2011; Zhu et al., 2009; Gao et al., 2020). How-
ever, for continual relation learning, there are still
only some preliminary explorations for it. Follow-
ing continual learning setting1 (Ring, 1994; Thrun
and Pratt, 2012) in machine learning, Wang et al.
(2019) first explore continual relation learning.

Existing continual learning methods focus on
three research directions: (1) consolidation-based
methods (Kirkpatrick et al., 2017; Zenke et al.,
2017; Li and Hoiem, 2017; Liu et al., 2018; Rit-
ter et al., 2018) which consolidate the model pa-
rameters important to previous tasks and reduce
their learning weights; (2) dynamic architecture
methods (Chen et al., 2016; Rusu et al., 2016;
Fernando et al., 2017) which dynamically expand
model architectures to learn new tasks and ef-

1Some work names it lifelong or incremental learning.

fectively prevent forgetting old tasks. Yet model
size growing dramatically with increasing tasks
makes these methods unsuitable for NLP applica-
tions; (3) memory-based methods (Lopez-Paz and
Ranzato, 2017; Rebuffi et al., 2017; Shin et al.,
2017; Kemker and Kanan, 2018; Aljundi et al.,
2018; Chaudhry et al., 2019) remember a few ex-
amples in old tasks and continually learn them
with emerging new tasks to alleviate catastrophic
forgetting. Among these methods, the memory-
based methods have been proven to be the most
promising for NLP tasks, including both rela-
tion learning (Wang et al., 2019) and other NLP
tasks (d’Autume et al., 2019; Sun et al., 2019).

Inspired by reconsolidation in human memory
formation, we introduce episodic memory activa-
tion and reconsolidation (EMAR) to alleviate the
overfitting problem of the existing memory-based
methods and better learn relations continually.

3 Methodology

3.1 Task Definition and Overall Framework

Continual relation learning trains models on a se-
quence of tasks, where the k-th task has its own
training set Tk, validation set Vk, and query set
Qk. Each set of the k-th task, e.g. Tk =
{(xTk1 , y

Tk
1 ), . . . , (xTkN , y

Tk
N )}, consists of a series

of examples and their corresponding relation la-
bels, where N is the example number of Tk. Each
example xTki and its label yTki indicate that xTki can
express the relation yTki ∈ Rk, whereRk is the re-
lation set of the k-th task.

More specifically, models will be trained on Tk
at the k-th step to learn the new relations in Rk.
As relations are emerging and accumulating, con-
tinual relation learning requires models to perform
well on both the k-th task and previous k−1 tasks.
Hence, after training on Tk, models will be evalu-
ated on Q̃k =

⋃k
i=1Qi, and required to classify

each query example into the all known relation set
R̃k =

⋃k
i=1Ri. Therefore, the evaluation will be

more and more difficult with the growth of tasks.
For handling the catastrophic forgetting in con-

tinual relation learning, an episodic memory mod-
uleM = {M1,M2, . . .} is set to store a few ex-
amples of historical tasks, each memory module
Mk = {(xMk

1 , yMk
1 ), . . . , (xMk

B , yMk
B )} stores

several examples and labels that come from Tk,
where (xMk

i , yMk
i ) ∈ Tk and B is the constrained

memory size for each task.
As shown in Figure 2, when models are trained
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Figure 2: A simple example of continually learning four tasks (each task has only one relation: A, B, C,
D respectively) to demonstrate the overall framework of episodic memory activation and reconsolidation
during continual relation learning. The purple solid lines and dotted lines represent the forward and
backward propagation respectively. The black dotted lines represent the data flow.

on the k-th task, our framework includes several
steps to learn new relations and meanwhile avoid
forgetting old relations: (1) First (Section 3.3), we
fine-tune the example encoder on the training set
Tk of the k-th task to let the model be aware of
new relation patterns. (2) Second (Section 3.4),
for each relation in the k-th relation set Rk, we
select its informative examples and store the ex-
amples into the episodic memoryMk. (3) Finally
(Section 3.5), we iteratively adopt memory replay
and activation as well as memory reconsolidation
to learn new relation prototypes while strengthen-
ing distinguishing old relation prototypes.

Besides, we will introduce how to train models
as well as predict relations for query examples in
Section 3.6. As the example encoder is used in
all other steps, we first introduce it in Section 3.2
before other steps.

3.2 Example Encoder
Given an example x, we adopt an example encoder
to encode its semantic features for detecting and
learning relations. To be specific, we first tokenize
the given example into several tokens, and then in-
put the tokenized tokens into neural networks to
compute its corresponding embedding. As extract-
ing relations from sentences is related to those en-
tities mentioned in sentences, we thus add special
tokens into the tokenized tokens to indicate the be-
ginning and ending positions of those entities. For
simplicity, we denote such an example encoding
operation as the following equation,

x = f(x), (1)

where x ∈ Rd is the semantic embedding of x,
and d is the embedding dimension. Note that
the encoder is not our focus in this paper, we se-
lect bidirectional long short-term memory (BiL-
STM) (Bengio et al., 1994) as representative en-
coders to encode examples. In fact, other neu-
ral text encoders like convolutional neural net-
works (Zeng et al., 2014) and pre-trained language
models (Devlin et al., 2019) can also be adopted as
example encoders.

3.3 Learning for New Tasks

When the k-th task is arising, the example encoder
has not touched any examples of new relations
before, and cannot extract the semantic features
of them. Hence, we first fine-tune the example
encoder on Tk = {(xTk1 , y

Tk
1 ), . . . , (xTkN , y

Tk
N )} to

grasp new relation patterns in Rk. The loss func-
tion of learning the k-th task is as follows,

L(θ) =−
N∑
i=1

|R̃k|∑
j=1

δ
y
Tk
i =rj

×

log
exp(g(f(xTki ), rj))∑|R̃k|
l=1 exp(g(f(xTki ), rl))

,

(2)

where rj is the embedding of the j-th relation
rj ∈ R̃k in the all known relation set R̃k, g(·, ·) is
the function to compute similarities between em-
beddings (e.g. cosine similarity), and θ is the
parameters that can be optimized, including the
example encoder parameters and relation embed-
dings. If yTki equals rj , δyTki =rj

= 1, otherwise
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δ
y
Tk
i =rj

= 0. For each new relation, we first ran-
domly initialize its embedding and then optimize
Eq. (2).

3.4 Selecting Examples for Memory

After several epochs of learning for new tasks with
Eq. (2), we store a few examples from Tk into the
memory Mk. More specifically, we select infor-
mative and diverse examples from Tk to cover new
relation patterns as much as possible, which can
make the memory effectively approximate the fea-
ture distribution of relations.

After encoding all examples of the k-th task Tk
into {xTk1 , . . . ,x

Tk
N }, we apply K-Means to clus-

ter these example embeddings, where the number
of clusters is the memory size B. Then, for each
cluster, we select the example closest to the cluster
centroid and record which relation these selected
examples belong to. We denote this selected ex-
ample set Ck. By counting the example number in
Ck for each relation, we can describe the relation
importance in this task: more selected examples
of a relation indicates more importance. As the
limited memory size, for those more important re-
lations, we select at least b B

|Rk|c examples, yet for

those less important ones, we select at most d B
|Rk|e

examples. If a relation does not have enough ex-
amples to fill its allocated memory, this memory
will be re-allocated for other relations.

For each relation, we also use K-Means to clus-
ter its own examples, and the number of current
clusters is its allocated example number in the
memory. For each cluster, we select the example
closest to the cluster centroid, and store this exam-
ple into the memoryMk.

3.5 Replay, Activation and Reconsolidation

After fine-tuning the example encoder for Tk and
selecting informative examples forMk, we itera-
tively adopt computing prototypes, memory re-
play and activation, and memory reconsolida-
tion to strengthen identifying new relation patterns
and keep distinguishing old relation patterns.

Computing Prototypes
By combining all examples in the episodic mem-
ory, we achieve the whole memory set M̃k =⋃k

i=1Mi. As we aim to grasp relation prototypes
rather than rote memorization of relation exam-
ples, for each known relation ri ∈ R̃k, we sample
a prototype set Pi = {xPi

1 , . . . , x
Pi

|Pi|}, where each

example xPi
i comes from M̃k and its label equals

ri, and compute its prototype embedding,

pi =

∑|Pi|
j=1 f(x

Pi
j )

|Pi|
, (3)

where pi is the relation prototype embedding of
ri ∈ R̃k.

Memory Replay and Activation
In memory replay and activation, the whole mem-
ory set M̃k and the k-th training set Tk will be
combined into an activation setAk = M̃k ∪Tk =
{(xAk

1 , yAk
1 ), . . . , (xAk

M , yAk
M )} to continually acti-

vate models to learn new relations and remember
old relations, where M is the total example num-
ber of both M̃k and Tk. The loss function is

LA(θ) =−
M∑
i=1

|R̃k|∑
j=1

δ
y
Ak
i =rj

×

log
exp(g(f(xAk

i ), rj))∑|R̃k|
l=1 exp(g(f(xAk

i ), rl))
.

(4)

Memory Reconsolidation
As we mentioned before, just conducting memory
replay and activation will lead to the overfitting
problem, and in the end, models only remember
a handful of memorized examples after long-term
training. Meanwhile, the core of learning rela-
tions is to grasp relation prototypes rather than rote
memorization of relation examples. Hence, every
time conducting memory replay and activation to
grasp both new and old relations, we adopt a mem-
ory reconsolidation module to strengthen this pro-
cess, which seems like conducting reconsolidation
exercises to keep long-term memory stable in the
human brain.

For each known relation ri ∈ R̃k, we sample its
instance set Ii = {xIi1 , . . . , x

Ii
|Ii|} as is similar to

sampling Pi, where each example xIii ∈ Ii also
comes from M̃k and its label equals ri. The loss
function of the memory reconsolidation is

LR(θ) = −
|R̃k|∑
i=1

|Ii|∑
j=1

log
exp(g(f(xIij ),pi))∑|R̃k|
l=1 exp(g(f(xIij ),pl))

,

(5)

where pl is the relation prototype embedding of
rl ∈ R̃k computed by Eq. (3).
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Algorithm 1 Train EMAR for the k-th task
Require: The training set Tk of the k-th task
Require: The emerging relation setRk of the k-th task
Require: The memory module M̃k−1 before learning Tk
Require: The known relation set R̃k−1 before learning Tk
1: Initialize the relation embeddings forRk

2: R̃k ← R̃k−1 ∪Rk

3: for i← 1 to epoch1 do
4: Update θ with∇L on Tk
5: end for
6: Select informative examples from Tk to store intoMk

7: M̃k ← M̃k−1 ∪Mk

8: Ak ← M̃k ∪ Tk
9: for i← 1 to epoch2 do

10: for relation rj ∈ R̃k do
11: Sample Pj from M̃k and compute its relation

prototype embedding pj

12: end for
13: for j ← 1 to iter1 do
14: Update θ with∇LA on Ak

15: end for
16: for j ← 1 to iter2 do
17: Sample Ii from M̃k for each known relation ri
18: Update θ with∇LR on {I1, . . . , I|R̃k|}
19: end for
20: end for

3.6 Training and Prediction

For training the k-th task, we first use L(θ) to op-
timize parameters for several epochs. Then, we
select examples for the memory, and iteratively
optimize parameters with LA(θ) and LR(θ) un-
til convergence. More details about the training
process are shown in Algorithm 1.

After finishing the k-th task, for each known re-
lation ri ∈ R̃k, we collect all its memorized ex-
amples Ei = {xEi1 , . . . , x

Ei
S } in the whole memory

M̃k, where S is the example number of ri in the
memory, and compute final relation prototype for
prediction,

p̃i =
ri +

∑S
j=1 f(x

Ei
j )

1 + S
, (6)

where ri is the relation embedding of ri used in
Eq. (2) and Eq. (4). For each query example x in
Q̃k, we define its score function for the relation ri:

s(x, ri) = g(f(x), p̃i), (7)

where p̃i is the final prototype of the relation ri
computed by Eq. (6). Finally, the prediction y for
the query x is calculated by:

y = argmax
ri∈R̃k

s(x, ri). (8)

FewRel SimpleQ TACRED
W A W A W A

Lower Bound 18.9 20.8 63.2 56.9 12.3 9.5

EWC 27.1 30.2 67.2 59.0 14.5 14.5
GEM 49.2 59.8 84.1 79.6 - -
AGEM 36.1 42.5 77.6 72.2 15.7 16.0
EMR 51.0 62.0 85.2 80.8 28.7 35.6
EA-EMR 56.6 67.3 87.8 82.4 30.5 40.5

EMAR 66.0 77.9 85.2 83.7 44.5 54.4

Upper Bound 81.9 85.8 88.9 84.1 74.3 77.0

Table 1: Accuracy (%) of models on three benchmarks.
“W” stands for the Whole performance, and “A” stands
for the Average performance. The results of FewRel
and SimpleQ come from Wang et al. (2019). The result
of TACRED comes from our implemented models.

4 Experiments

4.1 Datasets

We carry out our experiments on three benchmark
datasets:

(1) FewRel (Han et al., 2018b). FewRel is a RE
dataset that contains 80 relations and 56, 000 ex-
amples in total. We follow the settings from Wang
et al. (2019) to make FewRel a continual learning
benchmark: FewRel is split into 10 clusters of re-
lations, leading to 10 tasks and each relation just
belongs to only one task. Each example in these
tasks is related to a relation and a candidate set of
10 randomly selected relations for evaluation.

(2) SimpleQuestions (Bordes et al., 2015).
SimpleQuestions (SimpleQ) is a knowledge base
question answering dataset that contains 108, 442
questions, and Yu et al. (2017) construct a relation
detection dataset based on it, where questions are
linked to relations. Like FewRel, we follow the
settings from Wang et al. (2019): SimpleQ is split
into 20 clusters of relations to construct 20 tasks.
As each question in SimpleQ has been related to a
candidate set for evaluation, we do not randomly
sample candidate sets again for SimpleQ.

(3) TACRED (Zhang et al., 2017). TACRED is
a RE dataset that contains 42 relations and 21, 784
examples. Similar to FewRel, we also split TA-
CRED into 10 clusters of relations to construct 10
tasks, and randomly sample candidate relation sets
consisting of 10 relations for each examples. Con-
sidering there is a special relation “n/a” (not avail-
able) in TACRED, we filter out these examples
with the relation “n/a” and use the left examples
for continual TACRED.
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(a) FewRel (b) SimpleQuestions (c) TACRED

Figure 3: Changes in accuracy (%) with increasing tasks through the continual learning process.

FewRel SimpleQ TACRED

10 25 50 10 25 50 10 25 50

W A W A W A W A W A W A W A W A W A

EWC - - - - 21.3 24.4 - - - - 63.9 62.5 - - - - 14.5 14.5
AGEM 29.0 34.0 33.8 39.0 41.2 47.5 69.1 66.1 72.2 69.2 76.2 73.1 14.7 14.5 15.0 15.5 15.7 16.0
EMR 42.0 54.1 49.0 60.5 53.6 65.1 81.5 77.4 84.9 81.0 86.9 82.9 21.8 26.5 25.7 31.6 28.7 35.6
EA-EMR 49.0 61.2 54.9 66.4 59.1 69.9 83.3 78.7 86.4 82.0 87.9 83.5 23.0 30.0 27.7 37.0 30.5 40.5

EMAR 53.8 69.1 62.5 74.9 66.0 77.9 80.9 78.7 84.6 81.4 85.2 83.7 31.0 36.3 37.8 48.5 44.5 54.4

Table 2: Accuracy (%) of models with different memory sizes. All the results come from our implemented models.

4.2 Experimental Settings

We use two evaluation settings including whole
performance, which calculates the accuracy on
the whole test set of all tasks, and average perfor-
mance, which averages the accuracy on all seen
tasks. After having seen all tasks, we use the final
whole performance and average performance to
evaluate the overall performance of continual rela-
tion learning. As average performance highlights
the performance of handling catastrophic problem,
and thus it is the main metric to evaluate models.

As the task sequence has influence on final
model performance, we implement the baseline
models by ourselves based on the toolkit2 released
by Wang et al. (2019). For fair comparison, we
unify the random seeds in our experiments com-
pletely consistent with the seeds in Wang et al.
(2019), so that the task sequence can be com-
pletely consistent with Wang et al. (2019). For
other settings, such as hidden embedding dimen-
sion and pre-trained input embeddings, we also
follow the settings in Wang et al. (2019).

2https://github.com/hongwang600/
Lifelong_Relation_Detection

4.3 Baselines

We evaluate our model and several baselines on
the benchmarks, and select two theoretical mod-
els to measure the lower and upper bounds: (1)
Lower Bound, which continually fine-tunes mod-
els for each new task without memorizing any his-
torical examples; (2) Upper Bound, which re-
members all examples in history and continually
re-train models with all data. In fact, this model
serves as the ideal upper bound for the perfor-
mance of continual relation learning; (3) EWC
(Kirkpatrick et al., 2017), which adopts elastic
weight consolidation to add special L2 regular-
ization on parameter changes. Then, EWC uses
Fisher information to measure the parameter im-
portance to old tasks, and slow down the up-
date of those parameters important to old tasks;
(4) EMR (Parisi et al., 2019), a basic memory-
based method, which memorizes a few histor-
ical examples and simply conduct memory re-
play. Every time a new task comes in, EMR
mixes memorized examples and new examples to-
gether to fine-tune models; (5) GEM (Lopez-Paz
and Ranzato, 2017), an extension of EMR, which
adds a constraint on directions of new gradients
to make sure that optimization directions do not
conflict with gradients on old tasks; (6) AGEM

https://github.com/hongwang600/Lifelong_Relation_Detection
https://github.com/hongwang600/Lifelong_Relation_Detection
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(a) EA-EMR (step-1) (b) EA-EMR (step-4) (c) EA-EMR (step-7) (d) EA-EMR (step-10)

(e) EMAR (step-1) (f) EMAR (step-4) (g) EMAR (step-7) (h) EMAR (step-10)

Figure 4: A visualization of features learnt by EA-EMR and EMAR at different training steps on FewRel. For
each image, we use the support vector machine to acquire its best linear boundary and draw it as the blue line.

Step-1 Step-4 Step-7 Step-10

EA-EMR 98.8 65.0 78.8 73.8
EMAR 92.5 75.0 87.5 80.0

Table 3: Classification accuracy (%) based on the fea-
tures learnt by EA-EMR and EMAR in Figure 4.

(Chaudhry et al., 2019), the extension of GEM,
which takes the gradient on sampled memorized
examples from memory as the only constraint on
the optimization directions of the current task; (7)
EA-EMR (Wang et al., 2019), which introduces
memory replay and embedding aligned mecha-
nism to enhance previous tasks and mitigate the
embedding distortion when trained on new tasks.
EA-EMR is also an extension of EMR, and the
state-of-the-art on continual relation learning.

4.4 Overall Results

Table 1 shows the overall performance on three
benchmarks under two different settings. From
the table, we can see that (1) our proposed
EMAR significantly outperforms other baselines
and achieves state-of-the-arts almost in all set-
tings. On the SimpleQ dataset, the performance
of EMAR is close to EA-EMR and EMR. The rea-
son is perhaps that the SimpleQ benchmark is over
simple (even the weakest Lower Bound achieves
relatively high results close to Upper Bound).
On other benchmarks, EMAR outperforms all the
baseline models with a large margin, showing the

superiority of our proposed episodic memory acti-
vation and reconsolidation mechanism. (2) There
is still a huge gap between our model and the up-
per bound. It indicates there remains lots of things
to be explored in continual relation learning.

To further investigate how accuracy changes
while learning new tasks, we show the average
performance of models at each step in Figure 3. As
shown in the figure, we can observe that: (1) With
increasing numbers of tasks, the performance of
all the models decreases in some degree. This
indicates that catastrophically forgetting old rela-
tions is inevitable, and it is indeed one of the major
difficulty for continual relation learning. (2) The
memory-based methods significantly outperform
the consolidation-based method, which demon-
strates the memory-based methods could alleviate
the problem of catastrophic forgetting to some ex-
tent. (3) Our proposed EMAR achieves a much
better results compared to state-of-the-art model
EA-EMR. It shows the effectiveness of our mem-
ory reconsolidation, and further indicates under-
standing relation prototypes is more important and
reasonable than rote memorization of examples.

4.5 Effect of Memory Size

Memory size indicates the number of remembered
examples for each task. In this section, we investi-
gate the effect of memory size for the performance
of baselines and our proposed model. We com-
pare three memory sizes: 10, 25 and 50. As ex-
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isting work does not report the results with differ-
ent memory size, we re-implement baseline mod-
els by ourselves in this experiment. The results
are shown in Table 2. We can find that: (1) With
the increasing memory size, the performance of all
models improves respectively, which shows that
the memory size is one of the key factor determin-
ing the performance of continual relation learning
models. (2) On both FewRel and TACRED, our
EMAR keeps performing the best under different
memory sizes, and even achieves comparable re-
sults with other models of larger memory sizes. It
indicates adopting relation prototypes in EMAR is
a more effective way to utilize memory compared
with existing memory-based methods.

4.6 Effect of Prototypes and Reconsolidation

To show the effectiveness of prototypes and recon-
solidation, we give a case study demonstrating the
changing of feature spaces learnt by EA-EMR and
EMAR (ours). We sample two relations from the
training set and 40 examples per relation from the
test set. Then we train EA-EMR and EMAR with
the sampled training data respectively and visual-
ize the changes of the sampled 40 instances in the
feature spaces at different steps.

From Figure 4, we can see that EMAR learns
better features of instances after multi-step train-
ing: the embedding space of EMAR is more sparse
and features from two relations are more distin-
guishable. On the other hand, the features learnt
by EA-EMR become more dense with increasing
steps, thus harder to classify.

This phenomenon is mainly due to the different
approaches of constraining features used by EA-
EMR and EMAR. The L2 regularization used in
EA-EMR for keeping the instance distribution of
old relations leads to higher density in the feature
space and smaller distances between different re-
lations after several training steps. On the con-
trary, EMAR avoids models from forgetting pre-
vious relations by relation prototypes. Compared
with EA-EMR, using prototypes for reconsolida-
tion is a more flexible constraint, allowing EMAR
to utilize larger feature spaces for representing ex-
amples and prototypes.

To quantitatively analyze the case, we use the
support vector machine to acquire linear bound-
aries for each image in Figure 4 and list the clas-
sification results in Table 3. The quantitative re-
sults in the table show that embeddings learnt by

EMAR achieve better classification performance,
which further supports our above observations.

5 Conclusion and Future Work

To alleviate catastrophically forgetting old rela-
tions in continual relation learning, we introduce
episodic memory activation and reconsolidation
(EMAR), inspired by the mechanism in human
long-term memory formation. Compared with
existing memory-based methods, EMAR requires
models to understand the prototypes of old rela-
tions rather than to overfit a few specific memo-
rized examples, which can keep better distinction
among relations after long-term training. We con-
duct experiments on three benchmarks in relation
extraction and carry out extensive experimental re-
sults as well as empirical analyses, showing the ef-
fectiveness of EMAR on utilizing memorized ex-
amples. For future work, how to combine open re-
lation learning and continual relation learning to-
gether to complete the pipeline for emerging rela-
tions still remains a problem, and we will continue
to work on it.
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