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Abstract
An in-depth exploration of protein-protein in-
teractions (PPI) is essential to understand the
metabolism in addition to the regulations of bi-
ological entities like proteins, carbohydrates,
and many more. Most of the recent PPI
tasks in BioNLP domain have been carried out
solely using textual data. In this paper, we
argue that incorporation of multimodal cues
can improve the automatic identification of
PPI. As a first step towards enabling the de-
velopment of multimodal approaches for PPI
identification, we have developed two multi-
modal datasets which are extensions and multi-
modal versions of two popular benchmark PPI
corpora (BioInfer and HRPD50). Besides,
existing textual modalities, two new modali-
ties, 3D protein structure and underlying ge-
nomic sequence, are also added to each in-
stance. Further, a novel deep multi-modal ar-
chitecture is also implemented to efficiently
predict the protein interactions from the devel-
oped datasets. A detailed experimental anal-
ysis reveals the superiority of the multi-modal
approach in comparison to the strong baselines
including uni-modal approaches and state-of
the-art methods over both the generated multi-
modal datasets. The developed multi-modal
datasets are available for use at https://

github.com/sduttap16/MM_PPI_NLP.

1 Introduction

Understanding protein-protein interactions (PPI)
is indispensable to comprehend different biologi-
cal processes such as translation, protein functions
(Kulmanov et al., 2017), gene functions (Dutta
and Saha, 2017; Dutta et al., 2019b), metabolic
pathways, etc. The PPI information helps re-
searchers to discover disease mechanisms and plays
seminal role in designing the therapeutic drugs
(Goncearenco et al., 2017). Over the years, a sig-
nificant amount of protein-protein interaction in-
formation has been published in scientific articles

in unstructured text formats. However, in recent
years, there has been an exponential rise in the
number of biomedical publications (Khare et al.,
2014). Therefore, it becomes imperative, urgent
and of extreme interest to develop an intelligent
information extraction system to assist biologists
in curating and maintaining PPI databases.

This pressing need has motivated Biomedi-
cal Natural Language Processing (BioNLP) re-
searchers to automatically extract PPI informa-
tion by exploring various AI techniques. Re-
cent advancements in deep learning (LeCun et al.,
2015)(Bengio et al., 2007) have opened up new
avenues in solving different well-known problems
ranging from computational biology (Alipanahi
et al., 2015; Dutta et al., 2019a), machine transla-
tions (Cho et al., 2014), image captioning (Chen
et al., 2017). Subsequently, there is a notable trend
in using deep learning for solving different natural
language processing (NLP) tasks in the biomedi-
cal and clinical domains (Asada et al., 2018; Al-
imova and Tutubalina, 2019) including the identifi-
cation of protein-protein interactions from biomedi-
cal corpora (Yadav et al., 2019; Peng and Lu, 2017).
Multi-modal deep learning models, combining in-
formation from multiple sources/modalities, show
promising results compared to the conventional
single modal-based models while solving various
NLP tasks like sentiment and emotion recognition
(Qureshi et al., 2019, 2020), natural language gen-
eration, machine translation (Poria et al., 2018;
Zhang et al., 2019; Qiao et al., 2019; Fan et al.,
2019) etc. There exist few popular multi-modal
datasets which are extensively used in solving vari-
ous problems in NLP like emotion recognition from
conversations (Poria et al., 2018; Chen et al., 2018),
image captioning (Lin et al., 2014), sentiment anal-
ysis (Zadeh et al., 2016), etc. Compared to single
modal-based approaches, multi-modal techniques
provide a more comprehensive perspective of the

https://github.com/sduttap16/MM_PPI_NLP
https://github.com/sduttap16/MM_PPI_NLP


6397

dataset under consideration.
Despite the popularity of multi-modal ap-

proaches in solving traditional NLP tasks, there
is a dearth of multi-modal datasets in BioNLP do-
main especially for the PPI identification task. The
available PPI benchmark datasets contain solely the
textual knowledge of different protein pairs, which
do not help in anticipating the molecular proper-
ties of the proteins. Hence, along with the textual
information, incorporation of molecular structure
or underlying genomic sequence can aid in under-
standing the regulations of the protein interactions.
The integration of multi-modal features can help in
obtaining deeper insights but the concept of multi-
modal architecture, for textual and biological as-
pects, has not been cultivated much in the BioNLP
domain (Peissig et al., 2012; Jin et al., 2018).

1.1 Motivation and Contribution

The main motivation for this research work is to
generate multi-modal datasets for PPI identifica-
tion task, where along with the textual information
present in the biomedical literature, we did explore
the genetic and structure information of the pro-
teins. The biomedical and clinical text database is
an important resource for learning about physical
interactions amongst protein molecules; however,
it may not be adequate for exploring biological
aspects of these interactions. In the field of Bioin-
formatics, there are various web-based enriched
archives12 that contain multi-omics biological in-
formation regarding protein interactions. The in-
tegration of multi-omics information from these
aforementioned databases helps in understanding
the various physiological characteristics (Sun et al.,
2019; Ray et al., 2014; Amemiya et al., 2019; Hsieh
et al., 2017; Dutta et al., 2020). Hence, in our
current work, along with the textual information
from biomedical corpora, we have also incorpo-
rated structural properties of protein molecules as
biological information for solving PPI task. For
structural information of proteins, we have consid-
ered the atomic structure (3D PDB structure) and
underlying nucleotide sequence (FASTA sequence)
of protein molecules. In the BioNLP domain, col-
lection of biological data (muti-omics information)
from the text corpus is little difficult. To obtain the
aforementioned information about other modalities,
we need to exploit different web-based archives that

1https://www.cancer.gov
2https://www.ncbi.nlm.nih.gov/

are meant for biological structures.
Drawing inspirations from these findings, we

have generated a protein-protein interaction-based
multi-modal dataset which includes not only tex-
tual information, but also the structural counter-
parts of the proteins. Finally, a novel deep multi-
modal architecture is developed to efficiently pre-
dict the protein-protein interactions by considering
all modalities. The main contributions of this study
are summarized as follows:

1. For this study, we extend and further improve
two biomedical corpora containing PPI infor-
mation for multi-modal scenario by manually
annotating and web-crawling two different
bio-enriched archives.

2. Our proposed multi-modal architecture uses
self-attention mechanism to integrate the ex-
tracted features of different modalities.

3. This work is a step towards integrating multi-
omics information with text-mining from
biomedical articles for enhancing PPI iden-
tification. To the best of our knowledge, this
is the first attempt in this direction.

4. The results and the comparative study prove
the effectiveness of our developed multi-
modal datasets along with proposed multi-
modal architecture.

2 Related Works

There are few works (Ono et al., 2001; Blaschke
et al., 1999; Huang et al., 2004) which focus on
rule-based PPI information extraction method such
as co-occurrence rules (Stapley and Benoit, 1999)
from the biomedical texts. In (Giuliano et al.,
2006), relation is extracted from entire sentence
by considering the shallow syntactic information.
(Erkan et al., 2007) utilize semi-supervised learn-
ing and cosine similarity to find the shortest depen-
dency path (SDP) between protein entities. Some
important kernel-based methods for PPI extraction
task are graph kernel (Airola et al., 2008a), bag-
of-word (BoW) kernel (Sætre et al., 2007), edit-
distance kernel (Erkan et al., 2007) and all-path ker-
nel (Airola et al., 2008b). (Yadav et al., 2019) pre-
sented an attention-based bidirectional long short-
term memory networks (BiLSTM) model that uses
SDP between protein pairs, latent PoS and position
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Generated Instances of our multi-modal dataset Protein pairs Gene pairs PDB ID pairs Ensembl ID pairs Interaction
typeProtein1 Protein2 Gene1 Gene2 PDB1 PDB2 Ensembl1 Ensembl2

Megalin and cubilin: multifunctional endocytic receptors PROTEIN1 and PROTEIN2 are
two structurally different endocytic receptors that interact to serve such functions Megalin cubilin LRP2 CUBN 2M0P 3KQ4 ENSG00000081479 ENSG00000107611 TRUE

Megalin and PROTEIN1: multifunctional endocytic receptors Megalin and PROTEIN2 are
two structurally different endocytic receptors that interact to serve such functions cubilin cubilin CUBN CUBN 3KQ4 3KQ4 ENSG00000107611 ENSG00000107611 FALSE

PROTEIN1 and cubilin: multifunctional endocytic receptors Megalin and PROTEIN2 are
two structurally different endocytic receptors that interact to serve such functions cubilin Megalin CUBN LRP2 3KQ4 2M0P ENSG00000107611 ENSG00000081479 FALSE

Megalin and PROTEIN1: multifunctional endocytic receptors PROTEIN2 and cubilin are
two structurally different endocytic receptors that interact to serve such functions cubilin Megalin CUBN LRP2 3KQ4 2M0P ENSG00000107611 ENSG00000081479 FALSE

PROTEIN1 and PROTEIN2: multifunctional endocytic receptors Megalin and cubilin are
two structurally different endocytic receptors that interact to serve such functions cubilin Megalin CUBN LRP2 3KQ4 2M0P ENSG00000107611 ENSG00000081479 FALSE

PROTEIN1 and cubilin: multifunctional endocytic receptors PROTEIN2 and cubilin are
two structurally different endocytic receptors that interact to serve such functions Megalin Megalin LRP2 LRP2 2M0P 2M0P ENSG00000081479 ENSG00000081479 FALSE

Megalin and cubilin: multifunctional endocytic receptors Megalin and cubilin are
two structurally different endocytic receptors that interact to serve such functionsAn Instance from HRPD50

Obtained 3D structure of
proteins from PDB ID

Obtained FASTA sequence
of proteins from Ensembl ID

Generated multi-modal instances from an in-
stance of HRPD50 biomeedical corpora.

Figure 1: An example of generating instances along with the structural and sequence counterparts of our multi-
modal dataset from HRPD50 dataset. PDB ID and Ensembl ID are utilized for obtaining protein 3D atomic
structure and underlying FASTA sequence, respectively.

embeddings for PPI extraction. Some of the popu-
lar deep learning based PPI extraction techniques
are reported by (Shweta et al., 2016; Zhao et al.,
2016; Hua and Quan, 2016; Hsieh et al., 2017).

3 Dataset Formation and Preprocessing

In this study, we have extended, improved, and
further developed two popular benchmark PPI cor-
pora, namely BioInfer3 and HRPD504 dataset for
the multi-modal scenario. Along with the textual
information, these enhanced multi-modal datasets
contain the biological counterparts of the interact-
ing or non-interacting protein pairs. Biological
information comes from the underlying FASTA
sequence and the atomic structures of interacting
protein pairs.

3http://corpora.informatik.hu-berlin.de/
4https://goo.gl/M5tEJj

Figure 2: Statistics of positive and negative instances
across our developed multi-modal datasets.

3.1 Dataset Preparation

Firstly, we have extracted data, primarily consist-
ing of two and more protein entities, from the XML
representations of two PPI corpora mentioned ear-
lier. To simplify this complex relations among
multiple protein entities, we have considered only
a single protein pair at a time and found out if they
are interacting or not. Among these relations, we
have considered positive instances that are directly
mentioned in the dataset. The other interactions are
considered as non-interacting proteins, i.e., nega-
tive instances.

Consider an instance of HRPD50 dataset, ”Me-
galin and cubilin: multifunctional endocytic re-
ceptors Megalin and cubilin are two structurally
different endocytic receptors that interact to serve
such functions”(Figure 1). In this particular ex-
ample, we have four protein entities but we have
considered the interactions between two proteins at
a time and arrived at six possible relations (shown
in table of Figure 1). Among these relations, only
one pair (Megalin, cubilin) is denoted as interact-
ing proteins in the HRPD50 dataset. Hence, the
number of instances in our dataset is much higher
than those in BioInfer and HRPD50 datasets.

After generating both positive and negative in-
stances, next we have downloaded other two modal-
ities. To download the genomic sequence and the
3d structure of proteins, the ensemble ID and PDB
ID of the proteins are required to be known. But
all the biological archives contain the relationships
between gene and PDB ID or Ensemble ID instead
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Figure 3: An overview of the proposed deep multi-modal architecture for predicting protein-protein interactions.
For each modality, we have designed different deep learning based models which are finally integrated using self-
attention mechanism.

of any relationship between the proteins and afore-
mentioned IDs. Hence, we have used manual an-
notation to find out the respective gene names of
each protein name and then python based method-
ologies to find out Ensembl ID and PDB ID of each
of these genes. These IDs help us in download-
ing the underlying genomic sequence (FASTA se-
quence) from 5 and structures of these proteins (3D
PDB structure) from the RCSB Protein Data Bank
6 archive. The pre-processing and generation of the
multimodal datasets from the biomedical corpora

5https://useast.ensembl.org/index.html
6http://www.rcsb.org/

are pictorially depicted in Figure 1. The complete
exemplified multi-modal datasets are available at
the provided GitHub link.

3.2 Dataset Annotation and Statistics

A major challenge in creating the dataset is to man-
ually encode the relationships between genes and
proteins, a many to many mapping for biological
reasons. Hence, to find out the genes which are
more related to a particular protein, we asked three
annotators who have strong biological knowledge.
The disagreement between the annotators was less
than 1% and the disagreement is solved by the ma-
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jority voting. The total number of instances of
the developed multi-modal datasets are shown in
Figure 2.

4 Problem Formalization

Our goal is to develop a deep multi-modal archi-
tecture that can efficiently predict whether two
proteins are interact with each other or not from
the developed multi-modal datasets. Formally,
consider the multi-modal dataset D = {Si}Ni=1 =
{(IiT ext, I

i
Struc, I

i
Seq)}Ni=1 consisting of N in-

stances. ∀i ∈ {1,2, . . . ,N}, IiT ext, I
i
StrucandIiSeq

represent the textual, structural and sequence
modality of Si sentence/instance, respectively. The
proposed PPI task for an instance Si is mathemati-
cally formulated as

fact(fsa(M1(IiT ext),M2(IiStruc),M3(IiSeq)))

Here M1,M2,M3 are three different deep learn-
ing based models for text, structure and sequence
modality, respectively. The extracted features are
fused by self attention mechanism (fsa) which is
finally fed to an activation function(fact) for pre-
dicting protein interactions.

5 Proposed Methodology

The major steps of our proposed multi-modal ar-
chitecture are shown in Figure 3.

5.1 Feature Extraction from Textual
Modality

The proposed deep learning model (M1) for ex-
tracting features from textual modality is described
in Figure 4. Firstly, we use BioBERT v1.1(Lee
et al., 2019) model to provide a vector representa-
tion (ui ∈ Rd) of the textual instance (IiT ext). With
almost same architecture of BERT (Bidirectional
Encoder Representation from Transformers) model
(Devlin et al., 2018), BioBERT v1.1 is pre-trained
on 1M PubMed abstracts. Here, each sentence
is embedded as a unique vector of size 768 (i.e.,
d=768) by averaging the last four transformer lay-
ers of the first token ([CLS]) of BioBERT model.
Inspired by the efficient usage of stacked Bidirec-
tional long short term memory (BiLSTM)(Yadav
et al., 2019), we use this to encode the embedded
representation (ui). In stacked BiLSTM, the lth

level BiLSTM computes the forward (
Ð→
hl
ui) and

backward hidden states (
←Ð
hl
ui) which are then con-

catenated and fed to the next (l + 1)th level of

Figure 4: Proposed hybrid model combining BioBERT
and stacked BiLSTM for the Textual modality.

BilSTM layer. Therefore, the final representation
(F i

T ext) of IiT ext is obtained from the last layer (L)
of the stacked BiLSTM model as

F i
T ext =M1(IiT ext) = [

Ð→
hLui⊕

←Ð
hLui] (1)

5.2 Sequence Feature Extraction

Firstly, we have downloaded the FASTA sequence
of protein pairs of an instance (Si) from Ensembl
genome browser. In this modality, each protein
(IiSeq) is represented as string of four nucleotides,
i.e., IiSeq = {A,T,G,C}+. The underlying ge-
nomic sequence is considered as a separate channel
of the text modality. Since molecular properties
of protein molecules are heavily dependend on the
sequence of nucleotides, we apply capsule network
(Sabour et al., 2017) to capture the spatial infor-
mation between the nucleotides. In this regard,
firstly, we have converted all four nucleotides into
one-hot vector representation, i.e., the protein is
represented as a 2D matrix, O = {0,1}4×m where
m is the number of nucleotides in the sequence.
Now, three convolutional layers (fconv) are applied
on O where the output of the third layer is fed to
the primary capsule. Finally, the output of the pri-
mary capsule is fed to secondary capsule which
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Figure 5: Capsule network-based deep model for extracting features from underlying genomic sequence of pro-
teins.

Figure 6: Graph convolutional neural network-based deep model for extracting features from molecular structure
of proteins.

provides the final representation (F i
Seq) of the se-

quence modality. The final feature vector obtained
from the developed deep architecture (M2) is

F i
Seq =M2(IiSeq) = fcapsule(fCONV (O))

5.3 Structural Feature Extraction
For the structure modality, firstly we have down-
loaded protein 3D structure from RCSB protein
data bank website and obtained the atomic coordi-
nates from the PDB file. Among all the modalities,
structural modality is the most relevant modality for
inferring biological information. In this modality,
we have considered the atomic structure of the pro-
teins. Inspired by the inherent capabilities of graph
convolutional neural network (Kipf and Welling,

2016; Zamora-Resendiz and Crivelli, 2019) for un-
derstanding the effective latent representation of
the graph, we have used it to learn a local neighbor-
hood representation around each atom of the pro-
teins. For this structural modality, the developed
model (Figure 6) learns the chemical bonding in-
formation from the atomic structure of the proteins
rather from its corresponding image. Each protein,
which consists of a set of atoms {a1, a2, . . . , an},
has an adjacency matrix, A ∈ {0,1}n×n, and a
node feature matrix, X ∈ Rn×dv . In this study,
we have considered two proteins (P1, P2) in an in-
stance and extracted the insightful features (y1, y2)
using GCNN and then concatenated them for the
final representation (F i

Struc). The GCNN takes A
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and X as inputs of the proteins and the structural
feature represented as

F i
Struc =M(IiStruc) = [y1⊕ y2] (2)

yj∣j∈{1,2} = f(H i
j ,Aj) = σ(Aj ,H

i
j ,W

i
j ) (3)

Here, ⊕, f, σ are the concatenation operator, a
non-linear activation function and the propagation
rule, respectively. W i

j is the weight matrix of layer
i of protein Pj and H i

j is defined as f(H i−1
j ,A)

where H0
j =Xj .

5.4 Attention-based Multi-modal Integration
After extracting the features of three modalities
(textual, protein sequence and protein structure),
we have fused the features using attention mecha-
nism. Attention mechanism has the ability to fo-
cus on the features which are the most relevant
to a context specific task. In this study, we have
used self-attention mechanism of the transformer
model which concatenates the final integrated fea-
ture representations (F) of ith instance (Si) using
the following formula.

F = [W i
T extF

i
T ext⊕W i

SeqF
i
Seq⊕W i

StrcF
i
Strc]

(4)
Here, Wi represents the attention weight of ith
modality. Finally, this final representation (F) is
fed to softmax layer for final classification.

6 Experimental Results and Analysis

In this section, we have briefly described the de-
tails of the hyper-parameters and the comparative
analysis of the proposed deep multi-modal architec-
ture. To explore the role of developed multi-modal
datasets along with the proposed multi-modal ar-
chitecture for predicting the protein interactions,
several experiments are conducted for evaluating
each modality and also different combinations of
the modalities. Additionally, we have compared
the performance of our multi-modal approach with
various state-of-the-art methods.

6.1 Details of Hyper-parameters
In our proposed multi-modal architecture, for the
final classification we have used softmax. Adam
optimizer is used through out the multi-modal ar-
chitecture. In stacked BiLSTM model for textual
modality, 6 (i.e., L=6) layers of BiLSTM are used.

In case of structural features, graph convolutional
neural network with two hidden layers is used. For
sequence modality, capsule network followed by
three ReLU convolutional layers are used. In the
developed capsule network, the number of primary
capsules are eight along with two secondary cap-
sules. Finally, self-attention of transformer model
is utilized for integrating the features of different
modalities. For self-attention, we have used three
encoders which are followed by a fully connected
network with two hidden layers. The output of the
fully connected network is then fed to softmax for
final classification.

6.2 Comparative analysis with baselines
For baselines, we have compared our multi-modal
approach with three uni-modal, three bi-modal and
two other multi-modal architectures.

• Textual modality BioBERT and stacked BiL-
STM are utilized for this model.

• Protein sequence modality Capsule network
is utilized to understand the underlying fea-
tures extracted from the protein sequences.

• Protein structural modality Inspired by the
effective performance of GCNN in under-
standing the graph representation, GCNN is
applied on atomic structure of proteins.

• 3D structural + sequence modality In this bi-
modal architecture, GCNN and capsule net-
work are used for structural and sequence
modality, respectively. Finally, self-attention
is utilized to understand the integrated features
of these two modalities.

• Textual + sequence modality In this model,
self-attention is applied on the extracted fea-
tures of textual and sequence modality.

• Textual + 3D structure modality: To learn
the different attributes discussed in the text
and protein structural modality, self-attention
mechanism is applied to fuse them.

• Multi-modal approach 1 This architecture of
this baseline is the same as the proposed multi-
modal approach, except the learned features of
each modality are simply concatenated instead
of using any attention mechanism.

• Multi-modal approach 2 In this model, at-
tention mechanism is applied for integrating
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Textual
modality

Protein sequence
modality

Protein structural
modality

Textual + sequence
modality

Textual + 3D
structure modality

3D structural +
sequence modality

Multi-modal
approach 1

Multi-modal
approach 2

Proposed
approach

BioInfer
Precision 54.42 50.63 59.34 64.51 69.04 68.15 79.16 83.77 86.81
Recall 87.45 83.68 91.63 87.45 88.49 89.53 87.44 86.40 89.53
F-measure 67.09 63.09 72.04 74.25 77.54 77.39 83.11 85.07 88.15

HRPD50
Precision 90.44 86.95 91.75 91.01 94.79 93.57 96.51 96.61 96.93
Recall 58.67 41.32 69.01 62.81 75.21 75.21 74.38 76.44 78.51
F-measure 71.17 56.02 78.77 74.32 83.87 83.39 84.01 85.35 86.75

Table 1: Comparative study of our proposed deep multi-modal approach with several baselines in terms of preci-
sion, recall, F-measure

the features of textual, protein sequence and
structural modalities. For extracting the fea-
tures from textual, protein sequence and pro-
tein structure, we use BioBERT, BiLSTM and
CNN, respectively.

The results reported in Table 1 illustrate the
supremacy of the proposed multi-modal approach
over other baselines.

6.3 Comparison with State-of-the-art
Additionally, along with the baselines, we have
compared the performance of our multi-modal ap-
proach with several existing works reported in the
literature. For BioInfer dataset, we have com-
pared our proposed method with nine state-of-the-
art models. These existing methods are based on
different techniques like kernel-based (Choi and
Myaeng, 2010; Tikk et al., 2010; Qian and Zhou,
2012; Li et al., 2015), deep neural network-based
(Zhao et al., 2016), multi-channel dependency-
based convolutional neural network model (Peng
and Lu, 2017), semantic feature embedding (Choi,
2018) and shortest dependency path (Hua and
Quan, 2016). Along with the aforementioned meth-
ods, we have also compared our approach with a
recent deep learning-based approach proposed by
(Yadav et al., 2019). The comparative performance
analysis for BioInfer dataset is tabulated in Table

Precision Recall F-score

Proposed Model 86.81 89.53 88.15
(Yadav et al., 2019) 80.81 82.57 81.68
(Hua and Quan, 2016) 73.40 77.00 75.20
(Choi, 2018) 72.05 77.51 74.68
(Qian and Zhou, 2012) 63.61 61.24 62.40
(Peng and Lu, 2017) 62.70 68.2 65.30
(Zhao et al., 2016) 53.90 72.9 61.60
(Tikk et al., 2010) 53.30 70.10 60.00
(Li et al., 2015) 72.33 74.94 73.61
(Choi and Myaeng, 2010) 74.50 70.90 72.60

Table 2: Comparative analysis of the proposed multi-
modal approach with state-of-the-art techniques for
BioInfer dataset.

2. We have also compared our approach with nine
existing approaches for HRPD50 dataset. The com-
parative results for HRPD50 dataset are presented
in Table 3.

6.4 Discussion

By analyzing the above comparative study, we can
infer that the overall performance of our proposed
multi-modal approach surpasses other baselines
and existing methods. Among the baseline mod-
els, proposed multi-modal approach outperforms
its unimodal and bimodal counterparts. Among
the uni-modal architecture, structural modality out-
performs other two modalities which suggests the
importance of structural modality over textual and
sequence modalities. The sequence modality per-
forms poorly because of its huge length (length
of most of the sequences is approx 10,000 nu-
cleotides).

Among the bimodal architectures, (textual +
structural) model surpasses other bimodal and
unimodal counterparts. This fusion shows im-
provements of 5.1% and 5.5% F-score values over
the best unimodal architecture for HRPD50 and
BioInfer data sets, respectively. Similarly, our
proposed multi-modal architecture shows an im-
provement over bi-modal counterparts. Also, the
proposed multi-modal architecture shows an aver-

Precision Recall F-score

Proposed Model 96.93 78.51 86.75
(Yadav et al., 2019) 79.92 77.58 78.73
(Tikk et al., 2010) 68.20 69.80 67.80
(Tikk et al., 2010)(with SVM) 68.20 69.80 67.80
(Palaga, 2009) 66.70 80.20 70.90
(Airola et al., 2008a)(APG) 64.30 65.80 63.40
(Van Landeghem et al., 2008) 60.00 51.00 55.00
(Miwa et al., 2009) 68.50 76.10 70.90
(Airola et al., 2008a)(Co-occ) 38.90 100 55.40
(Pyysalo et al., 2008) 76.00 64.00 69.00

Table 3: Comparative analysis of the proposed multi-
modal approach with other state-of-the-art approaches
for HRPD50 dataset.
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age improvement of 3.87% and 2.24% F-scores
over multi-modal approach1 and multi-modal ap-
proach2, respectively. This improvement indicates
that in addition to multiple modalities, underlying
deep learning models and fusion technique con-
tribute significantly in improving the performance
of the overall architecture.

In addition, Table 2 and Table 3 indicate that the
proposed multi-modal architecture outperforms the
best and recent existing methods for both BioIn-
fer and HRPD50 dataset, respectively. We have
performed Welch’s t-test to show that obtained im-
provements by the proposed approach are statis-
tically significant. From the above comparative
study, it is evident that our proposed multi-modal
approach identifies the protein interactions in an ef-
ficient way and can be further improved in different
ways.

6.5 Error Analysis
After thoroughly analyzing false positive and false
negative instances, it can be inferred that following
are the possible reasons of errors:

1. The instances which contain huge number
of protein entities lead to misclassification.
The maximum number of proteins in an in-
stance of HRPD50 and BioInfer are 26 and
24, respectively; this has a huge chance of
misclassification. For example: “Mutations
in Saccharomyces cerevisiae RFC5, DPB11,
MEC1, DDC2, MEC3, PDS1, CHK1, PDS1,
and DUN1 have increased the rate of genome
rearrangements up to 200-fold whereas muta-
tions in RAD9, RAD17, RAD24, BUB3, and
MAD3 have little effect.”

2. Repetitive mentions of the same protein en-
tity adds noise that leads to loose contextual
information. For example “Here we demon-
strate ... CLIP-170 and LIS1 Overexpression
of CLIP-170 results ... phospho-LIS1 ... that
CLIP-170 and LIS1 regulate ... that LIS1 is
a regulated adapter between CLIP-170 ... MT
dynamics”.

3. For sequence modality, we consider underly-
ing FASTA sequence of proteins. The length
of the sequence varies from 100 to 10000 nu-
cleotides. This increased protein length leads
to misclassification as the deep learning-based
model is unable to possess this long chain of
nucleotides.

7 Conclusion and Future Work

In this work, we have generated some multi-modal
protein-protein interaction databases by amalga-
mating protein structures and sequences with ex-
isting text information available in the biomedical
literature. The process of generating multi-modal
datasets from PPI corpora is illustrated with some
examples. Besides, we have proposed a novel deep
multi-modal architecture for managing the multi-
modal scenario for PPIs. For each modality (tex-
tual, protein sequence and protein atomic structure),
we have developed different deep learning models
for efficient feature extractions. A detailed compar-
ative analysis proves that the proposed multi-modal
architecture outperforms other strong baselines and
existing models. Future work aims at enhancing
sequence feature extraction methods to improve
the classification performance as those suffer from
low accuracy. Further there are plenty of options
for improving the fusion technique to enhance the
overall performance of the model.
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