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Abstract

Dialogue state tracker is responsible for in-

ferring user intentions through dialogue his-

tory. Previous methods have difficulties in

handling dialogues with long interaction con-

text, due to the excessive information. We

propose a Dialogue State Tracker with Slot

Attention and Slot Information Sharing (SAS)

to reduce redundant information’s interference

and improve long dialogue context tracking.

Specially, we first apply a Slot Attention to

learn a set of slot-specific features from the

original dialogue and then integrate them us-

ing a Slot Information Sharing. The sharing

improve the models ability to deduce value

from related slots. Our model yields a sig-

nificantly improved performance compared to

previous state-of-the-art models on the Multi-

WOZ dataset.

1 Introduction

The recent global adoption of personal assistants

such as Alexa and Siri made dialogue system a

more popular topic in research. The major dif-

ference between dialogue systems and question-

answering is that dialogue systems need to track

dialogue history effectively. So, we normally use a

dialogue state tracking component to track user’s

intention throughout the conversation. A dialogue

state is typically composed as a set of slot value

pairs in a task-oriented dialogue, such as “hotel-

internet-yes”. It means the slot “hotel-internet” has

a value of “yes”.

Early dialogue state tracking model needs a pre-

defined ontology which means the values of ev-

ery slot are enumerated in advance (Henderson

et al., 2014; Mrkšić et al., 2017; Zhong et al., 2018;

Sharma et al., 2019). Such practice is inefficient

and costly. The large number of possible slot-value

pairs makes deploying these models in the real-life
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applications difficult (Rastogi et al., 2017). This

difficulty is further amplified in multi-domain dia-

logue state tracking where the dialogues have more

than one tasks. Because the manual effort grows

exponentially with the complexity of the dialogues.

In (Wu et al., 2019), Wu et al. introduced a transfer-

able dialogue state generator (TRADE), which can

generate dialogue states from utterances using a

copy mechanism. This generative model achieved

relative good performance, but it still has trouble

in extracting relevant information from the original

dialogues. For example, a user may tell the agent

that he/she needs a taxi in a turn, but the taxi’s

departure location is implicitly mentioned several

turns ago. Inspired by the (Chen et al., 2017; Chen,

2018), (Chen et al., 2019) studied on utilizing atten-

tion mechanism to deal with the long distance slot

carryover problem. In their work, they first fused

the information of the slot, its corresponding value

and the dialogue distance into a single vector. Then

they computed the attention between this single

vector and the concatenation of dialogue and intent

information. We simplify the attention method and

introduce it into the dialogue state tracking task.

Moreover, it is a common sense that there is

some kind of relevance between two slots involv-

ing the same domain or the same attribute. For

example, people tend to have a meal near the at-

traction they visit, so slot “attraction-area” and slot

“restaurant-area” have the same value at most times.

For these slots with a common or related value, if

a slot never or seldom appears in the training set,

sharing the learned feature of data-sufficient slot

may benefit the model’s tracking ability on these

rare or unknown slots.

So we propose SAS, a new multi-domain dia-

logue state tracking model to resolve this issue to

some extent. To be specific, we use an Slot Atten-

tion to localize the key features from the original

information-excessive dialogue and a Slot Infor-
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mation Sharing to improve the models ability to

deduce value from related slots. The processed

information provided by the slot attention and the

sharing module makes the generator more sensi-

tive to the location of the values in the dialogue

history and thus generates correct slot values. Ex-

periments on the multi-domain MultiWOZ dataset

(Budzianowski et al., 2018) shows SAS can achieve

51.03% joint goal accuracy and outperform previ-

ous state-of-the-art model by 2.41%. On the single

domain dataset which only contains the restaurant

domain, we achieve 67.34% joint goal accuracy,

outperforming prior best by 1.99%. In addition,

we conduct an analysis of the experimental results

to evaluate the quality of values generated by our

model.

2 Related Work

The early research of DST focused on the pipelined

approach which involves a special module named

Spoken Language Understanding (SLU) before the

DST module (Wang and Lemon, 2013; Williams,

2014; Perez and Liu, 2017). But obviously, it was

not reasonable to train SLU and DST respectively

since the accumulated error in SLU may be passed

to the DST. In order to alleviates this problem, later

study focuses on the joint training methods (Hen-

derson et al., 2014; Zilka and Jurcicek, 2015; Wen

et al., 2017). Although the higher performance

shows the effectiveness of models without SLU,

there still remains some shortcomings. For exam-

ple, these models typically rely on semantic dictio-

naries which list the potential rephrasings for all

slots and values in advance. Make such a list is

costly. Fortunately, the recent development of deep

learning and representation learning helps the DST

to get rid of this problem. (Mrkšić et al., 2017)

proposed a novel Neural Belief Tracking (NBT)

framework which was able to learn distributed rep-

resentations of dialogue context over pre-trained

word vectors, while (Dernoncourt et al., 2017) de-

scribed a novel tracking method which used elabo-

rate string matching and coreference resolution to

detect values explicitly presented in the utterance.

These models greatly improve the performance of

DST, but they are not good at handling rare and

unknown slot value pairs which seldom or never

appear in the training set.

There were many efforts to exploit general fea-

tures between rare slot value pairs and common

ones. (Zhong et al., 2018) proposed GLAD, a

model which built global modules to share parame-

ters between estimators for different slots and local

modules to learn slot-specific features. (Nouri and

Hosseini-Asl, 2018) improved GLAD by reducing

the latency in training and inference time, while pre-

serving its powerful performance of state tracking.

But as the dialogues become increasingly complex,

the performance of these models on multi-domain

is not as satisfying as on single domain. Because

of the dependency on the dialogue ontology, they

have difficulty in scaling up with domains. Once

the number of domains increases, the amount of

slot value pairs will boom. With the copy mech-

anism, the sequence-to-sequence model TRADE

(Wu et al., 2019) successfully got rid of any prede-

fined slot value pairs and generated dialogue states

from conversation utterances.

But we find there still remain several crucial lim-

itations which have not been well solved on multi-

domain dialogues. First, these models rely on the

long dialogue history to identify the values which

belong to various domains and slots. Sometimes

the information contained in the dialogue history is

too rich for these models to efficiently utilize and

the redundant information tends to interfere with

their value identification or value generation. Sec-

ond, the related information among similar slots

is wasted. To alleviate these problems, a slot at-

tention and a slot information sharing module are

suggested. The former can isolate the most valu-

able information for each slot, while the latter inte-

grates information kept by its all similar slots and

improve the models ability to deduce value from

related slots.

3 Task Definition

The dialogue state tracking models take the inter-

action context as input and extract slot value pairs

explicitly or implicitly presented in conversations.

The combinations of these slot value pairs are the

representations of the user’s goal. In this paper,

we denote X = {(u1, r1), · · · , (uT , rT )} as the di-

alogue history, where u1, · · · , uT and r1, · · · , rT
are respectively the set of user utterances and the

set of system responses in T turns. The dialogue

state of turn t is marked as ST t= (slot: sj , value:

yvaluej ). Here, sj indicates the j-th slot, while

yvaluej means the ground turth value sequence for

this slot. All the slots in ontology are obtained by

preprocessing the original MultiWOZ dataset with

the delexicalization. Moreover, we extend the def-
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Figure 1: SAS model’s architecture. This model consists of four parts: an encoder, a slot attention, a slot informa-

tion sharing and a decoder.

inition of the slot to include the domain name for

convenience. For instance, a slot in this paper will

be “hotel-star”, rather than “star”.

Our primary goal is to learn a generative dia-

logue state tracker model M : X × O → ST that

can efficiently capture the user’s intentions for di-

alogues including multiple domains. And unlike

most of the previous models, the ontology O men-

tioned in this paper only contains the predefined

slots and excludes their values.

4 Our Proposed Model

Figure 1 shows the architecture of SAS. SAS is a

sequence-to-sequence model augmented with slot

attention and slot information sharing. Slot atten-

tion enables better feature representation and slot

information sharing helps understanding less-seen

slots. We describe the details of every component

in SAS as follows:

4.1 Encoder

We use a 1-layer bidirectional gated recurrent unit

(GRU) (Chung et al., 2014) to encode the dia-

logue history. As TRADE (Wu et al., 2019),

our input to the model is the concatenation of all

words in the recent l-turn dialogue history Xt =
[ut−l+1, rt−l+1, · · · , ut, rt] ∈ R

|Xt|×demb , where

demb means the embedding size. First, each word

in the dialogue history X is mapped to a distributed

embedding vector. Then, a GRU is utilized to ob-

tain the hidden state corresponding to each word in

the text and we denote these hidden state as the his-

tory hidden states Ht = {henc1 , henc2 , · · · , henc|Xt|} ∈
R
|Xt|×dhdd .

4.2 Slot Attention

To isolate key features from the noisy dialogue his-

tory, we build the slot attention. In fact, the multi-

domain dialogues are usually complex and contain

rich features. This challenges the model’s ability

to cope with the excessively rich information.

To be specific, in one dialogue, user can men-

tion various information, such as wanting to book a

restaurant for a meal and then planning to see an at-

traction after the meal by ordering a taxi. There are

in total 10 slots mentioned spanning across restau-

rant, attraction and taxi domains. Information from

one domain maybe not useful for other domain

and can even cause confusion. For example, both

restaurant and taxi mention time and people.

So we propose the slot attention to only extract

useful history information to every slot. More

concretely, for a particular slot sj , we first en-

code its slot name into slot hidden states SHj =
[shencj1 , · · · , shencj|N| ], where |N | is the maximum

size of the slot name phrase. Since the last hid-

den state shencj|N| provided by the GRU contains the

context information of the entire phrase, we pick it

as the representation of slot sj .

After that, we calculate the attention between

the slot information, shencj|N| and the hidden states

of the dialogue history Ht = [henc1 , · · · , henc|Xt|] to

obtain the context vector cj :
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aj = (henc)�shencj|N| (1)

scji =
exp(aji )∑|Xt|
i=1 exp(aji )

(2)

cj =

|Xt|∑
i=1

scjih
enc
i (3)

Here, the score scjt indicates the relevance be-

tween info slots sj and dialogue history. The con-

text vector cj ∈ R
dhdd denotes the slot-specific

information grabbed from the entire dialogue his-

tory. Finally, we obtain the context vectors c =
[c1, c2, · · · , cJ ] ∈ R

dhdd×J for all J slots.

4.3 Slot Information Sharing
In the slot information sharing, there is a special

matrix called the slot similarity matrix. This ma-

trix controls the information flow among similar

slots. We introduce two sharing methods according

to their different calculation of the slot similarity

matrix: fix combination sharing and the k-means

sharing. We will compare the effectiveness of the

two methods in Section 6.

4.3.1 Fix Combination Method
We calculate the similarity between every two slots

to construct switch matrix. We first compute the

cosine similarity over the two slot names and then

calculate the similarity over the slot types. Specif-

ically, the slot types can be divided into several

categories such as “date”, “location”. For exam-

ple, if there are two slots “restaurant-area” and

“restaurant-book day”, then the similarity in the first

part may be high since the two slot names share

a common word “restaurant”, while the similarity

in the second part is quite low: slot “restaurant-

area” has a value whose type is “location”, and

“restaurant-book day” has a value which belongs to

“date”. Next, the two calculated similarities sname
and vtype will be integrated with a hyperparam-

eter α ∈ [0, 1] and we can get a special matrix

sim ∈ R
J×J as a result.

sim = α · sname+ (1− α) · vtype (4)

Here, the integration ratio α actually controls the

final similarity of the slots. In Table 2, we show

that different choices of this ratio will impact the

model’s tracking performance.

After that, matrix sim is transformed into the

slot similarity matrix M by the mask mechanism.

Mij =

{
1 if simij ≥ β
0 if simij < β

(5)

Here, hyperparameter β acts as a threshold to

decide whether the two slots are similar enough to

trigger the sharing switch and open the information

path between them.

4.3.2 K-means Sharing Method
Since the fix combination method needs manual

efforts to search for the best hyperparameter, we

propose another method, K-means Sharing Method,

which requires no hyperparameter tuning and can

achieve an averagely good performance. In this

sharing method, we also compute the slot name

similarity snameij and the value type similar-

ity vtypeij between slot si and sj as the way in

the fix combination one. Then we put vectors

(snameij , vtypeij) onto flat space and divide these

vectors into two groups by the k-means clustering

algorithm. One group stands for the slot si and sj
are similar enough, while the other one not similar.

The element in Mij is 1 if they are in similar group,

0 if they are in unsimilar group.

After getting the slot similarity matrix whose

value is either 1 or 0, we do the matrix mul-

tiplication between the context vectors c =
[c1, c2, · · · , cJ ] ∈ R

dhdd×J and the slot similarity

matrix M ∈ R
J×J . Then we get the integrated

vectors int = [int1, int2, · · · , intJ ] ∈ R
dhdd×J .

These new vectors keep more expressive informa-

tion for every slot. Specifically, intj is calculated

as following:

intj =

J∑
i=1

ci ·Mij ,Mij ∈ {0, 1} (6)

As shown in the above equation, intj is essen-

tially the integrated result of all related context

vectors ci in c and the integration is guided by the

slot similarity matrix M . The matrix M actually

plays the role of a switch which controls the infor-

mation flow between slots and provides a selective

integration. For example, this integration makes

the data-insufficient slot “attraction-type” receive

the information from its related and data-sufficient

slot “attraction-name”, and helps our model deduce

the related value for data-insufficient slots.
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4.4 Decoder

The value prediction process of our decoder can be

divided into two steps: first, predicting whether the

value of a certain slot is constrained by the user;

and then extracting the value if the constraint is

mentioned in the dialogue.

In the first step, a three-way classifier called slot

gate is used and it can map a vector taken from

the encoded hidden states Ht to a probability dis-

tribution over “ptr”, “none”, and “dontcare” labels.

Once the slot gate predicts “ptr”, the decoder will

fill the slots with the values extracted from the

dialogues. Otherwise, it just fills the slots with

“not-mentioned” or “does not care”.

In the second step, another GRU is utilized as

the decoder. During the decoding step of the j-

th slot, given a sequence of word embeddings

[wj1 , wj2 , · · · , wj|N| ], the GRU transforms them

into decoded hidden states [hdecj1
, hdecj2

, · · · , hdecj|N| ]

with the slot’s integrated vector intj :

zjk = σ(Uz1wjk + Uz2h
dec
jk−1

) (7)

rjk = σ(Ur1wjk + Ur2h
dec
jk−1

) (8)

˜
hjk = tanh(U1wjk + U2(r

j
k ◦ hdecjk−1

)) (9)

hdecjk
= (1− zjk) ◦ hdecjk−1

+ zjk ◦ ˜
hjk (10)

Here, |N | is the length of the slot sequence and

intj is the initial hidden state input hdecj0
. The inte-

grated vector intj makes the decoded hidden states

contain more information about the dialogue his-

tory. So they are more sensitive about whether the

value of slot j is mentioned in the dialogue and

where it locates. With the decoded hidden state

hdecjk
, the generator computes P gen

jk , the probabil-

ity of the value generated from the vocabulary list

E ∈ R
|V |×dhdd and P copy

jk , the one copied from

the interaction history. |V | is the vocabulary size

and dhdd is the dimension of the hidden state. In

the end, we sum the probability P gen
jk and P copy

jk to

yield the final prediction Pjk:

P gen
jk = Softmax(E · (hdecjk )

�
) (11)

P copy
jk = Softmax(Ht · (hdecjk )

�
) (12)

Pjk = gjk × P gen
jk + (1− gjk)× P copy

jk (13)

gjk = Sigmoid(Wg · [hdecjk ;wjk;P
copy
jk ·Ht])

(14)

Here, gjk is a scalar which controls the model

behaviour. It determines whether to generate values

from the vocabulary list or copy words from the

historical context.

5 Experiments

In this section, we first introduce the dataset and the

evaluation metrics. We then describe our model’s

implementation details. Finally, we show our base-

line models.

5.1 Datasets and Metrics

MultiWOZ (Budzianowski et al., 2018) is a fully-

labelled collection of human-human written conver-

sations spanning over multiple domains and topics.

There are 7,032 multi-domain dialogues consisting

of 2-5 domains in MultiWOZ. Because these dia-

logues have multiple tasks, so the long dialogue

history makes state tracking more difficult. Since

there are no dialogues from hospital and police do-

mains in validation and testing sets of MultiWOZ,

we follow TRADE (Wu et al., 2019) and use five

out of the seven domains to train, valid and test,

including restaurant, hotel, attraction, taxi and train.

These domains involve 30 slots.

We also test our model on a subset of MultiWOZ

which only contains the dialogues from the restau-

rant domain to verify whether our model still works

for single-task dialogues.

We evaluate all the models using two metrics,

slot accuracy and joint goal accuracy, similar to

(Nouri and Hosseini-Asl, 2018):

• Slot accuracy. We use slot accuracy to check

whether each single slot in the ground truth

dialogue states is correct. The metric only

focuses on if the slot requested is correct or

not.

• Joint goal accuracy. The joint goal accuracy

is used to evaluate whether the user’s goal in

each turn is captured. Only when every slot in

the ground-truth dialogue state is considered

and has correct value, can we consider the

joint goal is achieved. It is the most important

metric in the dialogue state tracking task.

5.2 Implementation Details

We use the concatenation embedding of GloVe em-

bedding (Pennington et al., 2014) and the character-

wise embedding (Hashimoto et al., 2017) in the
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MultiWOZ MultiWOZ(res)
Model Joint Slot Joint Slot
MDBT 15.57 89.53 17.98 54.99

GLAD 35.57 95.44 53.23 96.54
GCE 36.27 98.42 60.93 95.85

SpanPtr 30.28 93.85 49.12 87.89

TRADE 48.62 96.92 65.35 93.28

SAS 51.03 97.20 67.34 93.83

Table 1: Performances of various models on Multi-

WOZ dataset and MultiWOZ (restaurant) dataset.

Model Joint Slot
SAS-att-shr 55.52 92.66

SAS-shr 60.68 89.53

SAS(RT shr-0.7, 0.8) 60.59 96.92

SAS(RT shr-0.8, 0.7) 60.78 96.94

SAS(RT shr-0.8, 0.8) 61.04 97.02
SAS(RT shr-0.8, 0.9) 60.54 96.91

SAS(RT shr-0.9, 0.8) 61.47 97.00

SAS(KM shr) 60.92 96.96

SAS(HM shr) 60.28 96.89

Table 2: Results evaluated on the MultiWOZ(except ho-

tel) dataset. “RT shr” means the fix combination shar-

ing method, “KM shr” is the k-means sharing method,

and “HM shr” is the human evaluated sharing method.

The two numbers after “-” represents the integration ra-

tio α and the threshold β respectively.

experiment. The model is trained with ADAM op-

timizer (Kingma and Ba, 2014) and a batch size

of 32. Both the encoder and the decoder use 400

hidden dimensions. The learning rate is initially

set to 0.001, but once the joint goal accuracy does

not rise with the training, the network will auto-

matically decrease its learning rate to improve the

performance. We apply dropout with 0.2 dropout

rate for regularization (Srivastava et al., 2014). Be-

sides that, a word dropout technique is also uti-

lized in the way proposed by (Bowman et al., 2015)

which simulates the out-of-vocabulary setting. Our

k-means clustering algorithm is implemented with

the sklearn module, and we set all the hyperparam-

eter in k-means algorithm as default.

5.3 Baseline Methods

We compare SAS with several previous methods:

MDBT, GLAD, GCE, SpanPtr and TRADE. Based

on the classical NBT model, MDBT (Ramadan

et al., 2018) extended the task into multiple do-

mains. MDBT makes full use of the semantic simi-

larities between the dialogue and the slot ontology

to track the domain and the value of the slot jointly.

GLAD relies on global modules to learn the gen-

eral information and local modules to catch the slot-

specific information (Zhong et al., 2018) from the

dialogues. GCE efficiently improves and simplifies

GLAD, while keeping the excellent performance

of GLAD (Nouri and Hosseini-Asl, 2018). SpanPtr

first introduces the pointer network (Vinyals et al.,

2015) into the dialogue state tracking task to ex-

tract unknown slot values (Xu and Hu, 2018). And

in that paper, they also apply an effective dropout

technique for training. TRADE directly generates

slot values from the dialogues by using the copy

mechanism and gets rid of the predefined value list

(Wu et al., 2019). It achieves the previous state-of-

the-art performance.

We use the fix combination version of SAS in

Table 1 with the integration ratio α of 0.8 and the

threshold β of 0.8. That’s the best hyperparameters

we find for MultiWOZ.

6 Results

In this section, we first show the result of our

model on MultiWoZ dataset, then on Multi-

WoZ(restaurant) and MultiWOZ (except hotel)

dataset. After conducting the ablation experiment,

we also display the improvement the slot attention

and slot information sharing brings.

Our model achieves the best performance in the

most important metric, joint goal accuracy. Our

model outperformed the previous state-of-the-art

model, TRADE by 2.41% absolute score on joint

goal accuracy. We only observe slight increase of

slot accuracy compared to TRADE. We suspect it is

because TRADE was already achieving nearly 97%

accuracy, which is close to the up-bound of the slot

accuracy in this task. After carefully checking the

error cases, we found these errors mainly come

from the difficulty of generating name phrases.

To test SAS’s ability on single domain dialogue

tasks, we also evaluate our model on the a subset

of MultiWOZ which contains only the restaurant

search task. As displayed in Table 1, SAS achieved

1.99% improvement over TRADE on the joint goal

accuracy as well, suggesting SAS’s good perfor-

mance generalize to single domain task.

Table 2 also shows how different choices of the

hyperparameters influence the final results. On

MultiWOZ, the integration ratio of 0.8 and the

threshold of 0.8 are the best hyperparamters. But as
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illustrated in Table 2, the best integration ratio is no

longer 0.8 on MultiWOZ (except hotel). The best

values of the integration ratio and the threshold will

vary with the ontology.

We also perform ablation study to quantify dif-

ferent modules’ contribution. We observe in Table

3 that adding the slot attention improves the state

tracking results by 1.37% on MultiWOZ. Such im-

provement suggests having slot attention that fo-

cuses on the key information of the history is useful.

And the slot information sharing further enhances

the performance by 1.04%. The reason behind this

may be that the information sharing of the related

slots makes the data-insufficient slot receive more

information. This handles the rare or unknown slot-

value problems to some extent. As illustrated in

Table 3, a model with the fix combination sharing

method performs better than the k-means sharing

method. But the fix combination method has an

obvious shortcoming. It is difficult to generalize to

new ontology. We need search the hyperparameters

for every new ontology and these efforts are usually

costly and time-consuming. Results in Table 2 and

Table 3 indicate that the k-means algorithm pro-

vides a more robust model with respect to different

parameters.

MultiWOZ MultiWOZ(res)
Model Joint Slot Joint Slot

SAS-att-shr 48.62 96.92 65.35 93.28

SAS-shr 49.99 97.10 66.89 93.62

SAS(RT shr) 51.03 97.20 67.34 93.83
SAS(KM shr) 50.46 97.15 66.65 93.78

SAS(HM shr) 50.27 97.13 66.89 93.62

Table 3: Performances of the models with differ-

ent components on MultiWOZ dataset and MultiWOZ

(restaurant) dataset. RT shr, KM shr, HM shr indicate

the model is using the fix combination sharing method,

k-means sharing method, and the human evaluated shar-

ing method in the slot information sharing respectively.

To investigate whether the slot similarity matri-

ces used by the two sharing methods really reflect

the similarity among slots, we also compare them

with a human constructed similarity matrix. We

invite three volunteers to carefully rate (1 or 0) the

relationship between every two slots and obtain

the slot similarity matrix used in the human eval-

uated method. As shown in Table 2 and Table 3,

the performance of the k-means sharing method

is close to the one the human constructed method.

This indicates human knowledge cannot further im-

prove this task. Besides that, we also notice that

the fix combination model usually outperforms the

human constructed method, demonstrating that the

fix combination model can automatically discover

some hidden relationship among all slots that hu-

man cannot capture.

7 Error Analysis

To better understand why our model improves the

performance, we investigated some dialogue exam-

ples and shown them in Table 4.

In the first dialogue, by asking “Could you also

find me a hotel with a moderate price that offers

internet?”, the user has briefly informed the agent

that he/she is looking for a hotel “with internet”.

The previous model missed the “hotel-internet” in

the tracked slots. Because the model is mislead

by the long interaction history. Our model learns

to focus on important information using the slot

attention to track the correct internet slot.

In the second dialogue, although the previous

model manages to capture the value “21:30”. It still

confused “arriveby” with “leaveat”. While SAS

can distinguish them. We suspect this is because

our model can learn the differences between these

slots by training on isolated key features per slot

without seeing any irrelevant information.

In the third example, the user agrees to visit

an attraction named “Christ’s College” from many

college-type choices the agent suggests. Previous

model fetches a wrong message and fills the slot

“attraction-name” with “Clare College”. In contrast,

SAS captures the correct attraction name and also

deduces that the attraction type is college. Similar

to the first dialogue, the slot attention helps model

gain more clean information to detect slot values

more accurately. And by sharing the information

fetched from slot “attraction-name” with the slot

“attraction-type”, our model is more sensitive with

the value “college”.

We also investigate the limitation of our model

by analyzing the state tracking errors. We noticed

two types of errors. First, SAS can not effectively

identify value “dontcare” for most slots. For ex-

ample, when the agent asks the user about his/her

requirement on the hotel rating, though he/she an-

swers “that is not really important for me”, the

model fails to fill “dontcare” into the slot “hotel-

star”. We believe this is due to the fact that the

meaning of “dontcare” has plenty of expressions, it

is much harder for the model to learn the semantic
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No Model Context

1

I am looking for a train that leaves on saturday and arrives by 10:30. // Where are

you traveling to and from? // · · · // Yes, that train sounds good. Please book it for

me. Could you also find me a hotel with a moderate price that offers internet? // · · ·
// The north part of town please, preferably in a guesthouse.

True
‘hotel-area-north’, ‘train-day-saturday’, ‘hotel-internet-yes’, · · · ,

‘hotel-pricerange-moderate’, ‘hotel-type-guest house’

TRADE

‘train-arriveby-10:30’, ‘train-day-saturday’, ‘train-departure-birmingham new

street’, ‘train-destination-cambridge’, ‘hotel-pricerange-moderate’,

‘hotel-type-guest house’

SAS
‘train-destination-cambridge’, ‘train-departure-birmingham new street’, · · · ,

’hotel-internet-yes’, ’train-arriveby-10:30’

2

I am looking for a Chinese restaurant in the centre of town. // · · · // All Saints

Church is famous for its architecture. It’s located on Jesus Lane, cb58bs. They can

be reached at 01223452587. Is there anything else I can find for you? // Yes. I need

a taxi to take me from the church to the restaurant at 21:30.

True
‘restaurant-food-chinese’, ‘attraction-area-centre’, · · · , ‘taxi-departure-all saints

church’, ‘restaurant-area-centre’, ‘taxi-leaveat-21:30’

TRADE

‘restaurant-food-chinese’, ‘attraction-area-centre’, · · · , ‘taxi-arriveby-21:30’,
‘taxi-departure-all saints church’, ‘restaurant-area-centre’,

‘restaurant-pricerange-dontcare’, ‘taxi-leaveat-21:30’

SAS

‘taxi-destination-all saints church’, ‘restaurant-pricerange-dontcare’,

‘attraction-area-centre’, ‘taxi-leaveat-21:30’, ‘restaurant-food-chinese’,

‘taxi-departure-all saints church’, ‘attraction-name-all saints church’,

‘restaurant-area-centre’

3

I would like to get some information about colleges to visit? // There is Christs

College, Churchill College, Clare College , Clare Hall, Corpus Christi, Downing

College, Emmanuel College, and Huges Hall. Would you like me to list more? //

· · · // Tr6359 leaves at 13:40 and arrives 16:23, will this 1 work for you ? // Yes i

need 6 tickets.

True

‘attraction-type-college’, ‘train-departure-birmingham new street’, · · · ,

‘attraction-name-christ s college, ‘train-book people-6’, ‘train-day-friday’,

‘train-arriveby-16:30’

TRADE

‘attraction-name-clare college’, ‘train-departure-birmingham new street’,

‘train-destination-cambridge’, ‘train-book people-6’, ’train-day-friday’,

‘train-arriveby-16:30’

SAS

‘train-destination-cambridge’, ‘train-departure-birmingham new street’,

‘attraction-name-christ s college’, ‘train-book people-6’, · · · ,

‘attraction-type-college’

Table 4: Example dialogue state outputs from TRADE and SAS. “True” stands for ground truth dialogue states,

“TRADE” and “SAS” are the generation results from TRADE and SAS respectively.

of “dontcare” than other slots. Besides that, we

also notice that the tracking errors of departure or

destination location are still common. The reason

may be that location name words are usually rich

in variations and have few grammatical feature.

8 Conclusions and Future Work

We present SAS, an effective DST model which

successfully extracts the key feature from the orig-

inal information excessive dialogue. The slot at-

tention of SAS enables it to isolate the key infor-

mation for each slot, while the slot information

sharing enhances the expressiveness of the infor-
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mation passed to each slot by integrating the infor-

mation from similar slots. The sharing allows SAS

to generalize on rare slot-value pairs with few train-

ing data. Our model reaches the state-of-the-art

performance compared with previous models.

We believe that SAS provides promising poten-

tial extensions, such as adapting our model on other

tasks where are troubled by excessive information.

Besides that, we also notice that it is hard for SAS

to correctly extract names of hotel or attraction

which have rich variations. Designing a new model

to address these problems may be our future work.
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