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Abstract
Recent studies have shown remarkable suc-
cess in end-to-end task-oriented dialog system.
However, most neural models rely on large
training data, which are only available for a
certain number of task domains, such as nav-
igation and scheduling. This makes it difficult
to scalable for a new domain with limited la-
beled data. However, there has been relatively
little research on how to effectively use data
from all domains to improve the performance
of each domain and also unseen domains. To
this end, we investigate methods that can make
explicit use of domain knowledge and intro-
duce a shared-private network to learn shared
and specific knowledge. In addition, we pro-
pose a novel Dynamic Fusion Network (DF-
Net) which automatically exploit the relevance
between the target domain and each domain.
Results show that our model outperforms exist-
ing methods on multi-domain dialogue, giving
the state-of-the-art in the literature. Besides,
with little training data, we show its transfer-
ability by outperforming prior best model by
13.9% on average.

1 Introduction

Task-oriented dialogue systems (Young et al., 2013)
help users to achieve specific goals such as restau-
rant reservation or navigation inquiry. In recent
years, end-to-end methods in the literature usually
take the sequence-to-sequence (Seq2Seq) model to
generate a response from a dialogue history (Eric
and Manning, 2017; Eric et al., 2017; Madotto
et al., 2018; Wen et al., 2018; Gangi Reddy et al.,
2019; Qin et al., 2019b; Wu et al., 2019a). Taking
the dialogue in Figure 1 as an example, to answer
the driver’s query about the “gas station”, the
end-to-end dialogue system directly generates sys-
tem response given the query and a corresponding
knowledge base (KB).

∗Email corresponding.

Address Distance POI type POI Traffic info
5672 barringer street 5 miles certain address 5672 barringer street no traffic
200 Alester Ave 2 miles gas station Valero road block nearby
899 Ames Ct 5 miles hospital Stanford Childrens Health moderate traffic
481 Amaranta Ave 1 miles parking garage Palo Alto Garage R moderate traffic

Driver Address to the gas station.
Dialogue

Knowledge Base (KB)

Car Valero is located at 200 Alester Ave.

Car Since there is a road block nearby, I found another route for you and I sent it on your screen.
Driver OK , please give me directions via a route that avoids all heavy traffic.

Figure 1: Example of a task-oriented dialogue that
incorporates a knowledge base (KB) from the SMD
dataset (Eric et al., 2017). Words with the same color
refers queried entity from the KB. Better viewed in
color.

Though achieving promising performance, end-
to-end models rely on a considerable amount of
labeled data, which limits their usefulness for new
and extended domains. In practice, we cannot col-
lect rich datasets for each new domain. Hence, it is
important to consider methods that can effectively
transfer knowledge from a source domain with suf-
ficient labeled data to a target domain with limited
or little labeled data.

Existing work can be classified into two main
categories. As shown in Figure 2(a), the first
strand of work (Eric and Manning, 2017; Eric et al.,
2017; Madotto et al., 2018; Wu et al., 2019a) sim-
ply combines multi-domain datasets for training.
Such methods can implicitly extract the shared fea-
tures but fail to effectively capture domain-specific
knowledge. As shown in Figure 2(b), The second
strand of work (Wen et al., 2018; Qin et al., 2019b)
trains model separately for each domain, which can
better capture domain-specific features. However,
those methods ignore shared knowledge between
different domains (e.g. the location word exists
in both schedule domain and navigation domain).

We consider addressing the limitation of existing
work by modeling knowledge connections between
domains explicitly. In particular, a simple baseline
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Figure 2: Methods for multi-domain dialogue. Previous work either trains a general model on mixed multi-domain
mixed datasets (a), or on each domain separately (b). The basic shared-private framework is shown (c). Our
proposed extension with dynamic fusion mechanism is shown (d).

to incorporate domain-shared and domain-private
features is shared-private framework (Liu et al.,
2017; Zhong et al., 2018; Wu et al., 2019b). Shown
in Figure 2(c), it includes a shared module to cap-
ture domain-shared feature and a private module
for each domain. The method explicitly differenti-
ates shared and private knowledge. However, this
framework still has two issues: (1) given a new
domain with extremely little data, the private mod-
ule can fail to effectively extract the corresponding
domain knowledge. (2) the framework neglects
the fine-grained relevance across certain subsets of
domains. (e.g. schedule domain is more relevant
to the navigation than to the weather domain.)

To address the above issues, we further propose
a novel Dynamic Fusion Network (DF-Net), which
is shown in Figure 2 (d). In contrast to the shared-
private model, a dynamic fusion module (see §2.3)
is further introduced to explicitly capture the cor-
relation between domains. In particular, a gate
is leveraged to automatically find the correlation
between a current input and all domain-specific
models, so that a weight can be assigned to each do-
main for extracting knowledge. Such a mechanism
is adopted for both the encoder and the decoder,
and also a memory module to query knowledge
base features. Given a new domain with little or no
training data, our model can still make the best use
of existing domains, which cannot be achieved by
the baseline model.

We conduct experiments on two public bench-
marks, namely SMD (Eric et al., 2017) and Multi-
WOZ 2.1 (Budzianowski et al., 2018). Results
show that our framework consistently and sig-
nificantly outperforms the current state-of-the-art
methods. With limited training data, our frame-
work outperforms the prior best methods by 13.9%
on average.

To our best of knowledge, this is the first work
to effectively explore shared-private framework in

multi-domain end-to-end task-oriented dialog. In
addition, when given a new domain which with
few or zero shot data, our extended dynamic fusion
framework can utilize fine-grained knowledge to
obtain desirable accuracies, which makes it more
adaptable to new domains.

All datasets and code are publicly available at:
https://github.com/LooperXX/DF-Net.

2 Model Architecture

We build our model based on a seq2seq dialogue
generation model (§2.1), as shown in Figure 3(a).
To explicitly integrate domain awareness, as shown
in Figure 3(b) we first propose to use a shared-
private framework (§2.2) to learn shared and the
corresponding domain-specific features. Next, we
further use a dynamic fusion network (§2.3) to dy-
namically exploit the correlation between all do-
mains for fine-grained knowledge transfer, which is
shown in Figure 3(c). In addition, adversarial train-
ing is applied to encourage shared module generate
domain-shared feature.

2.1 Seq2Seq Dialogue Generation

We define the Seq2Seq task-oriented dialogue gen-
eration as finding the system response Y according
to the input dialogue history X and KB B. For-
mally, the probability of a response is defined as

p(Y | X,B) =
n∏

t=1

p(yt | y1, ..., yt−1, X,B), (1)

where yt represents an output token. In a vanilla
Seq2Seq task-oriented dialogue system (Eric and
Manning, 2017), a long short-term Memory net-
work (LSTM, Hochreiter and Schmidhuber (1997))
is used to encode the dialogue history X =
(x1, x2, .., xT ) (T is the number of tokens in the di-
alogue history) to produce shared context-sensitive

https://github.com/LooperXX/DF-Net
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model.

hidden statesH = (h1,h2, ...,hT ):

hi = BiLSTMenc

(
φemb(xi),hi−1

)
, (2)

where φemb(·) represents the word embedding ma-
trix. LSTM is also used to repeatedly predict out-
puts (y1, y2, ..., yt−1) by the decoder hidden states
(hdec,1,hdec,2, ...,hdec,t). For the generation of yt,
the model first calculates an attentive representation
h
′
dec,t of the dialogue history over the encoding rep-

resentation H . Then, the concatenation of hdec,t

and h
′
dec,t is projected to the vocabulary space V

by U :
ot = U [hdec,t,h

′
dec,t], (3)

where ot is the score (logit) for the next token
generation. The probability of next token yt ∈ V is
finally calculated as:

p(yt | y1, ..., yt−1, X,B) = Softmax(ot). (4)

Different from typical text generation with Seq2seq
model, the successful conversations for task-
oriented dialogue system heavily depend on ac-
curate knowledge base (KB) queries. We adopt

the global-to-local memory pointer mechanism
(GLMP) (Wu et al., 2019a) to query the entities
in KB, which has shown the best performance.
An external knowledge memory is proposed to
store knowledge base (KB) B and dialogue history
X . The KB memory is designed for the knowl-
edge source while the dialogue memory is used
for directly copying history words. The entities
in external knowledge memory are represented in
a triple format and stored in the memory mod-
ule, which can be denoted as M = [B;X] =
(m1, . . . ,mb+T ), where mi is one of the triplet
of M , b and T denotes the number of KB and
dialog history respectively. For a k-hop mem-
ory network, the external knowledge is composed
of a set of trainable embedding matrices C =
(C1, . . . ,Ck+1). We can query knowledge both
in encoder and decoder process to enhance model
interaction with knowledge module.

Query Knowledge in Encoder We adopt the
last hidden state as the initial query vector:

q1enc = hT . (5)

In addition, it can loop over k hops and compute
the attention weights at each hop k using

pki = Softmax((qkenc)
>cki ), (6)

where cki is the embedding in ith memory posi-
tion using the embedding matrix Ck. We obtain
the global memory pointer G = (g1, . . . , gb+T )
by applying gki = Sigmoid((qkenc)

>cki ), which is
used to filter the external knowledge for relevant
information for decoding.

Finally, the model reads out the memory ok by
the weighted sum over ck+1 and updates the query
vector qk+1

enc . Formally,

okenc =
∑
i

pki c
k+1
i , qk+1

enc = qkenc + o
k
enc. (7)

qk+1
enc can be seen as the encoded KB information,

and is used to initialized the decoder.

Query Knowledge in Decoder we use a sketch
tag to denote all the possible slot types that start
with a special token. (e.g., @address stands for all
the Address). When a sketch tag is generated by
Eq. 4 at t timestep, we use the concatenation of the
hidden states hdec,t and the attentive representation
h
′
dec,t to query knowledge, which is similar with
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Figure 4: The dynamic fusion layer for fusing domain-
shared feature and domain-specific feature.

the process of querying knowledge in the encoder:

q1dec = [hdec,t,h
′
dec,t], (8)

pki = Softmax((qkdec)
>cki g

k
i ). (9)

Here, we can treat Pt = (pk1 ,. . . ,pkb+T ) as the prob-
abilities of queried knowledge, and select the word
with the highest probability from the query result
as the generated word.

2.2 Shared-Private Encoder-Decoder Model

The model in section 2.1 is trained over mixed
multi-domain datasets and the model parameters
are shared across all domains. We call such model
as shared encoder-decoder model. Here, we pro-
pose to use a shared-private framework including
a shared encoder-decoder for capturing domain-
shared feature and a private model for each domain
to consider the domain-specific features explicitly.
Each instance X goes through both the shared and
its corresponding private encoder-decoder.

Enhancing Encoder Given an instance along
with its domain, the shared-private encoder-
decoder generates a sequence of encoder vectors
denoted as H{s,d}enc , including shared and domain-
specific representation from corresponding en-
coder:

H
{s,d}
enc =(h

{s,d}
enc,1 , . . . ,h

{s,d}
enc,T )

=BiLSTM
{s,d}
enc (X).

(10)

The final shared-specific encoding representation
Hf

enc is a mixture:

Hf
enc=W 2(LeakyReLU(W 1[H

s
enc,H

d
enc])). (11)

For ease of exposition, we define the shared-
specific fusion function as:

shprivate : (Hs
enc,H

d
enc)→Hf

enc. (12)

In addition, self-attention has been shown useful for
obtaining context information (Zhong et al., 2018).
Finally, we follow Zhong et al. (2018) to use self-
attention overHf

enc to get context vector cfenc. We
replace hT with cfenc in Eq. 5. This makes our
query vector combine the domain-shared feature
with domain-specific feature.

Enhancing Decoder At t step of the decoder, the
private and shared hidden state is:

h
{s,d}
dec,t = LSTM

{s,d}
dec,t (X). (13)

We also apply the shared-specific fusion function
to the hidden states and the mixture vector is:

shprivate : (hs
dec,t,h

d
dec,t)→ hf

dec,t. (14)

Similarly, we obtain the fused attentive represen-
tation hf ′

dec,t by applying attention from hf
dec,t over

Hf
enc. Finally, we replace [hdec,t,h

′
dec,t] in Eq. 8

with [hf
dec,t,h

f ′

dec,t] which incorporates shared and
domain-specific features.

2.3 Dynamic Fusion for Querying Knowledge

The shared-private framework can capture the cor-
responding specific feature, but neglects the fine-
grained relevance across certain subsets of domains.
We further propose a dynamic fusion layer to ex-
plicitly leverage all domain knowledge, which is
shown in Figure 4. Given an instance from any
domain, we first put it to multiple private encoder-
decoder to obtain domain-specific features from
all domains. Next, all domain-specific features are
fused by a dynamic domain-specific feature fusion
module, followed by a shared-specific feature fu-
sion for obtaining shared-specific features.

Dynamic Domain-Specific Feature Fusion
Given domain-specific features from all domains,
a Mixture-of-Experts mechanism (MoE) (Guo
et al., 2018) is adapted to dynamically incorporate
all domain-specific knowledge for the current
input in both encoder and decoder. Now, we
give a detailed description on how to fuse the
timestep t of decoding and the fusion process is
the same to encoder. Given all domain feature
representations in t decoding steps: {hdi

dec,t}
|D|
i=1,

where |D| represents the number of domains, an
expert gate E takes {hdi

dec,t} as input and outputs
a softmax score αt,i that represents the degree
of correlation between each domain and the
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current input token. We achieve this by a simple
feedforward layer:

αt = Softmax(W ∗ hd
dec,t + b). (15)

The final domain-specific feature vector is a mix-
ture of all domain outputs, dictated by the expert
gate weights αt = (αt,1, . . . , αt,|D|), which can be

written as hdf
dec,t =

∑
i αt,ih

di
dec,t.

During training, take the decoder for example,
we apply the cross-entropy loss Lmoe

dec as the su-
pervision signal for the expert gate to predict the
domain of each token in the response, where the
expert gate output αt can be treated as the tth to-
ken’s predicted domain probability distribution by
multiple private decoder. Hence, the more accurate
the domain prediction is, the more correct expert
gets:

Lmoe
dec = −

n∑
t=1

|D|∑
i=1

(ei · log(αt,i|θs,θmdec)), (16)

where θs represents the parameters of encoder-
decoder model, θmdec represents the parameters
of the MoE module (Eq. 15) in the decoder and
ei ∈ {0, 1} represents whether the response with n
tokens belongs to the domain di. Similarly, we can
get the Lmoe

enc for the encoder and sum up them as:
Lmoe = Lmoe

enc + Lmoe
dec .

Lmoe is used to encourage samples from a cer-
tain source domain to use the correct expert, and
each expert learns corresponding domain-specific
features. When a new domain has little or no la-
beled data, the expert gate can automatically calcu-
late the correlation between different domains with
the target domain and thus better transfer knowl-
edge from different source domains in both encoder
and decoder module.

Shared-Specific Feature Fusion We directly ap-
ply shprivate operation to fuse shared and final
domain-specific feature:

shprivate : (hs
dec,t,h

df
dec,t)→ hf

dec,t. (17)

Finally, we denote the dynamic fusion function
as dynamic(hs

dec,t, {h
di
dec,t}

|D|
i=1). Similar to Sec-

tion 2.2, we replace [hdec,t,h
′
dec,t] in Eq. 8 with

[hf
dec,t,h

f ′

dec,t]. The other components are kept the
same as the shared-private encoder-decoder frame-
work.

Dataset Domains Train Dev Test
SMD Navigate, Weather, Schedule 2,425 302 304
Multi-WOZ 2.1 Restaurant, Attraction, Hotel 1,839 117 141

Table 1: Statistics of datasets.

Adversarial Training To encourage the model
to learn domain-shared features, we apply adversar-
ial learning on the shared encoder and decoder mod-
ule. Following Liu et al. (2017), a gradient reversal
layer (Ganin and Lempitsky, 2014) is introduced
after the domain classifier layer. The adversarial
training loss is denoted as Ladv. We follow Qin
et al. (2019a) and the final loss function of our
Dynamic fusion network is defined as:

L = γbLbasic + γmLmoe + γaLadv, (18)

where Lbasic keep the same as GLMP (Wu et al.,
2019a), γb, γm and γa are hyper-parameters. More
details about Lbasic and Ladv can be found in ap-
pendix.

3 Experiments

3.1 Datasets
Two publicly available datasets are used in this
paper, which include SMD (Eric et al., 2017) and
an extension of Multi-WOZ 2.1 (Budzianowski
et al., 2018) that we equip the corresponding KB
to every dialogue.1 The detailed statistics are also
presented in Table 1. We follow the same partition
as Eric et al. (2017), Madotto et al. (2018) and Wu
et al. (2019a) on SMD and (Budzianowski et al.,
2018) on Multi-WOZ 2.1.

3.2 Experimental Settings
The dimensionality of the embedding and LSTM
hidden units is 128. The dropout ratio we use in
our framework is selected from {0.1, 0.2} and the
batch size from {16, 32}. In the framework, we
adopt the weight typing trick (Wu et al., 2019a).
We use Adam (Kingma and Ba, 2015) to opti-
mize the parameters in our model and adopt the
suggested hyper-parameters for optimization. All
hyper-parameters are selected according to valida-
tion set. More details about hyper-parameters can
be found in Appendix.

3.3 Baselines
We compare our model with the following state-of-
the-art baselines.

1The constructed datasets will be publicly available for
further research.
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SMD Multi-WOZ 2.1

Model BLEU F1
Navigate

F1
Weather

F1
Calendar

F1
BLEU F1

Restaurant
F1

Attraction
F1

Hotel
F1

Mem2Seq (Madotto et al., 2018) 12.6 33.4 20.0 32.8 49.3 6.6 21.62 22.4 22.0 21.0
DSR (Wen et al., 2018) 12.7 51.9 52.0 50.4 52.1 9.1 30.0 33.4 28.0 27.1
KB-retriever (Qin et al., 2019b) 13.9 53.7 54.5 52.2 55.6 - - - - -
GLMP (Wu et al., 2019a) 13.9 60.7 54.6 56.5 72.5 6.9 32.4 38.4 24.4 28.1
Shared-Private framework (Ours) 13.6 61.7 56.3 56.5 72.8 6.6 33.8 39.8 26.0 28.3
Dynamic Fusion framework (Ours) 14.4* 62.7* 57.9* 57.6* 73.1* 9.4* 35.1* 40.9* 28.1* 30.6*

Table 2: Main results. The numbers with * indicate that the improvement of our framework over all baselines is
statistically significant with p < 0.05 under t-test.

Model Entity F1 (%)
Test ∆

Full model 62.7 -
w/o Domain-Shared Knowledge Transfer 59.0 3.7
w/o Dynamic Fusion Mechanism 60.9 1.8
w/o Multi-Encoder 61.0 1.7
w/o Multi-Decoder 58.9 3.8
w/o Adversarial Training 61.6 1.1

Table 3: Ablation tests on the SMD test set.

• Mem2Seq (Madotto et al., 2018): the model
takes dialogue history and KB entities as in-
put and uses a pointer gate to control either
generating a vocabulary word or selecting an
input as the output.

• DSR (Wen et al., 2018): the model leverages
dialogue state representation to retrieve the
KB implicitly and applies copying mechanism
to retrieve entities from knowledge base while
decoding.

• KB-retriever (Qin et al., 2019b): the model
adopts a retriever module to retrieve the most
relevant KB row and filter the irrelevant infor-
mation for the generation process.

• GLMP (Wu et al., 2019a): the framework
adopts the global-to-local pointer mechanism
to query the knowledge base during decoding
and achieve state-of-the-art performance.

For Mem2Seq, DSR, KB-retriever 2, we adopt
the reported results from Qin et al. (2019b) and Wu
et al. (2019a). For GLMP, we rerun their public
code to obtain results on same datasets.3

2For Multi-WOZ 2.1 dataset, most dialogs are supported
by more than single row, which can not processed by KB-
retriever, so we compare our framework with it in SMD and
Camrest datasets.

3Note that, we find that Wu et al. (2019a) report macro
entity F1 as the micro F1, so we rerun their models
(https://github.com/jasonwu0731/GLMP) and obtain results.

3.4 Results

Follow the prior work (Eric et al., 2017; Madotto
et al., 2018; Wen et al., 2018; Wu et al., 2019a;
Qin et al., 2019b), we adopt the BLEU and Mi-
cro Entity F1 metrics to evaluate model perfor-
mance. The results on the two datasets are shown
in Table 2, we can observe that: 1) The basic
shared-private framework outperforms the best
prior model GLMP in all the datasets. This in-
dicates that the combination of domain-shared and
domain-specific features can better enhance each
domain performanc compared with only utilizing
the implicit domain-shared features. 2) Our frame-
work achieves the state-of-the-art performance on
two multi-domain task-oriented dialog datasets,
namely SMD and Multi-WOZ 2.1. On SMD
dataset, our model has the highest BLEU com-
pared with baselines, which shows that our frame-
work can generate more fluent response. More im-
portantly, our model outperforms GLMP by 2.0%
overall, 3.3% in the Navigate domain, 1.1% in the
Weather domain and 0.6% in Schedule domain on
entity F1 metric, which indicates that considering
relevance between target domain input and all do-
mains is effective for enhancing performance of
each domain. On Multi-Woz 2.1 dataset, the same
trend of improvement has been witnessed, which
further shows the effectiveness of our framework.

3.5 Analysis

We study the strengths of our model from several
perspectives on SMD dataset. We first conduct
several ablation experiments to analyze the effect
of different components in our framework. Next,
we conduct domain adaption experiments to verify
the transferability of our framework given a new
domain with little or no labeled data. In addition,
we provide a visualization of the dynamic fusion
layer and case study to better understand how the
module affects and contributes to the performance.
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Figure 5: Performance of domain adaption on different subsets of original training data.
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Figure 6: Zero-shot performance (F1 score) on each do-
main on SMD dataset. The x-axis domain name repre-
sents that the domain is unseen and other two domains
is the same as original dataset.

Model Correct Fluent Humanlike
GLMP 3.4 3.9 4.0

Our framework 3.6 4.2 4.2
Agreement 53% 61% 74%

Table 4: Human evaluation of responses on the ran-
domly selected dialogue history.

3.5.1 Ablation

Several ablation experiments and results are shown
in Table 3. In detail, 1) w/o Domain-shared Knowl-
edge Transfer denotes that we remove domain-
shared feature and just keep fused domain-specific
feature for generation. 2) w/o Domain Fusion
mechanism denotes that we simply sum all domain-
specific features rather than use the MOE mecha-
nism to dynamically fuse domain-specific features.
3) w/o Multi-Encoder represents that we remove
multi-encoder module and adopt one shared en-
coder in our framework. 4) w/o Multi-Decoder rep-
resents that we remove the multi-decoder module
and adopt one shared decoder. 5) w/o Adversarial
Training denotes that we remove the adversarial
training in experimental setting. Generally, all the
proposed components are effective to contribute
the final performance. Specifically, we can clearly
observe the effectiveness of our dynamic fusion
mechanism where w/o domain-specific knowledge
fusion causes 1.8% drops and the same trend in
removing domain-shared knowledge fusion. This

Figure 7: Distribution of Mix-of-the-expert mechanism
across source domains for randomly selected 100 exam-
ples in each domain on SMD dataset.

further verifies that domain-shared and domain-
specific feature are benefit for each domain perfor-
mance.

3.5.2 Domain Adaption
Low-Resource Setting To simulate low-
resource setting, we keep two domains unchanged,
and the ratio of the except domain from original
data varies from [1%, 5%, 10%, 20%, 30%,
50%]. The results are shown in Figure 5. We
can find that: (1) Our framework outperforms the
GLMP baseline on all ratios of the original dataset.
When the data is only 5% of original dataset, our
framework outperforms GLMP by 13.9% on all
domains averagely. (2) Our framework trained
with 5% training dataset can achieve comparable
and even better performance compared to GLMP
with 50% training dataset on some domains. This
implies that our framework effectively transfers
knowledge from other domains to achieve better
performance for the low-resources new domain.

Zero-Shot Setting Specially, we further evalu-
ate the performance of domain adaption ability on
the zero-shot setting given an unseen domain. We
randomly remove one domain from the training
set, and other domain data remained unchanged to
train the model. During test, the unseen domain
input use the MoE to automatically calculate the
correlation between other domains and the current
input and get the results. Results are shown in
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Car: Monday will be foggy.

Weather@5%

0.1996
0.0242

0.7762

0

0.5

1

Navigation Weather Schedule

Dialogue History: Find location and address to home that is 
nearest me. Your home is at 56 cadwell street. Thanks, set the 
gps for there.
Response: No problem.

Figure 8: Case of of expert gate distribution in SMD
dataset. Text segments with red color represents ap-
pearing in both schedule and navigation domain.

Figure 6, we can see our model significantly out-
performs GLMP on three domains, which further
demonstrate the transferability of our framework.

3.5.3 Visualization of Dynamic Fusion Layer
To better understand what our dynamic fusion layer
has learned, we visualize the gate distribution for
each domain in low-resource (5%) setting, which
fuses domain-specific knowledge among various
cases. As shown in the Figure 7, for a specific tar-
get domain, different examples may have different
gate distributions, which indicates that our frame-
work successfully learns how to transfer knowledge
between different domains. For example, the navi-
gation column contains 100 examples from its test
set and each row show the corresponding expert
value. More specifically, in the navigation column,
we observe that the expert value in schedule do-
main is bigger than weather domain, which indi-
cates schedule domain transfers more knowledge
to navigation than weather domain.

3.5.4 Case Study
Furthermore, we provide one case for navigation
domain and their corresponding expert gate dis-
tribution. The cases are generated with 5% train-
ing data in the navigation domain and other two
domain datasets keep the same, which can better
show how the other two domains transfer knowl-
edge to the low-resource domain. As shown in
Figure 8, the expert value of schedule domain is
bigger than the weather domain, which indicates
the schedule contributes more than weather domain.
In further exploration, we find word “location” and
“set” appear both in navigation and schedule do-
main, which shows schedule has closer relation
with navigation than weather, which indicates our
model successfully transfers knowledge from the
closest domain.

3.5.5 Human Evaluation
We provide human evaluation on our framework
and other baseline models. We randomly gener-
ated 100 responses. These responses are based on

distinct dialogue history on the SMD test data. Fol-
lowing Wen et al. (2018) and Qin et al. (2019b), We
hired human experts and asked them to judge the
quality of the responses according to correctness,
fluency, and humanlikeness on a scale from 1 to 5.

Results are illustrated in Table 4. We can see that
our framework outperforms GLMP on all metrics,
which is consistent with the automatic evaluation.

4 Related Work

Existing end-to-end task-oriented systems can be
classified into two main classes. A series of work
trains a single model on the mixed multi-domain
dataset. Eric et al. (2017) augments the vocabu-
lary distribution by concatenating KB attention to
generatge entities. Lei et al. (2018) first integrates
track dialogue believes in end-to-end task-oriented
dialog. Madotto et al. (2018) combines end-to-
end memory network (Sukhbaatar et al., 2015) into
sequence generation. Gangi Reddy et al. (2019)
proposes a multi-level memory architecture which
first addresses queries, followed by results and fi-
nally each key-value pair within a result. Wu et al.
(2019a) proposes a global-to-locally pointer mecha-
nism to query the knowledge base. Compared with
their models, our framework can not only explicitly
utilize domain-specific knowledge but also con-
sider different relevance between each domain. An-
other series of work trains a model on each domain
separately. Wen et al. (2018) leverages dialogue
state representation to retrieve the KB implicitly.
Qin et al. (2019b) first adopts the KB-retriever to
explicitly query the knowledge base. Their works
consider only domain-specific features. In contrast,
our framework explicitly leverages domain-shared
features across domains.

The shared-private framework has been explored
in many other task-oriented dialog components.
Liu and Lane (2017) applies a shared-private
LSTM to generate shared and domain-specific fea-
tures. Zhong et al. (2018) proposes a global-local
architecture to learn shared feature across all slots
and specific feature for each slot. More recently,
Zhang et al. (2018) utilizes the shared-private
model for text style adaption. In our work, we ex-
plore shared-private framework in end-to-end task-
oriented dialog to better transfer domain knowledge
for querying knowledge base. In addition, we take
inspiration from Guo et al. (2018), who success-
fully apply the mix-of-the-experts (MoE) mech-
anism in multi-sources domain and cross-lingual
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adaption tasks. Our model not only combines the
strengths of MoE to incorporate domain-specific
feature, but also applies adversarial training to en-
courage generating shared feature. To our best of
knowledge, we are the first to effectively explore
shared-private framework in multi-domain end-to-
end task oriented dialog.

5 Conclusion

In this paper, we propose to use a shared-private
model to investigate explicit modeling domain
knowledge for multi-domain dialog. In addition, a
dynamic fusion layer is proposed to dynamically
capture the correlation between a target domain and
all source domains. Experiments on two datasets
show the effectiveness of the proposed models. Be-
sides, our model can quickly adapt to a new domain
with little annotated data.
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Hyperparameter Name SMD Multi-WOZ 2.1
Batch Size 16 32
Hidden Size 128 128
Embedding Size 128 128
Learning Rate 0.001 0.001
Dropout Ratio 0.2 0.1
Teacher Forcing Ratio 0.9 0.9
Number of Memory Network’s Hop 3 3

Table 5: Hyperparameters we use for SMD and Multi-
WOZ 2.1 dataset.

A Appendices

A.1 Hyperparameters Setting

The hyperparameters used for SMD and Multi-
WOZ 2.1 dataset are shown in Table 5.

A.2 Basic Loss Function

The loss Lbasic used in our Shared-Private
Encoder-Decoder Model is the same as GLMP. Dif-
ferent with the standard sequence-to-sequence with

attention mechanism model, we use [hf
dec,t,h

f
′

dec,t]

to replace [hdec,t,h
′
dec,t] and then get the sketch

word probability distribution P vocab
t . Based on the

gold sketch response Y s = (ys1, . . . , y
s
n), we calcu-

late the standard cross-entropy loss Lv as follows:

P vocab
t = Softmax(U [hf

dec,t,h
f
′

dec,t]), (19)

Lv =
n∑

t=1

−log(P vocab
t (yst )). (20)

Given the system response Y , we get the
global memory pointer label sequence Glabel =
(ĝ1, . . . , ĝb+T ) and local memory pointer label se-
quence Llabel = (l̂1, . . . , l̂n) as follows:

ĝi=

{
1 if Object(mi) ∈ Y
0 otherwise

, (21)

l̂t=

{
max(z) if ∃z s.t. yt=Object(mz)
b+ T + 1 otherwise

,

(22)

where mi represents one triplet in the external
knowledge M = [B;X] = (m1, . . . ,mb+T ) and
Object(·) function is denoted as getting the object
word from a triplet.

Then, the Lg can be written as follows:

Lg=−
b+T∑
i=1

(ĝi · log gi + (1− ĝi) · log (1− gi)) .

(23)

Based on the Llabel and Pt = (pk1, . . . , p
k
b+T ),

we can calculate the standard cross-entropy loss Ll
as follows:

Ll =
n∑

t=1

− log(Pt(l̂t)). (24)

Finally, Lbasic is the weighted-sum of three
losses:

Lbasic = γgLg + γvLv + γlLl, (25)

where γg, γv and γl are hyperparameters.

A.3 Adversarial Training
We apply a Convolutional Neural Network (CNN)
as domain classifier both in the shared encoder and
shared decoder to identify the domain of shared rep-
resentation of dialogue historyHs

enc and response
Hs

dec. Take the encoder for example, based on the
Hs

enc, we can extract the context representation
csenc by CNN and then βenc ∈ R|D| can be calcu-
lated as follows:

βenc=Sigmoid(LeakyReLU(W enc(c
s
enc)),

(26)
Then we train the domain classifier by optimiz-

ing its parameters θd to minimize the sequence-
level binary cross-entropy loss Ladv

enc as follows:

max
θs

min
θd

Ladv
enc =−

|D|∑
i=1

(ei · log(βenc,i|θs,θd)

+(1− ei) · log(1− βenc,i|θs,θd)),
(27)

where βenc,i represents the probability of the input
dialogue history belongs to the domain di. Sim-
ilarly, we can get the Ladv

dec and sum up them as:
Ladv = Ladv

enc + Ladv
dec .

In order to update the encoder-decoder model
parameters θs underlying the domain classifier, we
introduce the gradient reversal layer to reverse the
gradient direction which trains our model to extract
domain-shared features to confuse the classifier.
On the one hand, we train the domain classifier
to minimize the domain classification loss. On
the other hand, we update the parameters of the
network underlying the domain classifier to maxi-
mize the domain classification loss, which works
adversarially towards the domain classifier. This
encourages that our shared encoder and decoder
are trained to extract domain-shared features.


